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This paper explores some nonlinear systems of singular partial differential equations written in the form t A D t U = Λ(t, x)U + f t, x, ζU, t A D x U . Under an assumption on Λ, unique solvability theorems are provided in the space of functions that are holomorphic in x on an open set, differentiable with respect to t on a real interval ]0, r] and extending to a continuous function at t = 0. The studied systems contain Fuchsian systems.

Introduction

Consider a system of differential equations t k D t U = f (t, U ) where k is an integer ≥ 2 and f is holomorphic in a neighborhood of {0} × C. We know that such a problem generally does not have analytic solution, see for example [START_REF] Harris Jun | Holomorphic solutions of linear differential systems at singular points[END_REF][START_REF] Hasegawa | On the initial-value problems with data on a double characteristic[END_REF][START_REF] Persson | Singular holomorphic solutions of linear partial differential equations with holomorphic coefficients and nonanalytic solutions of equations with analytic coefficients[END_REF][START_REF] Sibuya | Convergence of formal power series solutions of a system of nonlinear differential equations at an irregular singular point. Geometrical approaches to differential equations[END_REF]. Any formal solution belongs to a Gevrey class of order > 1, we could refer to [START_REF] Miyake | Newton polygons and Gevrey indices for linear partial differential operators[END_REF][START_REF] Miyake | Newton polygon and Gevrey hierarchy in the index formulas for a singular system of ordinary differential equations[END_REF][START_REF] Ouchi | Genuine solutions and formal solutions with Gevrey type estimates of nonlinear partial differential equations[END_REF][START_REF] Ramis | Théorèmes d'indices Gevrey pour les équations différentielles ordinaires[END_REF] among others. The purpose of this paper is to investigate nonlinear systems of the type

t A D t U = Λ(t, x)U + f t, x, ζU, t A D x U (0.1)
where A is a real diagonal matrix, Λ(t, x) ∈ M N (C) and f is a function wich is continous with respect to t in a real interval [0, r 0 ] and holomorphic in the remaining variables. This regularity assumption also appears in [START_REF] Baouendi | Singular Nonlinear Cauchy Problems[END_REF][START_REF] Lednev | A new method for solving partial differential equations[END_REF][START_REF] Tahara | Uniqueness of the solution of non-linear singular partial differential equations[END_REF][START_REF]Le problème de Goursat non linéaire[END_REF]. The linear parts of our equations are irregular at t = 0 in the sense of [START_REF] Mandai | Existence and non-existence of null-solutions for some non-Fuchsian partial differential operators with t-dependent coefficients[END_REF]. However, we are interested in solutions extending continuously at t = 0. Under a reasonable assumption on Λ, we show that (0.1) has a unique solution (t, x) → U (t, x) holomorphic in x on an open set, differentiable with respect to t on a real interval ]0, r] and continuous on [0, r]. To achieve our statement, we first invert the operator t A D t -Λ(0, 0), which then leads us to a fixed point problem. We prepare some estimations that allow to apply the contraction mapping principle. Our main results are theorem 1.1 and theorem 1.4.

Partially holomorphic system

We will make use of the following notations

t ∈ R, x = (x 1 , . . . , x n ) ∈ C n , D t = ∂ ∂t , D j = ∂ ∂x j , N = {0, 1, 2, . . .}, α = (α 1 , . . . , α n ) ∈ N n , |α| = n j=1 α j , D α = D α1 1 • • • D αn n .

Statement of results

Given an interval I ⊂ R, an open set Ω ⊂ C n , a Banach space E and an integer 0 ≤ k ≤ ∞, we denote by C k,ω (I × Ω ; E) the algebra of functions u : I × Ω → E such that for 0 ≤ l ≤ k, the partial derivative D l t u : I × Ω → E exists, is continuous and for any t ∈ I, the mapping x ∈ Ω → D l t u(t, x) ∈ E is holomorphic. It is easily checked, using Cauchy's integral formula, that this space is stable by differentiation with respect to x and that we have

D l t D α u = D α D l t u for any α ∈ N n , 0 ≤ l ≤ k. When E = C,
the previous space will be simply denoted by C k,ω (I × Ω).

Let us consider a system of partial differential equations of the form

t A D t U (t, x) = Λ(t, x)U (t, x) + f t, x, (ζU )(t, x), (t A D x U )(t, x) (1.1)
in which U = (u 1 , . . . , u N ) is the unknown, A = diag(a 1 , . . . , a N ) is a diagonal matrix with real coefficients (a i ) i∈ 1,N that are all ≥ 1, Λ is an upper triangular matrix of order N whose coefficients are functions of (t,

x) ∈ R × C n , ζU ≡ ζ 1 u 1 , . . . , ζ N u N where each ζ i is a function of (t, x) ∈ R × C n satisfying ζ i (0, 0) = 0, t A D x U denotes the nN -tuple (t ai D j u i ) i∈ 1,N j∈ 1,n , f is a function of the variables t ∈ R, x ∈ C n , y = (y i ) i∈ 1,N ∈ C N , z = (z ij ) i∈ 1,N j∈ 1,n ∈ C nN .
We assume there are r 0 > 0 and an open neighborhood Ω 0 (resp. O 0 ) of the origin in C n x (resp. C N y × C nN z ) such that the coefficients of Λ, like the functions ζ i , belong to C 0,ω ([0, r 0 ] × Ω 0 ) and

f ∈ C 0,ω [0, r 0 ] × (Ω 0 × O 0 ) ; C N .
Let Z be the zero set of the polynom P (λ) ≡ det(λ I -Λ(0, 0)).

Theorem 1.1. Suppose Z is included in the half-plane e λ < 0. Then, there exist r ∈]0, r 0 ] and an open neighborhood Ω ⊂ Ω 0 of the origin in C n x such that system (1.1) has a unique solution

U ∈ C 1,ω (]0, r] × Ω ; C N ) ∩ C 0,ω ([0, r] × Ω ; C N ) and necessarily t A D t U ∈ C 0,ω ([0, r] × Ω ; C N ).
Suppose all a i ≥ 0, then Theorem 1.1 can be extended as follows. Let I denote the set of i ∈ 1, N such that a i ≥ 1 and assume 1, N \I is not empty. Suppose

ζ i (0, 0) = 0 for i ∈ I and ζ i ≡ 1 for i / ∈ I. (1.2) 
For each i ∈ 1, N \I, let w i be a holomorphic function on Ω 0 . We consider system (1.1) under (1.2) with the initial conditions

u i (0, x) = w i (x) for i ∈ 1, N \I. (1.3) Impose D x w i (0) = 0 only if a i = 0. (1.4)
The set I is uniquely written as

I = {i 1 , . . . , i p } with 1 ≤ i 1 < i 2 < . . . < i p ≤ N.
Then we associate with the matrix Λ = (λ ij ) 1≤i,j≤N , the square submatrix of order p

Λ = M I,I (Λ) = λ i k i l 1≤k,l≤p .
Let us name Z the zero set of the polynom P (λ) ≡ det λ I -Λ(0, 0) . We then have the following result.

Theorem 1.2. Suppose Z is included in the half-plane e λ < 0. Then, there exist r ∈]0, r 0 ] and an open neighborhood Ω ⊂ Ω 0 of the origin in C n x such that the problem (1.1)

-(1.2) -(1.3) has a unique solution U ∈ C 1,ω (]0, r] × Ω ; C N ) ∩ C 0,ω ([0, r] × Ω ; C N ) and so t A D t U ∈ C 0,ω ([0, r] × Ω ; C N ).
Here is an example about this theorem. 

     t 2 D t u 1 = -u 1 + au 2 + [1 + xu 1 + √ t (∂u 2 /∂x)] α , √ tD t u 2 = bu 2 + [1 + u 2 + t 2 (∂u 1 /∂x)] β , u 2 (0, x) = 0. has a unique solution (u 1 , u 2 ) ∈ C 1,ω (]0, r] × Ω ; C 2 ) ∩ C 0,ω ([0, r] × Ω ; C 2 ) as a result (t 2 D t u 1 , √ tD t u 2 ) ∈ C 0,ω ([0, r] × Ω ; C 2 ).
Now we turn our attention to a system of the form

t a D t U (t, x) = Λ(t, x)U (t, x) + f t, x, (ζU )(t, x), (t a D x U )(t, x) (1.5)
where a is a positive real number and Λ is a square matrix of order N whose coefficients belong to the space C 0,ω ([0, r 0 ] × Ω 0 ). We are then able to state the following result.

Theorem 1.4. 1. If 0 ≤ a < 1, take ζ ≡ (1, . . . , 1) and let W : Ω 0 → C N be an holomorphic function (with D x W (0) = 0 only when a = 0). Then, there exist r ∈]0, r 0 ] and an open neighborhood Ω ⊂ Ω 0 of the origin in C n x such that system (1.5) with the initial data

U (0, x) = W (x), has a unique solution U ∈ C 1,ω (]0, r] × Ω ; C N ) ∩ C 0,ω ([0, r] × Ω ; C N ) and t a D t U ∈ C 0,ω ([0, r] × Ω ; C N ).
2. If a ≥ 1 and if the zero set of the polynom λ → det(λ I -Λ(0, 0)) is included in the half-plane e λ < 0, then, there exist r ∈]0, r 0 ] and an open neighborhood Ω ⊂ Ω 0 of the origin in C n x such that system (1.5) has a unique solution

U ∈ C 1,ω (]0, r] × Ω ; C N ) ∩ C 0,ω ([0, r] × Ω ; C N ) and t a D t U ∈ C 0,ω ([0, r] × Ω ; C N ).
Remark 1.5. When a = 1, we obtain a more general system of equations than a Fuchsian system ; indeed, we do not need to take ζ i (t, x) = t but we simply have ζ i (0, 0) = 0. Recall ( [START_REF] Pongérard | Sur une classe d'équations de Fuchs non linéaires[END_REF][START_REF] Pongérard | Solutions ramifiées à croissance lente de certaines équations de Fuchs quasi-linéaires[END_REF]) that in the Fuchsian case we have already studied nonlinear equations in spaces of holomorphic functions.

Reformulation

In order to prove Theorem 1.1, we first transform the problem. By writing Λ = Λ(0) + E where E ≡ Λ -Λ(0) satisfies all the same assumptions as ζ, we may suppose that Λ is an upper triangular constant matrix, namely

Λ = (λ ij ) 1≤i,j≤N ∈ M N (C) where λ ij = 0 if j < i. (2.1)
Furthermore, e λ ii < 0 for i = 1, . . . , N.

(2.2)

Next, we will need the following result.

Let a ≥ 1, λ ∈ C and let P be the elementary operator P ≡ t a D t -λ.

Lemma 2.1. Suppose e λ < 0. Let r > 0 and let Ω be an open neighborhood of the origin in

C n x . Then, for every v ∈ C 0,ω ([0, r] × Ω), the equation Pu = v has a unique solution u ∈ C 1,ω (]0, r] × Ω) ∩ C 0,ω ([0, r] × Ω). In addition, t a D t u ∈ C 0,ω ([0, r] × Ω) with t a D t u(0, x) = 0. This solution is defined by u(t, x) = (P -1 v)(t, x) ≡ e λϕ(t) t 0 v(τ, x) e -λϕ(τ ) τ a dτ where ϕ(t) =    t 1-a 1-a if a > 1, ln t if a = 1.
(2.3)

Moreover, D α u = P -1 D α v for any α ∈ N n .
Proof. Let us start with the uniqueness. Suppose u ∈ C 1,ω (]0, r] × Ω) ∩ C 0,ω ([0, r] × Ω) satisfies Pu = 0. Let x ∈ Ω. Since Dϕ(t) = t -a , the derivative of the mapping t → u(t, x)e -λϕ(t) is equal to zero on ]0, r], so there exists

c x ∈ C such that u(t, x) ≡ c x e λϕ(t) for t ∈]0, r].
This function has a finite limit at t = 0 only if c x = 0 because lim

0 ϕ = -∞. It follows that u ≡ 0 on [0, r] × Ω.
Concerning the existence, we shall prove that the formal solution (2.3) is of class C 1,ω (]0, r]×Ω)∩C 0,ω ([0, r]×Ω).

Let ∆ be an open polydisk such that ∆ ⊂ Ω ; denote

M = max [0,r]×∆ |v| .
The formula (2.3) can be written equivalently

u(t, x) = te λϕ(t) 1 0 v(σt, x) e -λϕ(σt) (σt) a dσ . (2.4)
We first consider the case a > 1. Then,

|e -λϕ(t) | t a = e -( e λ)ϕ(t) t a -→ t→0 0
and we may set

c a ≡ max τ ∈[0,r] |e -λϕ(τ ) | τ a . The mapping (σ, t, x) ∈]0, 1]×]0, r] × ∆ → v(σt, x) e -λϕ(σt) (σt) a
is continuous, holomorphic with respect to x and bounded by M c a . Thus, from (2.4), we have u ∈ C 0,ω (]0, r] × Ω). Now we show that u has a unique continuous extension to a function of the space

C 0,ω ([0, r] × Ω). Let b ∈ Ω. Considering e λϕ(t) t 0 e -λϕ(τ ) τ a dτ = -1/λ , we notice that u(t, x) + v(0, b)/λ = e λϕ(t) t 0 [v(τ, x) -v(0, b)] e -λϕ(τ ) τ a dτ .
Let ε > 0. There exists δ > 0 such that : let (t,

x) ∈ [0, r] × Ω with |t| ≤ δ and |x j -b j | ≤ δ for 1 ≤ j ≤ n, then we have |v(t, x) -v(0, b)| ≤ -( e λ)ε therefore |u(t, x) + v(0, b)/λ| ≤ e ( e λ)ϕ(t) t 0 -( e λ)ε e -( e λ)ϕ(τ ) τ a dτ = ε
and the statement follows with

u(0, x) = -v(0, x)/λ , ∀ x ∈ Ω. (2.5)
We next consider the case a = 1. Then (2.4) is reduced to the well-known formula

u(t, x) = 1 0 v(σt, x) σ λ+1 dσ (2.6)
where the mapping (σ, t, x

) ∈]0, 1] × [0, r] × ∆ → v(σt, x) σ λ+1 ∈ C is continuous, holomorphic with respect to x and bounded by the integrable function σ → M/σ λ+1 . It directly results that u ∈ C 0,ω ([0, r] × Ω) with (2.5) anew since u(0, x) = 1 0 v(0, x) σ λ+1 dσ = -v(0, x)/λ , ∀ x ∈ Ω.
In all cases we naturally have D α u = P -1 D α v for any α ∈ N n . If t ∈]0, r], then the partial derivative of (2.3) exists and is given by

D t u(t, x) = t -a [λu(t, x) + v(t, x)]
which leads to u ∈ C 1,ω (]0, r] × Ω), t a D t u ∈ C 0,ω ([0, r] × Ω) with t a D t u(0, x) = 0 seen (2.5) ; further, Pu = v on [0, r] × Ω. This completes the proof of our lemma.

Now we can consider the system of differential equations

t A D t U (t, x) = ΛU (t, x) + V (t, x) (2.7)
where Λ is a matrix satisfying (2.1)

-(2.2) and V = (v 1 , . . . , v N ) is assumed to be of class C 0,ω ([0, r] × Ω ; C N ).
For every i ∈ 1, N , denote

P i ≡ t ai D t -λ ii .
Then (2.7) is written as

P i u i = N j=i+1 λ ij u j + v i , 1 ≤ i ≤ N. (2.8) Given i ∈ 1, N , for every p ∈ 1, N -i + 1 , we set G p i = {γ = (γ 1 , . . . , γ p ) ∈ i, N p ; i = γ 1 < γ 2 < • • • < γ p }.
The cardinal of G p i is equal to the number of (p -1)-combinations from i + 1, N , that is to say N -i p-1 . From lemma 2.1, one has u N = P -1 N v N and, by finite induction,

u i = N -i+1 p=1 γ∈G p i c γ Q γ V where c γ = p-1 l=1 λ γ l γ l+1 and Q γ V = P -1 γ1 • • • • • P -1 γp v γp .
(2.9)

These considerations and lemma 2.1 prove the following result.

Lemma 2.2. Problem (2.7) has a unique solution U = (u 1 , . . . , u N ) ∈ C 1,ω (]0, r]×Ω ; C N )∩C 0,ω ([0, r]×Ω ; C N ) and t ai D t u i ∈ C 0,ω ([0, r] × Ω) with t ai D t u i (0, x) = 0 for any i ∈ 1, N . Furthermore, each u i is a finite linear combination of up to 2 N -i terms of the form

P -1 i • P -1 γ2 • • • • • P -1 γp v γp where γ 2 , . . . , γ p ∈ i, N and p ∈ 1, N -i + 1 . (2.10)
Denoting by R V the solution of problem (2.7), we define an endomorphism R of the vector space

C 0,ω ([0, r] × Ω ; C N ). If we set U (t, x) = t A D t U (t, x) -ΛU (t, x) ie U = R U , problem (1.1) is converted into U = F U where F denotes the operator (F U )(t, x) = f t, x, (ζRU )(t, x), (t A D x RU )(t, x) .
(2.11)

The next section aims to apply the contraction mapping principle to F in a Banach space that we are going to introduce.

Framework and estimates for the operator F

Given a majorant function φ ∈ R + {ξ} with a radius of convergence ≥ R > 0, let ρ be a parameter ≥ 1 and let r > 0 be such that ρr < R. Proof. Let (U n ) be a Cauchy sequence in B and let ε > 0. There exists N ∈ N such that, for all n, n ≥ N and all t ∈ [0, r],

Definition 3.1. We define Ω ≡ Ω R,ρ,r = {x ∈ C n ; n j=1 |x j | < R -ρr} and B ≡ B φ,R,ρ,
(U n -U n )(t, x) εφ(ρt + ξ). (3.2)
If K is a compact subset of Ω, then we have max This shows that (U n ) is a Cauchy sequence in C 0,ω ([0, r] × Ω ; E), so it converges compactly to a function U ∈ C 0,ω ([0, r] × Ω ; E) ; a fortiori, for all t ∈ [0, r] and α ∈ N n , the sequence (D α U n (t, 0)) n converges to D α U (t, 0). By letting n tend to infinity into (3.2) we get

U n -U ∈ B and U n -U ≤ ε, therefore U ∈ B and (U n ) converges to U in B.
The following lemma will be useful to study the forthcoming operators. Let a ≥ 1 and λ < 0. If t > 0, we set

S k (t) = e λϕ(t) t 0 τ k e -λϕ(τ ) τ a dτ , ∀k ∈ N. (3.3)
Recall that S 0 ≡ -1/λ > 0. When k ∈ N , given lemma 2.1, S k extends continuously to 0 with S k (0) = 0.

Lemma 3.3.

There exists c 0 = c 0 (λ) > 0 such that, for all t ≥ 0

S k (t) ≤ c 0 t k , ∀k ∈ N. (3.4)
There exists c 1 = c 1 (a, λ, r 0 ) > 0 such that, for all t ∈ [0, r 0 ]

t a S k (t) ≤ c 1 t k+1 k + 1 , ∀k ∈ N. (3.5)
Proof. Since τ k ≤ t k , we have (3.4) with c 0 = S 0 . To show (3.5) we notice that

1 - a k + 1 t 0 τ k e -λϕ(τ ) τ a dτ = t k+1 k + 1 e -λϕ(t) t a + λ k + 1 t 0 τ k+1 e -λϕ(τ ) τ 2a dτ (3.6)
as long as k + 1 ≥ a. We then consider integers k > a -1 ie k ≥ a wich is the smallest integer larger than or equal to a ; since λ is < 0, it ensues that

t a S k (t) ≤ c t k+1 k + 1 where c ≡ a + 1 a + 1 -a > 0.
Let k ≤ a -1 be an integer. From (3.4), one has, for all t ∈ [0, r 0 ]

t a S k (t) ≤ c 0 t a+k ≤ c 0 t k+1 r a-1 0 ≤ c t k+1 k + 1 where c = c 0 ar a-1 0 > 0.
The result follows with c 1 = max(c, c ). Here are the estimates involving operator P -1 of lemma 2.1.

Lemma 3.5.

There exists c = c(a, λ, r 0 ) > 0 such that, for R > 0, ρr < R and u ∈ C 0,ω ([0, r] × Ω), the function

P -1 u ∈ C 0,ω ([0, r] × Ω) satisfies ∀ t ∈ [0, r], u(t, x) φ(ρt + ξ) =⇒ ∀ t ∈ [0, r], P -1 u(t, x) cφ(ρt + ξ) (3.7) and ∀ t ∈ [0, r], u(t, x) Dφ(ρt + ξ) =⇒ ∀ t ∈ [0, r], t a P -1 u(t, x) cρ -1 φ(ρt + ξ). (3.8)
Proof of (3.7). For all t ∈ [0, r] and α ∈ N n , one has

|D α u(t, 0)| ≤ D |α| φ(ρt) = ∞ k=0 (ρt) k D k+|α| φ(0) k!
and from lemma 2.1, D α P -1 u = P -1 D α u , hence

|D α P -1 u(t, 0)| ≤ ∞ k=0 ρ k S k (t) D k+|α| φ(0) k!
where S k is defined by (3.3) in which we substitute e λ to λ. The assertion is confirmed by (3.4).

Proof of (3.8). As above, we get in this case

|D α t a P -1 u(t, 0)| ≤ ∞ k=0 ρ k t a S k (t) D k+1+|α| φ(0) k! ≤ c 1 ρ -1 ∞ k=0 (ρt) k+1 D k+1+|α| φ(0) (k + 1)! from (3.5
), and the conclusion follows.

We then consider the expressions ζRU and t A D x RU . Let us denote by R i the i-th component of R. From now on, we will take

E = C N and (u 1 , . . . , u n ) E = max 1≤i≤N |u i |.
Lemma 3.6. There exists c = c(A, Λ(0, 0), r 0 ) > 0 such that, for R > 0, ρr < R and U ∈ B, we have, for

every i ∈ 1, N , j ∈ 1, n ∀ t ∈ [0, r], R i U (t, x) c U φ(ρt + ξ) (3.9) and ∀ t ∈ [0, r], t ai D j R i U (t, x) cρ -1 U φ(ρt + ξ). (3.10)
Proof. From lemma 2.2, this result must be established with terms like

P -1 i • P -1 γ2 • • • • • P -1 γp u γp for (3.9)
and terms like Let us specify hereafter the majorant function we shall employ. Given R > 0, we consider the entire serie (2.1) of [START_REF]Le problème de Goursat non linéaire[END_REF] 

t ai P -1 i • P -1 γ2 • • • • • P -1 γp D j u γp for (3.
φ(ξ) = K -1 ∞ p=0 (ξ/R) p (p + 1) 2 (3.11)
where the constant K > 0 is such that φ 2 φ. Recall that φ also satisfies the following properties. Let η > 0, there exists c = c(η) > 0, such that ηR/(ηR -•) cφ and necessarily ηR ηR -(ρt + ξ) cφ(ρt + ξ) for all t ∈ [0, r].

(3.12) Lemma 3.7. Let u ∈ C 0,ω ([0, r] × Ω) and 0 ≤ c < R be such that u(t, x) cφ(ρt + ξ) for all t ∈ [0, r], then u is bounded by c on [0, r] × Ω, the function R /(R -u) belongs to the space C 0,ω ([0, r] × Ω) and

R R -u(t, x) K + c R -c φ(ρt + ξ) for all t ∈ [0, r]. (3.13)
Concerning the operator F, we are going to set up Proposition 3.8. There is a 0 > 0 such that, for all a ≥ a 0 , the following holds : there exist R ∈]0, R 0 ], ρ ≥ 1, r ∈]0, r 0 ] with ρr < R such that the mapping F is a strict contraction in the closed ball B (0, a) of the Banach space B.

Let us observe now that we can write

f (t, x, y, z) -f (t, x, y , z ) = i∈ 1,N g i (t, x, y, z, y , z )(y i -y i ) (3.14) + (i,j)∈ 1,N × 1,n h i,j (t, x, y, z, y , z )(z i,j -z i,j ) where g i , h i,j ∈ C 0,ω [0, r 0 ] × Ω 0 × O 0 × O 0 ; C N . For R > 0, we set ∆ R = {x ∈ C n ; max j∈ 1,n |x j | < R} and O R = {(y, z) ∈ C N × C nN ; max i∈ 1,N |y i | < R, max (i,j)∈ 1,N × 1,n |z i,j | < R}.
We fix, once and for all, η > 1, R 0 > 0 and R > 0 such that ∆ ηR0 ⊂ Ω 0 and O R ⊂ O 0 . Consequently, the functions

f ∈ C 0,ω [0, r 0 ] × (∆ ηR0 × O R ) ; C N and g i , h i,j ∈ C 0,ω [0, r 0 ] × (∆ ηR0 × O R × O R ) ; C N are bounded, say by a constant M > 0. We put ε(r, R) = max (t,x)∈[0,r]×∆ ηR i∈ 1,N |ζ i (t, x)| for (r, R) ∈]0, r 0 ]×]0, R 0 ].
This function has limit 0 as (r, R) tends to (0, 0). From Cauchy's inequalities and lemma 3.7, one has

ζ i (t, x) ε(r, R) ηR ηR -ξ c(η)ε(r, R) φ(ξ)
and, given φ(ξ) φ(ρt + ξ) (since φ 0 and ρr < R), it comes

ζ i (t, x) c(η)ε(r, R) φ(ρt + ξ) (for all t ∈ [0, r], i ∈ 1, N ). (3.15)
Similarly, we have

f (t, x, y, z) c(η)M φ(ρt + ξ) i R R -y i i,j R R -z ij (3.16) and g i , h i,j (t, x, y, z, y , z ) c(η)M φ(ρt + ξ) i R R -y i R R -y i i,j R R -z ij R R -z ij . ( 3 

.17)

Proof of proposition 3.8 Let a > 0 and U ∈ B be such that U ≤ a. In what follows, any constant ≥ 0 that does not depend on the parameters a, R, ρ, r will be denoted by c. From (3.9) -(3.15) and (3.10), we have

ζ i R i U (t, x) cε(r, R)a φ(ρt + ξ), t ai D j R i U (t, x) cρ -1 a φ(ρt + ξ). (3.18)
Then, under a condition like

cε(r, R)a ≤ R /2 and cρ -1 a ≤ R /2, ( 3.19) 
it follows from (3.16) and lemma 3.7 that FU is well-defined on [0, r] × Ω, belongs to C 0,ω ([0, r] × Ω ; C N ) and

∀ t ∈ [0, r], FU (t, x) cφ(ρt + ξ).
This proves the existence of a a 0 > 0 sufficiently large (a 0 ≥ c), such that F(B (0, a)) ⊂ B (0, a) for all a ≥ a 0 .

(3.20)

Let U ∈ B (0, a). As explained for f , if (3.19) is satisfied, we also have

g i , h i,j (t, x, ζRU, t A D x RU, ζRU , t A D x RU cφ(ρt + ξ).
Thence, from (3.14) and lemma 3.6, we obtain

FU -FU ≤ c ε(r, R) + ρ -1 U -U .
Let a ≥ a 0 . We first take ρ ≥ 1 such that cρ -1 a ≤ R /2 and cρ -1 < 1/2. Next, we choose (r, R) ∈]0, r 0 ]×]0, R 0 ] with ρr < R (for instance r = R/2ρ), such that cε(r, R)a ≤ R /2 and cε(r, R) < 1/2. Thus we have (3.19), (3.20) and c ε(r, R) + ρ -1 < 1. We get the desired result therefrom.

Proof of theorem 1.1

By proposition 3.8, the mapping F has an unique fixed point U ∈ B (0, a 0 ) ⊂ C 0,ω ([0, r] × Ω ; C N ) and

U 1 = RU ∈ C 1,ω (]0, r] × Ω ; C N ) ∩ C 0,ω ([0, r] × Ω ; C N ) is a solution of (1.1). Let us show the uniqueness of this solution. Let U 2 ∈ C 1,ω (]0, r] × Ω ; C N ) ∩ C 0,ω ([0, r] × Ω ; C N ) be a solution of (1.1), then U = t A D t U 2 -ΛU 2 ∈ C 0,ω ([0, r] × Ω ; C N ) is a fixed point of F. There is R 1 > 0 such that ∆ ηR1 ⊂ Ω, so, from Cauchy inequalities, U ∈ B φ,R1,1,r .
We take a = max(a 0 , U φ,R1,1,r ). Using proposition 3.8 again, there exist S ∈]0, R 1 ], ρ ≥ 1, s ∈]0, r] with ρs < S such that U = U on [0, s] × Ω S,ρ,s ie on [0, s] × Ω since Ω is a connected open set. We shall prove that the real number t 0 ≡ max{t ∈]0, r] ; U 1 = U 2 on [0, t] × Ω} is equal to r. For this purpose, we assume 0 < t 0 < r and we set W (x) = U 1 (t 0 , x) = U 2 (t 0 , x). This function W is holomorphic on Ω and the functions U i belong to C 1,ω ([t 0 , r] × Ω ; C N ). Thus, writing U i (t, x) = W (x) + (t -t 0 ) U i (t, x), we define uniquely U i ∈ C By translation, (4.2) is reduced to t 0 = 0 with g ∈ C 0,ω ([0, r -t 0 ] × Ω × O ; C N ) that is to say to a system like (1.1). As above, there exist s ∈]0, r -t 0 ] and an open neighborhood Ω ⊂ Ω of the origin in C n x such that U 1 and U 2 coincide on [0, s ] × Ω , hence U 1 and U 2 coincide on [t 0 , t 0 + s ] × Ω ie on [t 0 , t 0 + s ] × Ω. This allows us to conclude that t 0 = r.

Proof of theorem 1.2

Suppose U = (u 1 , . . . , u N ) is a function satisfying theorem 1.2. Let i ∈ 1, N \I, we define uniquely ũi ∈ C 1,ω (]0, r] × Ω) by the relation u i (t, x) = w i (x) + t 1-ai ũi (t, x).

(5.1)

Let us show that ũi belongs necessarily to C 0,ω ([0, r] × Ω). As a i ∈ [0, 1[, we observe that u i (t, x) -u i (0, x) = t 0 τ -ai v i (τ, x)dτ where v i = t ai D t u i ∈ C 0,ω ([0, r] × Ω)

Example 1 . 3 .

 13 For all (a, b) ∈ C 2 and (α, β) ∈ R 2 , there is r > 0 and an open neighborhood Ω of the origin in C x such that the problem

[ 0 ,

 0 r]×K U n -U n E ≤ εC K where C K = max x∈K φ(ρr + n j=1 |x j |) is < +∞ since the mapping x → φ(ρr + n j=1 |x j |) is continuous on Ω.

Remark 3 . 4 .

 34 When a = 1, then c 1 = max(2, 1/|λ|) does not depend on r 0 and (3.5) is valid for all t ≥ 0. Otherwise, one can see that lim t→+∞ S k (t) = +∞.

  10) where p ∈ 1, N and γ 2 , . . . , γ p ∈ 1, N . Let U ∈ B, then u γp (t, x) U φ(ρt + ξ) for all t ∈ [0, r]. Using (3.7) p times, we obtain (3.9). Otherwise, one has D j u γp (t, x) U Dφ(ρt + ξ) for all t ∈ [0, r]. Applying (3.7) p -1 times and (3.8) once, we get (3.10).

  r by the set of functions u ∈ C 0,ω ([0, r] × Ω ; E) for which there exists c ≥ 0 such that

	n	
	x j .	(3.1)
	j=1	
	This precisely means D	

∀ t ∈ [0, r], u(t, x) cφ(ρt + ξ) where ξ = α u(t, 0) E ≤ cD |α| φ(ρt, 0) for all α ∈ N n and all t ∈ [0, r].

Obviously B is a vector subspace of C 0,ω ([0, r] × Ω ; E) and the smallest c ≥ 0 for wich (3.1) is satisfied is a norm on B denoted by • φ,R,ρ,r or simply • if no confusion is possible.

Lemma 3.2. The space B is a Banach space.

  ∈ C 0,ω ([t 0 , r] × Ω × O ; C N ), O ⊂ O 0 is an open neighborhood of the origin in C N y × C nN

				z	defined, from
	(3.19), at least for				
	max i∈ 1,N	|y i | < R /2ε(r 0 , R 0 ) and	max (i,j)∈ 1,N × 1,n	|z i,j | < R /2.	(4.3)

1,ω 

(]0, r] × Ω ; C N ) ∩ C 0,ω ([t 0 , r] × Ω ; C N ) and we find that these U i are solutions of

t A (t -t 0 )D t + I U = Λ(t -t 0 )U + f t, x, ζW + ζ(t -t 0 )U, t A D x W + t A (t -t 0 )D x U (4.1) namely (t -t 0 )D t + I U = g t, x, (t -t 0 )U, (t -t 0 )D x U (4.2)

where g

6 Proof of theorem 1.4

As explained in section 2, matrix Λ can be considered constant. Since the diagonal matrix t a I N commutes with any matrix of order N , a fortiori, with an invertible one, it follows, after changing the notations, that it is enough to study system (1.1) for an upper triangular constant matrix Λ ∈ T + N (C). By applying Theorem 1.2 for such a matrix and for a i all equal to a, we achieve our expected result .

therefore u i (t, x) = w i (x) + t 1-ai 1 0 σ -ai v i (σt, x)dσ.

(5.2)

If ∆ is an open polydisk such that ∆ ⊂ Ω, the mapping (σ, t, x) ∈]0, 1] × [0, r] × ∆ → σ -ai v(σt, x) ∈ C is continuous, holomorphic with respect to x and bounded by M σ -ai where M = max

Denoting by f i the i-th component of f , system (1.1) is also written in the form

(5.3) Injecting (5.1), we obtain

and

Now we set

We denote by M = ( λij ) 1≤i,j≤N the square matrix of order N where the λij are functions of (t,

(

Using a matrix representation and expanding along columns, we note that det λ I -M(0, 0) = ± P (λ)

Equations (5.4) and (5.5) can then be written as the following system

Regarding f , by putting W = (w 1 , . . . , w N ) with w i ≡ 0 for i ∈ I, one has

and, since ζW and t A D x W vanish at the origin of R × C n thanks to (1.2) and (1.4), there exist r 0 > 0 and an open neighborhood

Considering the proof of theorem 1.1, it can also be written for such a f , hence we have existence and uniqueness for Ũ ∈ C 1,ω (]0, r] × Ω ; C N ) ∩ C 0,ω ([0, r] × Ω ; C N ) which completes the proof of theorem 1.2.