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Abstract

We show how the consideration of two compartments in the well known chemo-

stat model could lead to non-intuitive messages in terms of performances and

stability. These compartments and their interconnections represent spatial pat-

terns and interplay with species biodiversity. The case of an inhibited resource

is also considered, for which we also study the effect of a bio-augmentation.

Keywords: chemostat, compartments, interconnections, competition, growth

inhibition, performances, stability, bio-augmentation.

1. Introduction

The chemostat model appears in the fifteens as the mathematical represen-

tation of the microbial growth in the chemostat experimental device, invented

simultaneously by Monod [1] and Novick-Szilard [2]. If s and x denote respec-

tively the substrate and biomass concentrations in a culture vessel of volume V ,5

their time evolution are modeled by the following system of ordinary differential

equations

ṡ = − 1
Y µ(s)x+−QV (Sin − s)

ẋ = µ(s)x− Q
V x

(1)
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where Y 1 is the yield conversion of substrate into biomass, µ(·) the specific

growth rate of the micro-organisms (which is non-negative function, null only

at s = 0), Q the input flow and Sin the input concentration of substrate.10

Later, this model has been used to represent many other ecosystems in natural

environments [3, 4, 5], which have in common a continuous culture of micro-

organisms. This model (or close versions of it) is often found in bio-mathematics,

theoretical ecology or bio-processes literature (see for instance [6, 7, 8, 9]). More

generally, it is a popular model of resource-consumer in living sciences (although15

the word “chemostat” is not always used).

The model (1) is based on several essential assumptions: 1. The micro-

organisms introduced in the vessel are of a single species; 2. The substrate

(of concentration s) is the single limiting resource for growth; 3. The vessel is

perfectly mixed; 4. Its volume is constant (i.e. the input and output flows are20

both equal to Q. Many extensions of this model have been studied to better

suit real ecosystems, introducing considerations such as species competition,

multiple limiting resources, non-perfectly mixed medium... Most of the stud-

ies in bio-mathematics and theoretical ecology have been conducted with the

objective to characterize the composition and the spatial distribution of the25

asymptotic solutions (see for instance [10, 11, 12, 13, 14]). The performances

of the related ecosystems are usually not addressed in those theoretical studies.

This is different in bio-processes literature. Optimizing the performances is of

primer interest, but mixed cultures are rarely considered.

The objective of the present paper is to review studies of extensions of the30

model (1) that have revealed “non-intuitive” messages (in the sense that the

conclusions cannot be deduced straightforwardly from the equations) related

to the performances. We do not pretend here to be exhaustive but we focus

on situations for which a certain kind of complexity could emerge from quite

simple ecosystems. More precisely, we consider structures of the model (1) in a35

1without any loss of generality one can assume Y = 1 in equations (1) by simply denoting

the quantity X/Y by X
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few compartments that can change radically the behavior of the solutions and

its performances. The consideration of spatial compartments in the chemostat

model (also named gradostat which refers to the experimental device proposed

by Lovitt and Wimpenny [15]) is not new [16, 17, 18, 19, 20, 21, 11, 22, 23,

13, 24, 25, 14], but we focus here on the output performances of the systems.40

From another view point, interconnected chemostats are often considered in

biotechnology for optimizing the productivity [26, 27, 28, 29, 30, 31] but most

of the time the configurations are in series with pure culture. In the present

work, we consider more general interconnection structures and the possibilities

of having several species in different niches. The paper is organized as follows.45

In Section 2, we analyze the effect of a spatialisation described in terms of inter-

connected compartments, and show how interconnection patterns could impact

the performances. In Section 3 we study the interest for having a diversity in the

compartments. In Section 4, we consider inhibitory resources and demonstrate

the role of patterns on the ecosystem stability and its performances. Finally,50

in Section 5, the bio-augmentation is analyzed in terms of another mean that

could impact the stability of the ecosystem.

2. Spatial patterns in the chemostat

In this Section, we assume that the growth function µ(·) is monotonically

increasing. A usual function is given by the Monod’s expression (see Figure 11)55

in the Appendix):

µ(s) = µmax
s

Ks + s
. (2)

For convenience we denote the dilution rate D = Q
V , and define, as it is often

made in the literature, the break-even concentration associated to the growth

function as

λ(D) =

∣∣∣∣∣∣ s s.t. µ(s) = D when maxs µ(s) > D,

+∞ otherwise.

Let us first recall the classical results about the asymptotic behavior of the60

solutions of the model (1) (see for instance [12]). The equilibria are the wash-out
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E0 = (Sin, 0) and a positive steady state E1 = (λ(D), Sin − λ(D)) which exists

when λ(D) < Sin. Under this last condition, E0 is unstable and any solution

with x(0) > 0 converges asymptotically to E1. On the contrary, when λ(D) ≥

Sin, any solution converges asymptotically to E0. Therefore, a property of the65

model (1) is that for a given dilution rate D, the output substrate concentration

at steady state is equal to λ(D) independently of the input concentration Sin,

provided Sin to be larger to λ(D). It is well known that this property is no longer

satisfied when there is spatial heterogeneity (see for instance [15, 27] where

expressions of the output concentrations at steady state depend on the input70

concentration). Performances of an ecosystem can be measured by different

indexes. We consider here an index that measures the ability of an ecosystem

to convert a resource. More precisely, for a given value Sin of the resource

density at the inlet, we define its output density at steady state, denoted s?out,

as the performance index. To grasp the effect of spatial structures on this75

performance index, we consider three patterns depicted on Figure 1 for a given

total volume V and input flow rate Q. We compare the smallest value s?out
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Figure 1: Consideration of three spatial patterns with same total volume V .

for each configuration. For the single tank configuration, s?out is simply given

by λ(Q/V ). For the serial configuration, s?out is function of the volume ratio

r = V1/V . For the parallel configuration, s?out is function of r, the ratio of flow80

distribution α = Q1/Q and the diffusion parameter d between the two volumes.

The systems of equations (13) and (14) for the serial in parallel configurations

are given in Appendix. One has the following result.
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Proposition 1. For a given input flow rate Q and volume V , there exists a

threshold S̄in > 0 such that the smallest output concentration s?out is reached85

for a serial configuration when Sin > S̄in, and for a parallel configuration when

Sin < S̄in. Moreover, in this last case, the map d 7→ s?out(d) admits an unique

minimum for a d? < +∞ Furthermore, there exists another threshold Sin < S̄in

such that d? = 0 for Sin < Sin and d? > 0 for Sin ∈ (Sin, S̄in).

These results have been proved in [32] for linear growth functions and later90

extended to Monod functions in [33]. We illustrate these results for a linear

growth function with total volume V and input flow rate Q such that λ(Q/V ) =

1. For the single tank configuration, the output concentration at steady state

is thus equal to 1. The threshold S̄in can be computed to be equal to 2. On
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Figure 2: Output performances of the serial and parallel configurations.

Figure 2, the output concentration at steady state s?out has been plotted for95

various values of Sin as function of the parameters of the serial or parallel

configurations. On can first see that for any value of Sin, there always exists a

serial or parallel configuration such that s?out < 1 (that is consequently better

than having a single tank). When Sin is above the threshold S̄in = 2, the

parallel configurations have always s?out above 1 and there exist values of r such100

that the serial configuration has s?out under 1. For Sin below the threshold,

conclusions are reversed: the serial configuration has s?out always larger than

1, while there exist parameter values of d such that the parallel configuration
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has s?out lower than 1. Moreover, one can see that for values of Sin under the

threshold but no too low, the smallest value of s?out is obtained for a positive105

value of the diffusion parameter d.

3. Biodiversity and spatial patterns

Now we consider the case of two species (or two consumers) of concentrations

x1, x2 in competition for the single limiting resource in the chemostat. A

straightforward extension of the mono-specific model (1) is given by the system110

(where the yield parameter Y has been kept equal to 1)

ṡ = −µa(s)xa − µb(s)xb −D(Sin − s)

ẋa = µa(s)xa −Dxa
ẋb = µb(s)xb −Dxb

(3)

where D = Q/V is the dilution rate, as before. On can see, from the two last

equations, that a coexistence of both species at steady state would imply the

existence of a (positive) steady state value s? such that µa(s?) = µb(s
?) = D.

This is a very restrictive condition that cannot be met generically. If the graphs115

of the functions µa(·), µb(·) do not cross away from 0, this condition cannot be

fulfilled. Otherwise, the condition can be fulfilled at the graphs intersections,

which are generically isolated points. Therefore, such a condition can be satisfied

at most at some isolated values of D, which are hardly possible to observe in

practice. This is the core of the well known Competitive Exclusion Principle120

(CEP) that states moreover that the species i ∈ {a, b} with the smallest break-

even concentration λi(D) wins the competition (when λi(D) < Sin, otherwise

both species are washed-out). This is a particular case of a more general result

that was proved for an arbitrary number of species in [10] (for Monod functions)

and in [36] (for any monotonic growth functions). Note that the winning species125

could depend on the value of the dilution rate D when the graphs of the two

growth functions µa(·), µb(·) intersect away from 0, as depicted on Figure 3(a)

for two Monod functions, that is when the following assumption is fulfilled.
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Hypothesis 1. (Crossing assumption) There exists D̄ > 0 such that

D > 0, D 6= D̄ ⇒ (λa(D)− λb(D))(D − D̄) > 0 (4)

s

species b

species a

D

(a) When D < D̄, the species a wins,

while species b wins when D > D̄

Q

S in Sin

α

S1 S2

+

S out

(1−α)Q

Q

S in Sin

α

S1 S2

+

S out

(1−α)Q

Q

S in Sin

α

S1 S2

+

S out

(1−α)Q

Q

S in Sin

α

S1 S2

+

S out

(1−α)Q

(b) Four possibilities of occupancy by a single

species in each tank, according to the CEP

Figure 3: The case of two species under the crossing assumption.

In [34] the question of an optimal design of two tanks in series has been130

addressed with two species in competition under the crossing assumption (the

equations (15) of the system are given in the Appendix). In the first tank, the

equations are exactly (3) with D replaced by Q1/V1. Therefore, the CEP holds:

either species a or b wins (on the condition that the volume V1 is such that

mini=a,b λi(Q1/V1) < Sin). In the second tank, the CEP cannot be applied135

due to the inlet of the winning species from the first tank. In [34], it is shown

that a coexistence of two species is possible in the second tank, but the optimal

distribution of the volumes cannot sustain both species. Moreover the optimal

solution for the bio-conversion performance is robust with respect to invasion,

in the sense than a less efficient species cannot invade the ecosystem, while140

a better species replaces the existing one. For the parallel configuration, one

has the exclusion of one (or both) species in each tank when the tanks are

isolated (i.e. with no diffusion). The four options are depicting on Figure 3(b),

depending on which species has been chosen in each tank. The equations (16)

of the dynamics are given in the Appendix.145
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For convenience, we denote the modified break-even concentration

λ̄i(D) = min(λi(D), Sin), i = a, b. (5)

Then, the output concentration at steady state when species i and j are present

in the first and second tanks, respectively, is given by

Fi,j(r, α) = αλ̄i

(α
r
D
)

+ (1− α)λ̄j

(
1− α
1− r

D

)
(6)

where r denotes the ratio V1/V , as before. We look for situations for which

having different species in each compartment is beneficial for the performance,150

according to the following definition.

Definition 1. (Over-yielding). A configuration (r, α) presents over-yielding

when there exits i 6= j such that

Fi,j(r, α) < min (Fa,a(r, α), Fb,b(r, α)) . (7)

Consider Q and V such that Q/V = D̄, and a configuration (r, α) with α/r < 1.

One has necessarily (1 − α)/(1 − r) > 1. Denote then D̄1 = (α/r)D̄ and155

D̄2 = (1 − α)/(1 − r)D̄ the dilution rates for the two compartments. If D̄2 <

min(µ1(Sin), µ2(Sin), one has λ̄a(D̄1) < λ̄a(D̄1) and λ̄b(D̄2) < λ̄a(D̄2). Then,

one obtains

Fa,b(r, α) =
α

r
λ̄a(D̄1) +

1− α
1− r

λ̄b(D̄2)

<
α

r
λ̄b(D̄1) +

1− α
1− r

λ̄b(D̄2) = Fb,b(r, α)

and similarly Fa,b(r, α) < Fa,a(r, α). So an over-yielding occurs for the particu-

lar value of D = D̄. One can show that this also occurs for any D not too far160

from D̄, as stated in the following result.

Proposition 2. From Assumption 1, over-yielding occurs for (r, α) such that

α

r
D < D̄ <

1− α
1− r

D < min(µa(Sin), µb(Sin)). (8)

We illustrate this result considering two Monod functions with an intersection

at a common (positive) value D̄ = µa(s̄) = µb(s̄) for some s̄. For a value D close
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to D̄, we compare the options of having the same species (a or b) in both tanks165

or having having different species in the two tanks: Figure 4 shows the graphs

of Fa,b(·), Fa,a(·), Fb,b(·) as functions of α for a fixed value of r. One can see

that the values of Fa,b(·) are significantly below the minima of Fa,a(·) and Fb,b(·)

(more precisely a gain of 12% is obtained on this example). This demonstrates

the benefit of having different species in the two tanks, which play then the role170

of two niches. One can also remark that the functions Fi,j depicted on Figure

F

F
a,b

a,a

F
b,b

10

0

2

1

α

Figure 4: Fi,j as function of α for r = 0.4, with µa(s) = 2s/(3 + s), µb(s) = s/(0.3 + s),

D = 0.9 and Sin = 10.

4 are non-convex, although the functions λi are convex (when the functions µi

are concave, which is the case for Monod functions). This comes from the fact

that one has to consider the saturated break-even functions λ̄i in the definition

of the performance index Fi,j .175

4. Inhibitory resources in the chemostat

In this Section we consider non-monotonic growth functions µ(·), that are

increasing for values of s up a threshold sm and decreasing for values of s larger

of sm. A typical instance is given by the Haldane function (see Figure 11) in

the Appendix).180

µ(s) = µ̄
s

Ks + s+ s2/Ki
. (9)

9



Andrews has shown that such functions well represent a growth inhibited by

large densities of the resource [35]. For such functions, the concept of break-

even concentration recalled in Section 2 has to be revisited. Following [36], we

consider the interval

I(D) = {s > 0 |µ(s) > D} (10)

that we assume to be an interval (λ−(D), λ+(D)), possibly empty. Note that for185

monotone functions µ(·), λ−(D) coincides with λ(D) defined in Section 2, and

λ+(D) = +∞. The mathematical analysis of the chemostat model reveals then

three possible behaviors of the dynamics (depicted on Figure 5), depending on

the input parameters (D,Sin) (see for instance [12]).

1. If I(D) = ∅ or Sin ≤ λ−(D), the wash-out E0 is the unique equilibrium,190

which is globally asymptotically stable.

2. If Sin > λ+(D), there are two positive equilibria E∓1 = (λ∓1 (D), Sin −

λ∓1 (D)). E+
1 is a saddle equilibrium point and there is bi-stability between

E0 and E−1 .

3. When Sin ∈ I(D), the wash-out E0 is repulsive and E−1 is the unique195

positive equilibrium which attracts any trajectory with x(0) > 0.

S in

D

µ

(a) no positive equilibrium

S in

µ

D

λ λ− +

(b) 2 positive equilibria

S in

µ

D

λ
−

(c) 1 positive equilibrium

Figure 5: Consideration of the Haldane function in the chemostat model.

The second case can faces irreversibility when a sudden drop of the biomass

occurs, due for instance to temporary toxicity or harvesting. It can lead the

state to the attraction basin of the wash-out equilibrium. Contrary to the

monotonic case, the biomass cannot recover from such event and finally dies.200
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One may then wonder what role a spatialisation could play concerning this

instability.

Given Q and V , we consider rich environment, that is for Sin > λ+(D).

If one considers a serial configuration, the wash-out equilibrium stays attrac-

tive in both compartment, as the dilution rates are Q/V1, Q/V2 are above D.205

For the parallel configuration (with no diffusion) a dilution rate Q1/V1 small

enough makes the wash-out equilibrium repulsive in the first compartment, but

one can easily check that this implies to have the dilution rate Q2/V2 larger

than D and thus the wash-out equilibrium is attractive in the second com-

partment. However, we show that there exists another configuration with two210

compartments (without diffusion) that allows to preserve robustly biomass in

both compartment, that we call buffered connection as drawn on Figure 6. The

V
1

V
2Q1

Q
2

Q2

Q

Q = Q   + Q1 2

Figure 6: The buffered chemostat.

equations (17) of the dynamics of this configuration are given in the Appendix.

It is convenient to parameterize this configuration with the pair (r, α) defined

as r = V1/V and α = (Q2/V2)/D. We note that the second tank has a single215

input and therefore behaves as a single chemostat. Let us fix α < 1 such that

Q2/V2 = αD < µ(Sin) guarantees to have a single positive state (s?2, x
?
2) with

s?2 = λ−(Q2/V2) and x?2 = Sin − s?2, as in case 3 above. Note that at this

stage we have not yet chosen Q2 and V2 but simply the ratio Q2/V2. Then,

a straightforward computation gives a positive equilibrium (s?1, x
?
1) in the first220
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tank with s?1 solution of the equation

µ(s?1) =
D

r
− αD

(
1− 1

r

)
Sin − s?2
Sin − s?1

:= φr(s
?
1) (11)

along with x?1 = Sin − s?1. The solutions of this equation can be graphically

interpreted as the intersection of the graphs of the functions µ(·) and φr(·).

It has been shown in [37] that the graphs of the family of functions φr(·) for

r ∈ (0, 1) have the point (s̄1, D) in common, where s̄1 = αs?2 + (1 − α)Sin.225

Figure 7 depicts the family φr(·) and the intersections with µ(·), depending on

the position of s̄1 with respect to λ+(D). One can see that among this family

D

µ

s
1s λ+λ−

D

µ

s

1sλ λ+−

Figure 7: Family of functions φr(·) (in blue single intersection with the function µ).

there always exist functions φr(·) whose graph possesses a unique intersection

with the graph of µ(·). For such cases, there is a unique positive equilibrium in

the first tank as well. In [37], the following result is given.230

Proposition 3. Assume Sin > λ+(D). For any α ∈ (0, 1) such that αD <

µ(Sin), there exists r ∈ (0, 1) such that buffered chemostat configuration with

(r, α) has an unique positive equilibrium. Moreover, for any initial condition

with x2(0) > 0, the solution converges asymptotically to this equilibrium.

One can also see on Figure 7 that the price to pay for stability with a buffered235

interconnection is that the output concentration of the resource s?out as steady

state (which is equal to s?1) is larger than λ−(D), which is the output concentra-

tion of the single chemostat of volume V at the positive equilibrium. In [37], the

problem of minimizing s?out among all the buffered configurations that ensure

global stability is also studied. The following result is provided in [37].240
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Proposition 4. Assume Sin > λ+(D). The configuration (r?, α?) minimizing

the output substrate concentration s?out(r, α) at steady state among all the globally

stable configurations fulfills the following properties.

1. One has α? = µ(s?) where s? maximizes the function

ψ(s) = µ(s)(Sin − s)

on the interval [0, λ−(µ(Sin)].245

2. There exists a threshold S̄in > 0 defined as

max
s∈[0,λ−(µ(S̄in)]

ψ(s) = S̄in − λ+(D)

such that r? ∈ (0, 1) when Sin is under this threshold and r? = 1 when Sin

is above.

Indeed, the threshold S̄in corresponds to the limiting case for which it is not

possible to have an unique s?1 solution of (11) with s1? ≤ s̄1 for α = α?. Then,250

a configuration with a single tank (r = 1) and a by-pass (i.e. Q1 such that

Q1/V < µ(Sin) passes through the tank while Q2 by-passes it) is the most

efficient way to ensure a global stability of the system. This amounts to say

that for very rich environment a global stability is quite penalizing in terms of

performances (see Figure 8).

λ
+

λ
+

Sin

Sin

λ
−

1

by−pass

s *

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 8: Best output concentration that ensures a global stability as function of the input

concentration.

255
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5. Bio-augmentation and stability

In this Section, we consider a species a for which the resource is inhibitory, as

in Section 4, with input parameters (D,Sin) such that Sin > λ+
a (D). For such

case, we study the effect of adding a species b on the stability of the ecosystem.

One cannot have (generically) both species at steady state, as explained in260

Section 3 but differently to the monotonic case, the winning species could depend

on the initial condition. Denote the possible equilibria E0 = (Sin, 0, 0), E∓a =

(λ∓a (D), Sin−λ∓a (D), 0), E∓b = (λ∓b (D), 0, Sin−λ∓b (D)). One has the following

result.

Proposition 5. Assume Sin > λ+
a (D) and λ−b (D) 6= λ−a (D). Let i? ∈ {a, b} be265

such that λ−i (D) = min(λ−a (D), λ−b (D)), and consider the set

I = (Ia(D) ∪ Ib(D)) ∩ [0, Sin]. (12)

1. If I is an interval with Sin ∈ I, E−i? is the unique stable equilibrium that

attracts any solution with xa(0) > 0 and xb(0) > 0.

2. If I is an interval with Sin /∈ I, there is a bi-stability between E0 and E−i? .

3. If I is not connected with Sin ∈ I, there is a bi-stability between E−a and270

E−b .

4. If I is not connected with Sin /∈ I, there is a tri-stability between E0, E−a

and E−b .

This result has been proved in [36] and later extended in [38, 39, 40] for different

removal rates.275

Let the species a be alone with a initial condition in the attraction basin

of the wash-out equilibrium: species a goes to the wash-out (see Figure 10(a)).

Consider a bio-augmentation at initial time with a species b whose growth func-

tion is monotonic but less efficient at steady state (i.e. such that λb(D) >

λ−a (D)). Figure 9 shows two possible candidates for the species b to compete280

with a. Species b (in green) is more efficient than species c (in blue).

The simulations presented on Figure 10 have the same initial conditions

s(0), xa(0) but with an additional small quantity xb(0) > 0 on Figures 10(b),
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Figure 9: Consideration of bio-augmentation with the green or the blue species.

10(c). On Figure 10(b), species b has been added. We are in the case 1. of
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Figure 10: Effect of a bio-augmentation.

Proposition 5. Any small initial quantity sb(0) is enough to allow species a to285

survive and then win the competition. Therefore, the presence of species b is

necessary to avoid the wash-out of species a, but it is asymptotically eliminated

from the ecosystem. A bio-control strategy could then consist in a regular input

of species b for guaranteeing a recovery of the performances of the ecosystem

in case of a sudden drop of species a. On Figure 10(c), species c is added290

instead of species b. We are in the case 3. of Proposition 5: species c could

win the competition, depending on the initial condition. The performances of

the ecosystem is irreversibly impacted, compared to the stable equilibrium with

species a. At the first look, it could appear paradoxical that species c can settle

in the chemostat, while the more efficient species b cannot. An interpretation is295

that species c being less efficient then species b, is not fast enough to consume

the resource for avoiding the species a to be washed-out.
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6. Concluding messages

The present study highlights several messages in terms of input-output per-

formances of an ecosystem, which seems to be original in the ecology literature.300

It can be summarized as follows.

• There always exist spatial distributions which improve the substrate con-

version compared to a single perfectly mixed volume. For rich environ-

ments (i.e. for large value of Sin), a serial distribution can be the most

efficient, while for a poor environment a parallel distribution can be the305

best, and a moderate diffusion could even improve it.

• While spatial patterns could allow to have different species present in the

ecosystem at steady state, there is no interest of having more than one

species in serial configurations in view of performances. Situation is much

different for parallel configurations. Under the crossing assumption, one310

can have two niches in parallel with a different species in each niche that

together have a better utilization of the resource than having the same

species in each niche.

• In presence of inhibition, particular spatial patterns such as the buffered

interconnection could bring global stability instead of bi-stability, but at315

the price of a trade-off with its performances.

• Bio-augmentation could be another mean to obtain a global stability in

presence of inhibition, allowing to recover the initial performances in case

of a sudden drop of the most efficient species.

Finally, we have shown that the consideration of simple extensions of the320

well-known chemostat model could reveal properties, that we consider to be

non-intuitive, in terms of performances and stability. This strengthens the con-

tribution of mathematical analysis for a deeper understanding, that could be

applied on similar or closed models, such as the ones used for instance for soil

ecosystems or epidemiology.325
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Appendix

Monod

Haldane

D

s

Figure 11: Graphs of Monod and Haldane functions.

The system of equations for the serial configuration is:

ṡ1 = −µ(s1)x1 + Q1

V1
(Sin − s1)

ẋ1 = µ(s1)x1 − Q1

V1
x1

ṡ2 = −µ(s2)x2 + Q2

V2
(s1 − s2)

ẋ2 = µ(s2)x2 + Q2

V2
(x1 − x2)

(13)

with sout = s2.

435

The system of equations for the parallel configuration is:

ṡ1 = −µ(s1)x1 + Q1

V1
(Sin − s1) + d

V1
(s2 − s1)

ẋ1 = µ(s1)x1 − Q1

V1
x1 + d

V1
(x2 − x1)

ṡ2 = −µ(s2)x2 + Q2

V2
(Sin − s2) + d

V1
(s1 − s2)

ẋ2 = µ(s2)x2 − Q2

V2
x2 + d

V1
(x1 − x2)

(14)

with sout = Q1s1+Q2s2
Q1+Q2

.
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The system of equations for the serial configuration with two species is:

ṡ1 = −µa(s1)xa,1 − µb(s1)xb,1 + Q1

V1
(Sin − s1)

ẋa,1 = µa(s1)xa,1 − Q1

V1
xa,1

ẋb,1 = µb(s1)xb,1 − Q1

V1
xb,1

ṡ2 = −µa(s2)xa,2 − µb(s2)xb,2 + Q2

V2
(s1 − s2)

ẋa,2 = µa(s2)xa,2 + Q2

V2
(xa,1 − xa,2)

ẋb,2 = µb(s2)xb,2 + Q2

V2
(xb,1 − xb,2)

(15)

with sout = s2.440

The system of equations for the parallel configuration (with no diffusion) is:

ṡ1 = −µa(s1)xa,1 − µb(s1)xb,1 + Q1

V1
(Sin − s1)

ẋa,1 = µa(s1)xa,1 − Q1

V1
xa,1

ẋb,1 = µb(s1)xb,1 − Q1

V1
xb,1

ṡ2 = −µa(s2)xa,2 − µb(s2)xb,2 + Q2

V2
(Sin − s2)

ẋa,2 = µa(s2)xa,2 − Q2

V2
xa,2

ẋb,2 = µb(s2)xb,2 − Q2

V2
xb,2

(16)

with sout = Q1s1+Q2s2
Q1+Q2

.

The system of equations for the buffered chemostat is:445

ṡ1 = −µ(s1)x1 + Q1Sin+Q2s2−Qs1
V1

ẋ1 = µ(s1)x1 + Q2x2−Qx1

V1

ṡ2 = −µ(s2)x2 + Q2

V2
(Sin − s2)

ẋ2 = µ(s2)x2 − Q2

V2
x2

(17)

with sout = s1.
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