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Abstract. This paper explores some nonlinear systems of singular partial differential equations written in the
form tADtU = Λ(t, x)U + f

(
t, x, ζU, tADxU

)
. Under an assumption on Λ, unique solvability theorems are

provided in the space of functions that are holomorphic in x on an open set, differentiable with respect to t on
a real interval ]0, r] and extending to a continuous function at t = 0. The studied systems contain Fuchsian
systems.
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Introduction
Consider a system of differential equations tkDtU = f(t, U) where k is an integer ≥ 2 and f is holomorphic
in a neighborhood of {0} × C. We know that such a problem generally does not have analytic solution, see
for example [2,3,9,13]. Any formal solution belongs to a Gevrey class of order > 1, we could refer to [6,7,8,12]
among others. The purpose of this paper is to investigate nonlinear systems of the type

tADtU = Λ(t, x)U + f
(
t, x, ζU, tADxU

)
(0.1)

where A is a real diagonal matrix, Λ(t, x) ∈ MN (C) and f is a function wich is continous with respect to t in
a real interval [0, r0] and holomorphic in the remaining variables. This regularity assumption also appears in
[1,4,14,15]. The linear parts of our equations are irregular at t = 0 in the sense of [5]. However, we are interested
in solutions extending continuously at t = 0. Under a reasonable assumption on Λ, we show that (0.1) has
a unique solution (t, x) 7→ U(t, x) holomorphic in x on an open set, differentiable with respect to t on a real
interval ]0, r] and continuous on [0, r]. To achieve our statement, we first invert the operator tADt − Λ(0, 0),
which then leads us to a fixed point problem. We prepare some estimations that allow to apply the contraction
mapping principle. Our main results are theorem 1.1 and theorem 1.4.

Partially holomorphic system

We will make use of the following notations

t ∈ R, x = (x1, . . . , xn) ∈ Cn, Dt = ∂

∂t
, Dj = ∂

∂xj
,

N = {0, 1, 2, . . .}, α = (α1, . . . , αn) ∈ Nn, |α| =
n∑
j=1

αj , Dα = Dα1
1 · · ·Dαn

n .

1 Statement of results
Given an interval I ⊂ R, an open set Ω ⊂ Cn, a Banach space E and an integer 0 ≤ k ≤ ∞, we denote
by Ck,ω(I × Ω ;E) the algebra of functions u : I × Ω → E such that for 0 ≤ l ≤ k, the partial derivative
Dl
tu : I × Ω→ E exists, is continuous and for any t ∈ I, the mapping x ∈ Ω 7→ Dl

tu(t, x) ∈ E is holomorphic.
It is easily checked, using Cauchy’s integral formula, that this space is stable by differentiation with respect to
x and that we have

Dl
tD

αu = DαDl
tu for any α ∈ Nn, 0 ≤ l ≤ k.

When E = C, the previous space will be simply denoted by Ck,ω(I × Ω).
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Let us consider a system of partial differential equations of the form

tADtU(t, x) = Λ(t, x)U(t, x) + f
(
t, x, (ζU)(t, x), (tADxU)(t, x)

)
(1.1)

in which U = (u1, . . . , uN ) is the unknown,

A = diag(a1, . . . , aN ) is a diagonal matrix with real coefficients (ai)i∈J1,NK that are all ≥ 1,
Λ is an upper triangular matrix of order N whose coefficients are functions of (t, x) ∈ R× Cn,
ζU ≡

(
ζ1u1, . . . , ζNuN

)
where each ζi is a function of (t, x) ∈ R× Cn satisfying ζi(0, 0) = 0,

tADxU denotes the nN -tuple
(
(taiDjui)i∈J1,NK

)
j∈J1,nK,

f is a function of the variables t ∈ R, x ∈ Cn, y = (yi)i∈J1,NK ∈ CN , z =
(
(zij)i∈J1,NK

)
j∈J1,nK ∈ CnN .

We assume there are r0 > 0 and an open neighborhood Ω0 (resp. O0) of the origin in Cnx (resp. CNy × CnNz )
such that the coefficients of Λ, like the functions ζi, belong to C0,ω([0, r0]× Ω0) and

f ∈ C0,ω([0, r0]× (Ω0 ×O0) ; CN
)
.

Let Z be the zero set of the polynom P (λ) ≡ det(λ I − Λ(0, 0)).

Theorem 1.1. Suppose Z is included in the half-plane <e λ < 0. Then, there exist r ∈]0, r0] and an open
neighborhood Ω ⊂ Ω0 of the origin in Cnx such that system (1.1) has a unique solution
U ∈ C1,ω(]0, r]× Ω ; CN ) ∩ C0,ω([0, r]× Ω ; CN ) and necessarily tADtU ∈ C0,ω([0, r]× Ω ; CN ).

Suppose all ai ≥ 0, then Theorem 1.1 can be extended as follows.
Let I denote the set of i ∈ J1, NK such that ai ≥ 1 and assume J1, NK\I is not empty. Suppose

ζi(0, 0) = 0 for i ∈ I and ζi ≡ 1 for i /∈ I. (1.2)

For each i ∈ J1, NK\I, let wi be a holomorphic function on Ω0. We consider system (1.1) under (1.2) with the
initial conditions

ui(0, x) = wi(x) for i ∈ J1, NK\I. (1.3)

Impose
Dxwi(0) = 0 only if ai = 0. (1.4)

The set I is uniquely written as

I = {i1, . . . , ip} with 1 ≤ i1 < i2 < . . . < ip ≤ N.

Then we associate with the matrix Λ = (λij)1≤i,j≤N , the square submatrix of order p

Λ̃ =MI,I(Λ) =
(
λikil

)
1≤k,l≤p

.

Let us name Z̃ the zero set of the polynom P̃ (λ) ≡ det
(
λ I − Λ̃(0, 0)

)
. We then have the following result.

Theorem 1.2. Suppose Z̃ is included in the half-plane <e λ < 0. Then, there exist r ∈]0, r0] and an open
neighborhood Ω ⊂ Ω0 of the origin in Cnx such that the problem (1.1) − (1.2) − (1.3) has a unique solution
U ∈ C1,ω(]0, r]× Ω ; CN ) ∩ C0,ω([0, r]× Ω ; CN ) and so tADtU ∈ C0,ω([0, r]× Ω ; CN ).

Here is an example about this theorem.

Example 1.3. For all (a, b) ∈ C2 and (α, β) ∈ R2, there is r > 0 and an open neighborhood Ω of the origin in
Cx such that the problem 

t2Dtu1 = −u1 + au2 + [1 + xu1 +
√
t (∂u2/∂x)]α,

√
tDtu2 = bu2 + [1 + u2 + t2 (∂u1/∂x)]β ,

u2(0, x) = 0.

has a unique solution (u1, u2) ∈ C1,ω(]0, r] × Ω ; C2) ∩ C0,ω([0, r] × Ω ; C2) as a result (t2Dtu1,
√
tDtu2) ∈

C0,ω([0, r]× Ω ; C2).

Now we turn our attention to a system of the form

taDtU(t, x) = Λ(t, x)U(t, x) + f
(
t, x, (ζU)(t, x), (taDxU)(t, x)

)
(1.5)

where a is a positive real number and Λ is a square matrix of order N whose coefficients belong to the space
C0,ω([0, r0]× Ω0). We are then able to state the following result.
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Theorem 1.4. 1. If 0 ≤ a < 1, take ζ ≡ (1, . . . , 1) and let W : Ω0 → CN be an holomorphic function
(with DxW (0) = 0 only when a = 0). Then, there exist r ∈]0, r0] and an open neighborhood Ω ⊂ Ω0 of
the origin in Cnx such that system (1.5) with the initial data U(0, x) = W (x), has a unique solution U ∈
C1,ω(]0, r]× Ω ; CN ) ∩ C0,ω([0, r]× Ω ; CN ) and taDtU ∈ C0,ω([0, r]× Ω ; CN ).

2. If a ≥ 1 and if the zero set of the polynom λ 7→ det(λ I−Λ(0, 0)) is included in the half-plane <e λ < 0, then,
there exist r ∈]0, r0] and an open neighborhood Ω ⊂ Ω0 of the origin in Cnx such that system (1.5) has a unique
solution U ∈ C1,ω(]0, r]× Ω ; CN ) ∩ C0,ω([0, r]× Ω ; CN ) and taDtU ∈ C0,ω([0, r]× Ω ; CN ).

Remark 1.5. When a = 1, we obtain a more general system of equations than a Fuchsian system ; indeed, we
do not need to take ζi(t, x) = t but we simply have ζi(0, 0) = 0. Recall ([10, 11]) that in the Fuchsian case we
have already studied nonlinear equations in spaces of holomorphic functions.

2 Reformulation
In order to prove Theorem 1.1, we first transform the problem.
By writing Λ = Λ(0) + E where E ≡ Λ − Λ(0) satisfies all the same assumptions as ζ, we may suppose that Λ
is an upper triangular constant matrix, namely

Λ = (λij)1≤i,j≤N ∈MN (C) where λij = 0 if j < i. (2.1)

Furthermore,
<e λii < 0 for i = 1, . . . , N. (2.2)

Next, we will need the following result.

Let a ≥ 1, λ ∈ C and let P be the elementary operator P ≡ taDt − λ.

Lemma 2.1. Suppose <e λ < 0. Let r > 0 and let Ω be an open neighborhood of the origin in Cnx. Then, for
every v ∈ C0,ω([0, r]× Ω), the equation Pu = v has a unique solution u ∈ C1,ω(]0, r]× Ω) ∩ C0,ω([0, r]× Ω). In
addition, taDtu ∈ C0,ω([0, r]× Ω) with taDtu(0, x) = 0. This solution is defined by

u(t, x) = (P−1v)(t, x) ≡ eλϕ(t)
∫ t

0
v(τ, x)e

−λϕ(τ)

τa
dτ where ϕ(t) =

 t1−a
1−a if a > 1,
ln t if a = 1.

(2.3)

Moreover, Dαu = P−1Dαv for any α ∈ Nn.

Proof. Let us start with the uniqueness. Suppose u ∈ C1,ω(]0, r] × Ω) ∩ C0,ω([0, r] × Ω) satisfies Pu = 0. Let
x ∈ Ω. Since Dϕ(t) = t−a, the derivative of the mapping t 7→ u(t, x)e−λϕ(t) is equal to zero on ]0, r], so there
exists cx ∈ C such that

u(t, x) ≡ cxeλϕ(t) for t ∈]0, r].

This function has a finite limit at t = 0 only if cx = 0 because lim
0
ϕ = −∞. It follows that u ≡ 0 on [0, r]× Ω.

Concerning the existence, we shall prove that the formal solution (2.3) is of class C1,ω(]0, r]×Ω)∩C0,ω([0, r]×Ω).
Let ∆ be an open polydisk such that ∆ ⊂ Ω ; denote

M = max
[0,r]×∆

|v| .

The formula (2.3) can be written equivalently

u(t, x) = teλϕ(t)
∫ 1

0
v(σt, x) e

−λϕ(σt)

(σt)a dσ . (2.4)

We first consider the case a > 1. Then,

|e−λϕ(t)|
ta

= e−(<e λ)ϕ(t)

ta
−→
t→0

0

and we may set

ca ≡ max
τ∈[0,r]

|e−λϕ(τ)|
τa

.
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The mapping (σ, t, x) ∈]0, 1]×]0, r]×∆ 7→ v(σt, x) e
−λϕ(σt)

(σt)a is continuous, holomorphic with respect to x and

bounded by Mca. Thus, from (2.4), we have u ∈ C0,ω(]0, r]×Ω). Now we show that u has a unique continuous
extension to a function of the space C0,ω([0, r]× Ω). Let b ∈ Ω. Considering

eλϕ(t)
∫ t

0

e−λϕ(τ)

τa
dτ = −1/λ ,

we notice that

u(t, x) + v(0, b)/λ = eλϕ(t)
∫ t

0
[v(τ, x)− v(0, b)]e

−λϕ(τ)

τa
dτ .

Let ε > 0. There exists δ > 0 such that : let (t, x) ∈ [0, r]×Ω with |t| ≤ δ and |xj − bj | ≤ δ for 1 ≤ j ≤ n, then
we have

|v(t, x)− v(0, b)| ≤ −(<e λ)ε
therefore

|u(t, x) + v(0, b)/λ| ≤ e(<e λ)ϕ(t)
∫ t

0
−(<e λ)εe

−(<e λ)ϕ(τ)

τa
dτ = ε

and the statement follows with
u(0, x) = −v(0, x)/λ , ∀x ∈ Ω. (2.5)

We next consider the case a = 1. Then (2.4) is reduced to the well-known formula

u(t, x) =
∫ 1

0

v(σt, x)
σλ+1 dσ (2.6)

where the mapping (σ, t, x) ∈]0, 1]× [0, r]×∆ 7→ v(σt, x)
σλ+1 ∈ C is continuous, holomorphic with respect to x and

bounded by the integrable function σ 7→ M/σλ+1. It directly results that u ∈ C0,ω([0, r] × Ω) with (2.5) anew
since

u(0, x) =
∫ 1

0

v(0, x)
σλ+1 dσ = −v(0, x)/λ , ∀x ∈ Ω.

In all cases we naturally have Dαu = P−1Dαv for any α ∈ Nn. If t ∈]0, r], then the partial derivative of (2.3)
exists and is given by

Dtu(t, x) = t−a[λu(t, x) + v(t, x)]
which leads to u ∈ C1,ω(]0, r]×Ω), taDtu ∈ C0,ω([0, r]×Ω) with taDtu(0, x) = 0 seen (2.5) ; further, Pu = v on
[0, r]× Ω. This completes the proof of our lemma.

Now we can consider the system of differential equations

tADtU(t, x) = ΛU(t, x) + V (t, x) (2.7)

where Λ is a matrix satisfying (2.1)− (2.2) and V = (v1, . . . , vN ) is assumed to be of class C0,ω([0, r]×Ω ; CN ).
For every i ∈ J1, NK, denote

Pi ≡ taiDt − λii.
Then (2.7) is written as

Piui =
N∑

j=i+1
λijuj + vi, 1 ≤ i ≤ N. (2.8)

Given i ∈ J1, NK, for every p ∈ J1, N − i+ 1K, we set

Gpi = {γ = (γ1, . . . , γp) ∈ Ji,NKp ; i = γ1 < γ2 < · · · < γp}.

The cardinal of Gpi is equal to the number of (p− 1)-combinations from Ji+ 1, NK, that is to say
(
N−i
p−1
)
.

From lemma 2.1, one has uN = P−1
N vN and, by finite induction,

ui =
N−i+1∑
p=1

∑
γ∈Gp

i

cγQγV where cγ =
p−1∏
l=1

λγlγl+1 and QγV = P−1
γ1
◦ · · · ◦ P−1

γp vγp . (2.9)

These considerations and lemma 2.1 prove the following result.

Lemma 2.2. Problem (2.7) has a unique solution U = (u1, . . . , uN ) ∈ C1,ω(]0, r]×Ω ; CN )∩C0,ω([0, r]×Ω ; CN )
and taiDtui ∈ C0,ω([0, r]× Ω) with taiDtui(0, x) = 0 for any i ∈ J1, NK. Furthermore, each ui is a finite linear
combination of up to 2N−i terms of the form

P−1
i ◦ P

−1
γ2
◦ · · · ◦ P−1

γp vγp where γ2, . . . , γp ∈ Ji,NK and p ∈ J1, N − i+ 1K. (2.10)
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Denoting by RV the solution of problem (2.7), we define an endomorphism R of the vector space
C0,ω([0, r] × Ω ; CN ). If we set U (t, x) = tADtU(t, x) − ΛU(t, x) ie U = RU , problem (1.1) is converted
into U = F U where F denotes the operator

(F U )(t, x) = f
(
t, x, (ζRU )(t, x), (tADxRU )(t, x)

)
. (2.11)

The next section aims to apply the contraction mapping principle to F in a Banach space that we are going to
introduce.

3 Framework and estimates for the operator F
Given a majorant function φ ∈ R+{ξ} with a radius of convergence ≥ R > 0, let ρ be a parameter ≥ 1 and let
r > 0 be such that ρr < R.

Definition 3.1. We define
Ω ≡ ΩR,ρ,r = {x ∈ Cn;

n∑
j=1
|xj | < R− ρr}

and B ≡ Bφ,R,ρ,r by the set of functions u ∈ C0,ω([0, r]× Ω ;E) for which there exists c ≥ 0 such that

∀ t ∈ [0, r], u(t, x)� cφ(ρt+ ξ) where ξ =
n∑
j=1

xj . (3.1)

This precisely means ‖Dαu(t, 0)‖E ≤ cD|α|φ(ρt, 0) for all α ∈ Nn and all t ∈ [0, r].

Obviously B is a vector subspace of C0,ω([0, r] × Ω ;E) and the smallest c ≥ 0 for wich (3.1) is satisfied is a
norm on B denoted by ‖ · ‖φ,R,ρ,r or simply ‖ · ‖ if no confusion is possible.

Lemma 3.2. The space B is a Banach space.

Proof. Let (Un) be a Cauchy sequence in B and let ε > 0. There exists N ∈ N such that, for all n, n′ ≥ N and
all t ∈ [0, r],

(Un − Un′)(t, x)� εφ(ρt+ ξ). (3.2)

If K is a compact subset of Ω, then we have

max
[0,r]×K

‖Un − Un′‖E ≤ εCK

where CK = max
x∈K

φ(ρr +
n∑
j=1
|xj |) is < +∞ since the mapping x 7→ φ(ρr +

n∑
j=1
|xj |) is continuous on Ω.

This shows that (Un) is a Cauchy sequence in C0,ω([0, r] × Ω ;E), so it converges compactly to a function
U ∈ C0,ω([0, r] × Ω ;E) ; a fortiori, for all t ∈ [0, r] and α ∈ Nn, the sequence (DαUn(t, 0))n converges to
DαU(t, 0). By letting n′ tend to infinity into (3.2) we get Un − U ∈ B and ‖Un − U‖ ≤ ε, therefore U ∈ B and
(Un) converges to U in B.

The following lemma will be useful to study the forthcoming operators.
Let a ≥ 1 and λ < 0. If t > 0, we set

Sk(t) = eλϕ(t)
∫ t

0
τk

e−λϕ(τ)

τa
dτ , ∀k ∈ N. (3.3)

Recall that S0 ≡ −1/λ > 0. When k ∈ N?, given lemma 2.1, Sk extends continuously to 0 with Sk(0) = 0.

Lemma 3.3. There exists c0 = c0(λ) > 0 such that, for all t ≥ 0

Sk(t) ≤ c0 tk, ∀k ∈ N. (3.4)

There exists c1 = c1(a, λ, r0) > 0 such that, for all t ∈ [0, r0]

taSk(t) ≤ c1
tk+1

k + 1 , ∀k ∈ N. (3.5)

Proof. Since τk ≤ tk, we have (3.4) with c0 = S0. To show (3.5) we notice that

(
1− a

k + 1

)∫ t

0
τk

e−λϕ(τ)

τa
dτ = tk+1

k + 1
e−λϕ(t)

ta
+ λ

k + 1

∫ t

0
τk+1 e

−λϕ(τ)

τ2a dτ (3.6)
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as long as k + 1 ≥ a. We then consider integers k > a− 1 ie k ≥ bac wich is the smallest integer larger than or
equal to a ; since λ is < 0, it ensues that

taSk(t) ≤ c t
k+1

k + 1 where c ≡ bac+ 1
bac+ 1− a > 0.

Let k ≤ a− 1 be an integer. From (3.4), one has, for all t ∈ [0, r0]

taSk(t) ≤ c0ta+k ≤ c0tk+1ra−1
0 ≤ c′ t

k+1

k + 1 where c′ = c0ar
a−1
0 > 0.

The result follows with c1 = max(c, c′).

Remark 3.4. When a = 1, then c1 = max(2, 1/|λ|) does not depend on r0 and (3.5) is valid for all t ≥ 0.
Otherwise, one can see that lim

t→+∞
Sk(t) = +∞.

Here are the estimates involving operator P−1 of lemma 2.1.

Lemma 3.5. There exists c = c(a, λ, r0) > 0 such that, for R > 0, ρr < R and u ∈ C0,ω([0, r]×Ω), the function
P−1u ∈ C0,ω([0, r]× Ω) satisfies

∀ t ∈ [0, r], u(t, x)� φ(ρt+ ξ) =⇒ ∀ t ∈ [0, r], P−1u(t, x)� cφ(ρt+ ξ) (3.7)

and
∀ t ∈ [0, r], u(t, x)� Dφ(ρt+ ξ) =⇒ ∀ t ∈ [0, r], taP−1u(t, x)� cρ−1φ(ρt+ ξ). (3.8)

Proof of (3.7). For all t ∈ [0, r] and α ∈ Nn, one has

|Dαu(t, 0)| ≤ D|α|φ(ρt) =
∞∑
k=0

(ρt)kD
k+|α|φ(0)
k!

and from lemma 2.1, DαP−1u = P−1Dαu , hence

|DαP−1u(t, 0)| ≤
∞∑
k=0

ρkSk(t)D
k+|α|φ(0)
k!

where Sk is defined by (3.3) in which we substitute <e λ to λ. The assertion is confirmed by (3.4).
Proof of (3.8). As above, we get in this case

|DαtaP−1u(t, 0)| ≤
∞∑
k=0

ρktaSk(t)D
k+1+|α|φ(0)

k! ≤ c1ρ−1
∞∑
k=0

(ρt)k+1D
k+1+|α|φ(0)
(k + 1)!

from (3.5), and the conclusion follows. �

We then consider the expressions ζRU and tADxRU . Let us denote by Ri the i-th component of R.
From now on, we will take E = CN and ‖(u1, . . . , un)‖E = max

1≤i≤N
|ui|.

Lemma 3.6. There exists c = c(A,Λ(0, 0), r0) > 0 such that, for R > 0, ρr < R and U ∈ B, we have, for
every i ∈ J1, NK, j ∈ J1, nK

∀ t ∈ [0, r], RiU(t, x)� c‖U‖φ(ρt+ ξ) (3.9)

and
∀ t ∈ [0, r], taiDjRiU(t, x)� cρ−1‖U‖φ(ρt+ ξ). (3.10)

Proof. From lemma 2.2, this result must be established with terms like

P−1
i ◦ P

−1
γ2
◦ · · · ◦ P−1

γp uγp for (3.9)

and terms like
taiP−1

i ◦ P
−1
γ2
◦ · · · ◦ P−1

γp Djuγp for (3.10)

where p ∈ J1, NK and γ2, . . . , γp ∈ J1, NK. Let U ∈ B, then uγp(t, x) � ‖U‖φ(ρt + ξ) for all t ∈ [0, r]. Using
(3.7) p times, we obtain (3.9).
Otherwise, one has Djuγp(t, x) � ‖U‖Dφ(ρt + ξ) for all t ∈ [0, r]. Applying (3.7) p − 1 times and (3.8) once,
we get (3.10).
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Let us specify hereafter the majorant function we shall employ.
Given R > 0, we consider the entire serie (2.1) of [15]

φ(ξ) = K−1
∞∑
p=0

(ξ/R)p

(p+ 1)2 (3.11)

where the constant K > 0 is such that φ2 � φ. Recall that φ also satisfies the following properties.
Let η > 0, there exists c = c(η) > 0, such that ηR/(ηR− •)� cφ and necessarily

ηR

ηR− (ρt+ ξ) � cφ(ρt+ ξ) for all t ∈ [0, r]. (3.12)

Lemma 3.7. Let u ∈ C0,ω([0, r]× Ω) and 0 ≤ c < R′ be such that u(t, x)� cφ(ρt+ ξ) for all t ∈ [0, r], then u
is bounded by c on [0, r]× Ω, the function R′/(R′ − u) belongs to the space C0,ω([0, r]× Ω) and

R′

R′ − u(t, x) �
(
K + c

R′ − c

)
φ(ρt+ ξ) for all t ∈ [0, r]. (3.13)

Concerning the operator F , we are going to set up

Proposition 3.8. There is a0 > 0 such that, for all a ≥ a0, the following holds : there exist R ∈]0, R0], ρ ≥ 1,
r ∈]0, r0] with ρr < R such that the mapping F is a strict contraction in the closed ball B′(0, a) of the Banach
space B.

Let us observe now that we can write

f(t, x, y, z)− f(t, x, y′, z′) =
∑

i∈J1,NK
gi(t, x, y, z, y′, z′)(yi − y′i) (3.14)

+
∑

(i,j)∈J1,NK×J1,nK
hi,j(t, x, y, z, y′, z′)(zi,j − z′i,j)

where
gi, hi,j ∈ C0,ω([0, r0]× Ω0 ×O0 ×O0 ; CN

)
.

For R > 0, we set
∆R = {x ∈ Cn ; max

j∈J1,nK
|xj | < R}

and
OR = {(y, z) ∈ CN × CnN ; max

i∈J1,NK
|yi| < R, max

(i,j)∈J1,NK×J1,nK
|zi,j | < R}.

We fix, once and for all, η > 1, R0 > 0 and R′ > 0 such that ∆ηR0 ⊂ Ω0 and OR′ ⊂ O0. Consequently,
the functions f ∈ C0,ω([0, r0] × (∆ηR0 × OR′) ; CN

)
and gi, hi,j ∈ C0,ω([0, r0] × (∆ηR0 × OR′ × OR′) ; CN

)
are

bounded, say by a constant M > 0.
We put

ε(r,R) = max
(t,x)∈[0,r]×∆ηR

i∈J1,NK

|ζi(t, x)| for (r,R) ∈]0, r0]×]0, R0].

This function has limit 0 as (r,R) tends to (0, 0). From Cauchy’s inequalities and lemma 3.7, one has

ζi(t, x)� ε(r,R) ηR

ηR− ξ
� c(η)ε(r,R)φ(ξ)

and, given φ(ξ)� φ(ρt+ ξ) (since φ� 0 and ρr < R), it comes

ζi(t, x)� c(η)ε(r,R)φ(ρt+ ξ) (for all t ∈ [0, r], i ∈ J1, NK). (3.15)

Similarly, we have

f(t, x, y, z)� c(η)Mφ(ρt+ ξ)
∏
i

R′

R′ − yi

∏
i,j

R′

R′ − zij
(3.16)

and
gi, hi,j(t, x, y, z, y′, z′)� c(η)Mφ(ρt+ ξ)

∏
i

R′

R′ − yi
R′

R′ − y′i

∏
i,j

R′

R′ − zij
R′

R′ − z′ij
. (3.17)

Proof of proposition 3.8 Let a > 0 and U ∈ B be such that ‖ U‖ ≤ a. In what follows, any constant ≥ 0
that does not depend on the parameters a,R, ρ, r will be denoted by c. From (3.9)− (3.15) and (3.10), we have{

ζiRiU(t, x) � cε(r,R)aφ(ρt+ ξ),
taiDjRiU(t, x) � cρ−1aφ(ρt+ ξ).

(3.18)
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Then, under a condition like
cε(r,R)a ≤ R′/2 and cρ−1a ≤ R′/2, (3.19)

it follows from (3.16) and lemma 3.7 that FU is well-defined on [0, r]× Ω, belongs to C0,ω([0, r]× Ω ; CN ) and

∀ t ∈ [0, r], FU(t, x)� cφ(ρt+ ξ).

This proves the existence of a a0 > 0 sufficiently large (a0 ≥ c), such that

F(B′(0, a)) ⊂ B′(0, a) for all a ≥ a0. (3.20)

Let U ′ ∈ B′(0, a). As explained for f , if (3.19) is satisfied, we also have

gi, hi,j(t, x, ζRU, tADxRU, ζRU ′, tADxRU ′
)
� cφ(ρt+ ξ).

Thence, from (3.14) and lemma 3.6, we obtain

‖FU −FU ′‖ ≤ c
(
ε(r,R) + ρ−1)‖U − U ′‖.

Let a ≥ a0. We first take ρ ≥ 1 such that cρ−1a ≤ R′/2 and cρ−1 < 1/2. Next, we choose (r,R) ∈]0, r0]×]0, R0]
with ρr < R (for instance r = R/2ρ), such that cε(r,R)a ≤ R′/2 and cε(r,R) < 1/2. Thus we have (3.19),
(3.20) and c

(
ε(r,R) + ρ−1) < 1. We get the desired result therefrom. �

4 Proof of theorem 1.1
By proposition 3.8, the mapping F has an unique fixed point U ∈ B′(0, a0) ⊂ C0,ω([0, r] × Ω ; CN ) and
U1 = RU ∈ C1,ω(]0, r]×Ω ; CN )∩C0,ω([0, r]×Ω ; CN ) is a solution of (1.1). Let us show the uniqueness of this
solution. Let U2 ∈ C1,ω(]0, r]×Ω ; CN )∩C0,ω([0, r]×Ω ; CN ) be a solution of (1.1), then U ′ = tADtU2−ΛU2 ∈
C0,ω([0, r]× Ω ; CN ) is a fixed point of F . There is R1 > 0 such that ∆ηR1 ⊂ Ω, so, from Cauchy inequalities,
U ′ ∈ Bφ,R1,1,r. We take a = max(a0, ‖U ′‖φ,R1,1,r). Using proposition 3.8 again, there exist S ∈]0, R1], ρ ≥ 1,
s ∈]0, r] with ρs < S such that U = U ′ on [0, s] × ΩS,ρ,s ie on [0, s] × Ω since Ω is a connected open set. We
shall prove that the real number

t0 ≡ max{t ∈]0, r] ; U1 = U2 on [0, t]× Ω}

is equal to r. For this purpose, we assume 0 < t0 < r and we set W (x) = U1(t0, x) = U2(t0, x). This function
W is holomorphic on Ω and the functions Ui belong to C1,ω([t0, r]× Ω ; CN ). Thus, writing

Ui(t, x) = W (x) + (t− t0)Ui(t, x),

we define uniquely Ui ∈ C1,ω(]0, r]× Ω ; CN ) ∩ C0,ω([t0, r]× Ω ; CN ) and we find that these Ui are solutions of

tA
(
(t− t0)Dt + I

)
U = Λ(t− t0)U + f

(
t, x, ζW + ζ(t− t0)U , tADxW + tA(t− t0)DxU

)
(4.1)

namely (
(t− t0)Dt + I

)
U = g

(
t, x, (t− t0)U , (t− t0)DxU

)
(4.2)

where g ∈ C0,ω([t0, r]×Ω×O ; CN ), O ⊂ O0 is an open neighborhood of the origin in CNy ×CnNz defined, from
(3.19), at least for

max
i∈J1,NK

|yi| < R′/2ε(r0, R0) and max
(i,j)∈J1,NK×J1,nK

|zi,j | < R′/2. (4.3)

By translation, (4.2) is reduced to t0 = 0 with g ∈ C0,ω([0, r − t0]× Ω×O ; CN ) that is to say to a system like
(1.1). As above, there exist s′ ∈]0, r − t0] and an open neighborhood Ω′ ⊂ Ω of the origin in Cnx such that U1
and U2 coincide on [0, s′]× Ω′, hence U1 and U2 coincide on [t0, t0 + s′]× Ω′ ie on [t0, t0 + s′]× Ω. This allows
us to conclude that t0 = r. �

5 Proof of theorem 1.2
Suppose U = (u1, . . . , uN ) is a function satisfying theorem 1.2. Let i ∈ J1, NK\I, we define uniquely ũi ∈
C1,ω(]0, r]× Ω) by the relation

ui(t, x) = wi(x) + t1−ai ũi(t, x). (5.1)

Let us show that ũi belongs necessarily to C0,ω([0, r]× Ω). As ai ∈ [0, 1[, we observe that

ui(t, x)− ui(0, x) =
∫ t

0
τ−aivi(τ, x)dτ where vi = taiDtui ∈ C0,ω([0, r]× Ω)
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therefore
ui(t, x) = wi(x) + t1−ai

∫ 1

0
σ−aivi(σt, x)dσ. (5.2)

If ∆ is an open polydisk such that ∆ ⊂ Ω, the mapping (σ, t, x) ∈]0, 1] × [0, r] × ∆ 7→ σ−aiv(σt, x) ∈ C is
continuous, holomorphic with respect to x and bounded by Mσ−ai where M = max

[0,r]×∆
|vi|. It follows that the

last integral belongs to C0,ω([0, r]× Ω) ; ultimately we have ũi ∈ C1,ω(]0, r]× Ω) ∩ C0,ω([0, r]× Ω).
Denoting by fi the i-th component of f , system (1.1) is also written in the form

taiDtui(t, x) =
N∑
j=1

λij(t, x)uj(t, x) + fi
(
t, x, (ζU)(t, x), tADxU(t, x)

)
, i ∈ J1, NK. (5.3)

Injecting (5.1), we obtain

taiDtui =
∑
j∈I

λijuj +
∑
j /∈I

λij(wj + t1−aj ũj) + fi
(
t, x, ζU, tADxU

)
for i ∈ I (5.4)

and

tDtũi = (ai − 1)ũi +
∑
j∈I

λijuj +
∑
j /∈I

λij(wj + t1−aj ũj) + fi
(
t, x, ζU, tADxU

)
when i /∈ I. (5.5)

Now we set

Ã = diag(ã1, . . . , ãN ) where ãi =
{

ai if i ∈ I,
1 if not

and Ũ = (ũ1, . . . , ũN ) with ũi ≡ ui for i ∈ I. Point out that Ũ ∈ C1,ω(]0, r] × Ω ; CN ) ∩ C0,ω([0, r] × Ω ; CN ).
We denote by M = (λ̃ij)1≤i,j≤N the square matrix of order N where the λ̃ij are functions of (t, x) ∈ R × Cn
defined by

λ̃ij(t, x) =


λij(t, x) if j ∈ I,
ai − 1 if j /∈ I and j = i,

0 if j /∈ I and j 6= i.

(5.6)

Using a matrix representation and expanding along columns, we note that

det
(
λ I −M(0, 0)

)
= ±P̃ (λ)

∏
i/∈I

[λ− (ai − 1)]. (5.7)

Let
g = (gi)i∈J1,NK where gi(x, y) =

∑
j /∈I

λij(wj(x) + yj)

and

δ = (δi)i∈J1,NK where δi(t) =
{

0 if i ∈ I,
t1−ai if not.

Equations (5.4) and (5.5) can then be written as the following system

tÃDtŨ =MŨ + g(x, δŨ) + f
(
t, x, ζU, tADxU

)
.

Regarding f , by putting W = (w1, . . . , wN ) with wi ≡ 0 for i ∈ I, one has

f
(
t, x, ζU, tADxU

)
= f

(
t, x, ζW + εŨ , tADxW + tÃDxŨ

)
≡ h

(
t, x, εŨ , tÃDxŨ

)
where

ε = (εi)i∈J1,NK, εi(t, x) =
{

0 if i ∈ I,
t1−ai if not

and, since ζW and tADxW vanish at the origin of R × Cn thanks to (1.2) and (1.4), there exist r′0 > 0
and an open neighborhood Ω′0 ⊂ Ω0 (resp. O′0 ⊂ O0) of the origin in Cnx (resp. CNy × CnNz ) such that
h ∈ C0,ω([0, r′0]× (Ω′0 ×O′0) ; CN

)
. After all, letting f̃(t, x, y, y, z) = g(x, y) + h(t, x, y, z), Ũ satisfies

tÃDtŨ =MŨ + f̃(t, x, δŨ , εŨ , tÃDxŨ).

Considering the proof of theorem 1.1, it can also be written for such a f̃ , hence we have existence and uniqueness
for Ũ ∈ C1,ω(]0, r]× Ω ; CN ) ∩ C0,ω([0, r]× Ω ; CN ) which completes the proof of theorem 1.2. �
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6 Proof of theorem 1.4
As explained in section 2, matrix Λ can be considered constant. Since the diagonal matrix taIN commutes
with any matrix of order N , a fortiori, with an invertible one, it follows, after changing the notations, that it is
enough to study system (1.1) for an upper triangular constant matrix Λ ∈ T +

N (C). By applying Theorem 1.2
for such a matrix and for ai all equal to a, we achieve our expected result . �
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