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Abstract: The noise maps that are currently proposed as

part of the EU Directive are based on the calculation of

the Lday, Levening and Lnight. These levels are calculated

from emission and propagation models that are expensive

in time. These noise maps are criticized for being distant

from the perception of city users. Thus, calculation mod-

els of sound quality have been proposed, for being closer

to city users’ perception. They are either based on percep-

tual variables, or on acoustic measurements, or on geo-

referenced data, the latter being often already integrated

into the Geographic Information Systems of most French

metropolises. Considering 89 Parisian situations, this ar-

ticle proposes to compare the sound quality really per-

ceived, with those frommodels using geo-referenced data.

It also looks at the modeling of perceptual variables that

influence the sound quality, such as perceived loudness,

the perceived time ratio of traffic, voices and birds. To do

this, such geo-referenced data as road traffic, the presence

of gardens, food shops, restaurants, bars, schools, mar-

kets, are transformed into core densities. Being quick and

easy to calculate, these densities predict effectively sound

quality in the urban public space. Visualization of urban

soundscape maps are proposed in this paper.

Keywords: soundqualitymap; kernel density; soundscape

modelling

1 Introduction
The current maps on traffic noise in urban areas [1] are

based on the DENL indicator (weighted average of the Day-
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Evening-Night sound Levels). Yet, this indicator, which is

supposed to characterize the noise exposure of popula-

tions affected by road traffic, is poorly understood by city

users for being distant from their felt experience. More-

over, the dB scale is difficult to understand at first. Thus,

calculation models of soundscape descriptors, that are

closer to the perception of users, have been proposed by

soundscape researchers in the recent decade (for a re-

view, see the paper of Aletta and his colleagues [2]). In

their common approach, the soundscape has been defined

as the “acoustic environment as perceived or experiences

and/or understood by a person or people in context” [3].

In the context of soundscape studies, the overall loudness

is not the only perceptual dimension which characterizes

the pleasantness of a sonic environment. The evaluation

of identified sources is important too [4]. Three different

types of sounds (natural, humanand technological)which

are common to most previously proposed taxonomies [5–

8] were evaluated in this study. Generally, the identifica-

tion of the trafficnegatively influences the perceived pleas-

antness, whereas the identification of the natural sounds

positively influences it [10, 11]. Dubois [12] andNilsson and

Berglund [10] found a neutral impact of human sounds

on the soundscape quality. For natural sounds, it seems

that bird songs have a positive influencewhatever the con-

text but water sounds with temporal variability may have

a positive influence whereas water sounds with high loud-

ness and low temporal variability may have a negative

influence on pleasantness [13–16]. In that frame, several

researches studied the link between soundscape quality

and relevant perceptual dimensions with regression mod-

els [17–21]. Among these studies, the Cart_ASUR project

(Cartographic representation of urban sound quality) pro-

posed an indicator of sound quality (pleasantness of the

urban sound environment) that is constructed on percep-

tual variables and which takes into account not only the

overall perceived loudness, but also the various sound

sources composing the soundscape (for example birds or

voices [22]). A global sound quality indicator, modelled

from 3409 points of perceptual data collected through the

use of mobile phones [23] was thus proposed on a scale

from 1 (unpleasant) to 11 (pleasant) with a linear regres-
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sion model (R1):

Pleasantness = 8.11 − 0.38 · (Overall Loudness) (1)

+ 0.20 · (Time Ratio of Voices)

+ 0.15 · (Time Ratio of Birds)

− 0.14 · (Time Ratio of Traffic)

In this model, the sound “Pleasantness” concerns an

outdoor urban location, where:

– the “Overall Loudness” corresponds to theperceived

loudness of the situation, evaluated by a listener on

an 11-point scale “Quiet (1) – Noisy (11)”

– the “Time Ratio of Voices” (respectively the “Time

Ratio of Birds” and the “Time Ratio of Traffic”) cor-

responds to the perceived time ratio of voice pres-

ence (respectively of bird song presence and of traf-

fic noise), evaluated on an 11-point scale “Rarely

heard (1) – Continuously heard (11)”.

In the Cart_ASUR project, this indicator allowed to

explain 34% of the individual variance of participants

(correlation of 0.58 between the 3409 individual real

sound pleasantness and the pleasantness predicted by the

model). This correlation reached a value of 0.89 if the av-

erage values of the sound pleasantness for each of the 204

urban assessed situations were compared with the pro-

posed model values, which were constructed from the av-

erages of the influential perceptual variables. Axelsson et
al. [17] showed that the pleasantness of sound environ-

ments ranked on a pleasantnessmatching scale can be ex-

plained with an adjusted variance of 0.55 by the loudness

and by the identification of technological, human and nat-

ural dominant sounds.

It is therefore interesting to represent this sound qual-

ity indicator (pleasantness of the acoustic environment)

through sound quality maps and make them available to

city users. Liu et al. [24, 25] proposedmaps of urban sound-

scape as well as Hong and Jeon [26, 27] or Aletta and

Jang [28], with simple visualization of the perceptual col-

lected data [26], with global and localmodelling of percep-

tual data [27], or with Kriging interpolation method [28].

For all of these studies, the maps are built on perceptual

variables collected during soundwalks. Because they are

not built on predictive soundscapemodels, they cannot be

applied to the entire city.

In contrast, this paper focuses on predictive mod-

els. It proposes predictive soundscape maps built on geo-

referenced data. There exist emission and propagation

models that allow predicting noise levels from road traf-

fic [29], but the same is not true regarding the propagation

of human or natural sounds. Furthermore, the use of these

models is very time consuming in terms of calculation. So,

the decision was made to test soundscape predictive mod-

els directly throughgeo-referenceddata already integrated

into the GIS of most metropolises, without any physical

model. To do so, the pleasantness dependent variable and

the independent perceptual variables (overall loudness,

and the three time ratios for traffic, voices andbirds)which

were collected in the Cart_ASUR project during the day pe-

riod of the week days were used in this study (70 Parisian

situations in the 13

th

and 14

th

districts). To increase the va-

lidity of the models, a new campaign was carried out on

19 new situations in the same districts during the GRAFIC

project (Cartographic representation of urban sound qual-

ity for locations and for paths), collecting the samepercep-

tual data than the Cart_ASURproject. For this study, a total

of 89 urban situations were evaluated (Figure 1) by about

20 persons for each location.

In this paper, these perceptual data are modelled with

the geo-referenced data in order to be predicted wher-

ever the locations in the public space are. The final aim

of this study is then to propose predictive sound quality

maps that can be built by any city which has these geo-

referenced data already collected in its GIS. First of all, in

section 2, the kernel density method which is used to dis-

tribute georeferenced data on eachmesh of themap is pre-

sented, and the kernel density calculation is applied for

traffic, garden and voice densities. In section 3 predictive

regressions which explain the perceptual variables (over-

all loudness, and the three time ratios for traffic, voices

and birds) with the densities calculated in section 2 are

then proposed. In this section, the predictive models of

the overall loudness and of the perceived time presence

of traffic built on densities are compared with the predic-

tive models built on the Lday indicator simulated with the

classical physical model [29]. The section 4 is dedicated to

the prediction of the sound pleasantness. The first model

is based on perceptual variables, the second one is based

ondensities, and the last one is based on the classical Lday

indicator (Equivalent sound level calculated in dB(A) for a

continuous traffic between 6AM till 6PM). Finally, in sec-

tion 5 the predictive models based on densities are used to

propose soundscapemapswhich should allowbetter com-

munication with city users.

2 Calculation of the kernel density
The aim of this project is to offer at any point in the city

a value of sound pleasantness. This value can be mod-

elled by four perceptual variables (see Eq. (1)) that should
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Figure 1: Locations of the evaluated situations. The red dots correspond to the 19 locations assessed in March 2015. The green dots corre-
spond to the 29 locations evaluated at different moments of the day (35 different situations) between September 2013 and February 2014
(winter period), and correspond also to the same 35 situations assessed between March 2014 and September 2014 (summer period).

be predicted at any point on the map. In this work, it is

proposed to estimate these variables thanks to the use of

various geographic layers integrated into the GIS. Yet the

geographic data are often vector, punctual or linear ones.

In order to be able to anticipate variable values at every

point in the city, these vector data have to be transformed

into data on each mesh of the map (called “raster”). To do

so, and throughout the rest of this work, the kernel density

tool will be used [30]. The goal here is to distribute the in-

fluence of a punctual data (for example the number of ve-

hicles per hour at a point on a street) on a neighboring area

which value will decrease according to the distance. There

are different kernel functions in literature for the distribu-

tion of a punctual data such as Gaussian, quartic, uniform

or triangular functions [31]. In this paper, the QGIS soft-

ware which proposes Gaussian and quartic functions only

was used for calculations and visualizations. As a first ap-

proximation, the simplest fixed Gaussian kernel function

has been chosen because it is proposed inmost of the open

source GIS which can be used by any city.

The value is cancelled beyond the smoothing window

(or the search radius R). For more than one point, the val-

ues of density are simply the sum of the individual den-

sity for each point. Then, these values have no absolute

meaning, but only a relative one, because they depend on

several parameters, such as the radius parameter and the

distance between points. Figure 2 shows an example of

the creation of a density map for an urban element with a

value of 10, with a search radius of 3 meshes. In this study

the size of the grid which corresponds to the size of the

mesh is 5m× 5m. The open sourceQGIS softwarewas used

for calculations and visualizations.

2.1 Traflc density

The purpose is to transform the traffic data used in tradi-

tional cartography (number of vehicles perhourduring the

day) into punctual data. The process is based on the cre-

ation of points on traffic lines by defining a constant dis-

tance between eachpoint. The value of the pointswas cho-

sen as the number of vehicles per hour on the section. The

equidistance as well as the radius have been optimized by

calculating, for the 89 points, the correlation between the
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Figure 2: Example of a kernel density, calculated with the Gaussian distribution of the value 10 on the surrounding meshes (search radius, R
= 3 meshes), (a) for a single point, (b) for two points.

average of the perceived traffic time ratio, and the traffic

density calculated by the kernel density (Table 1).

A large equidistance reduces the correlation as well as

a large radius. The equidistance of 10 m for traffic density

means that a value of traffic is taken into account in the

calculation every twomeshes. The optimum radius of 75m

appears as a good compromise. Actually, this distance per-

mits to take into account thepropagationdistance of traffic

noise, while avoiding themasking phenomenonwhich in-

evitably happens when sound meets a building, often be-

yond the 75 m compared to the position of the source.

2.2 Density of gardens

The density map of gardens was created in order to rep-

resent the more or less significant presence of birds (vari-

able D_gardens) at any point of the map. It is noteworthy

that these birds are better perceived in the center of the gar-

den than at its periphery [32]. The data layer "gardens" of

the IGN’s¹ BD TOPO

r
French database was used. This is a

polygonal vectorial layer. A particular transformation was

proposed to show that the density is low on the perime-

ter, increasingly significant inside the garden, but with a

degree of stability when getting closer to its center.

Figure 3 shows three parameters. When we progress

inward from the garden:

1 http://professionnels.ign.fr/sites/default/files/DC_BDTOPO_2-

1.pdf

Figure 3: Construction of the punctual values of gardens, from the
outline of the gardens.

• The distances of successive buffers (A1, A2, etc.) are

becoming greater;

• The equidistance between the points on the buffer

lines (B1, B2, etc.) is becoming longer;

• The value of each core, according to its position in

the garden (V1, V2, etc.), is increasingly greater.

In the same way as traffic density, the optimization

of garden density parameters is done by correlating these

densities with themean perceived presence of birds on the
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Table 1: Correlations between perceived traflc time ratio and traflc densities. The nomenclature of density maps (Cd) is as follow: Cd
(equidistance between points in meters) _ (search radius in meters). The equidistance and the search radius correspond to several num-
bers of meshes. The data for a search radius of 75 m are in bold.

Equidistance→
↓ Search radius

10 meshes 7 meshes 5 meshes 3 meshes 2 meshes

40 meshes Cd 10_200
0.611

20 meshes Cd 50_100 Cd 35_100 Cd 25_100 Cd 15_100 Cd 10_100
0,754 0,794 0,790 0,800 0,792

15 meshes Cd 25_75 Cd 15_75 Cd 10_75
0,813 0,827 0,838

10 meshes Cd 25_50 Cd 15_50 Cd 10_50
0,775 0,796 0,800

5 meshes Cd 10_25
0,556

89 perceptually evaluated points. The search radius is lim-

ited to 50 m this time slightly reducing the spatial impact

of the garden regarding the sound perception, compared

to the search radius of 75 m used for traffic. After testing

several values, the values used to offer the best correlation

(r = 0.76) with the perceptual variables are presented in

Table 2.

Table 2: Construction parameters of points for the calculation of
garden density (* buffer distance, ** edge of garden).

Rings (A1, A2. . . ) * 0m** 10m 30m 60m
Equidistance (B1, B2. . . ) 15m 20m 25m 30m

Value (V1, V2. . . ) 2 5 10 20

2.3 Density of voices

This map is created from several sources of information,

seeking all urban activities that could generate voices in

the urban space. Five elements were taken into account:

• Food shops (bakeries, fishmongers, etc.), (Base BD

COM 2001 - APUR)

• Bars, cafés and restaurants (Base BD COM 2001 -

APUR)

• Schools and sports areas (Base BD TOPO

r
)

• Markets (linear data constructed from the website

data of the municipality of Paris)

• Play areas (BD Base TOPO

r
)

2.3.1 Food Shops and restaurants

These data have a point layout. No transformation is there-

fore necessary, but the localization is done using the

geocodes based on the official address of the shop. To

avoid some addressing problems, a “cleaning” tool has

been used to only leave one point on businesses accumu-

lation places.

2.3.2 Schools and sports areas

Information on schools comes from two layers: the sur-

face of schools and that of buildings. There is no informa-

tion about the localization of schools exits (as well as for

sports areas), but it is possible to locate a recreation area

(or the sports area) where voices are mainly present. To

locate the recreation area, we can directly remove all the

building surfaces from the school ones. We consider that

inside the buildings the voice level is lowas the pupils take

their classes. Then, on this free surface, an interior buffer

can be created with a distance of 4 meters, thus indicating

that an area of less than 16 square meters (4m × 4m) is not

likely to be a place of recreation. Finally, on the edges of

these interior surfaces, points are created with an equidis-

tance of 10 meters (Figure 4).

2.3.3 The markets

The layer of markets has been digitized from the informa-

tion provided by the city of Paris. This information details

the existing markets for each district. The digitization is
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done first in linear and then in point form. The equidis-

tance between the points is of 10 meters.

2.3.4 Play areas

The layer “play areas” of the BD TOPO

r
is a point vector

layer. No transformation is required to integrate this data

in the calculation of the density of these areas.

2.3.5 Construction of the density of voice (variable
D_Voice)

Once all the urban elements likely to be noise sources are

transformed into point geometry, they are included in a

same layer to create one voice density map. As a first ap-

proximation, all the points have the same value, and this

value is arbitrarily set at 10. The search radius is 50meters.

3 Modelling of perceptual variables
The perceptual variables that were found to have an influ-

ence on the quality of the sound environment were pre-

sented in the introduction, and there are four: (1) the per-

ceived overall loudness, (2) the time ratio of traffic, (3)

the time ratio of voices, and (4) the time ratio of birds.

These variables have been evaluated by approximately

20 people, between 10AM and 18PM and at 89 situations

(Figure 1). In literature different kind of predictive mod-

els have been chosen to explain perceptive sound qual-

ity. Non-linear predictive models such as Artificial Neu-

ral Networks are sometimes chosen [33, 34], but they are

often considered as “black boxes” and are very difficult

to understand by naïve population. Furthermore Brocolini

showed that non-linear ANN models do not improve the

explained variance in a significant way compared to linear

regression models [35]. So, sometimes linear regressions

are preferred [17, 22, 36]. In this study linear regressions

have been chosen. All the linear regressions were calcu-

lated on the average of evaluations and optimized using a

step-by-step top-down process. Only significant (p<0.05)

and uncorrelated (r<0.5) variables are present in the se-

lected models. In order to evaluate the explanatory power

of a model, the adjusted R-squares (R

2

adj.) is calculated.

This is the proportion of the variance explained by the

multiple regression model compared to the total variance

of data. In order to estimate the mean difference between

values predicted by a model and the values actually ob-

served, the root mean square error (RMSE) is calculated.

3.1 Overall loudness

Several regressions were tested to predict the quiet or

noisy character of the urban public space (Table 3). The

regression only build on the traffic density R2 can explain

60% of the variance in perceived overall loudness (Fig-

ure 5a). Yet, the perceived loudness is not only due to traf-

fic [37]. If the variable D_Voices is added to the regression

(regression R3 - Figure 5b), it is significant (p <0.01) and

the variance explained by the model is improved (R

2

=

0.66). Figure 5a reveals the logarithmic character of the

perception of loudness regarding traffic flow. A new re-

gression was therefore envisaged between perceived loud-

ness and the logarithm of traffic density. This transforma-

tion is problematic for places of urban space that have

a zero traffic density (or a very low one, generally at the

center of a park). For 9 situations in this study, the log-

arithm of the density was replaced either by the small-

est value of the densities of small parks, that is to say

2 (Cd_10_75 corrected = 100 for the regression R5 – Fig-

ure 5d), or by the average of densities in small parks, that

is to say 2.7 (Cd_10_75 corrected = 297 for the regression

R4 – Figure 5c). If this last substitution is chosen, the mid-

dle of a large park could have a higher value of traffic den-

sity (297) than a boundary value. Even if the regression

R4 (Eq. 4 Table 3) has a better adjustment with percep-

tual data than the R5 regression (Eq. 5 Table 3), the corre-

sponding substitution does not seem relevant. So the sub-

stitution with the minimum value has been chosen for the

regression models selected for visualization of final maps

(see §5.2 and §5.3). Moreover the regression R5 is more eas-

ily automated as part of a mapping study. Here, no added

density variable (D_Voices orD_Gardens) improves regres-

sion as none of them is significant.

Presently, the only tool that local communities offer

about noise levels in the cities is the Lday indicator. So,

it is interesting to compare the calculation of the loudness

from the Lday (calculated by the city of Paris and accessi-

ble on the internet)with the R4 or R5models. Interestingly,

the corresponding regression R6 (Figure 6) then explains

a lower part of the variance (56%) despite a much greater

calculation time.

It is important to remain that the perceived loudness

was assessed on a scale from 1 (quiet) to 11 (loud). What-

ever the models, the root mean square errors (RMSE) are

about 1 (Table 3), which means that the precisions of the

loudness models are about 10%.
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Figure 4: Construction of the source points for the presence of children’s voices in schools at recreation times.

(a) (b)

(c) (d)

Figure 5: Relations between perceived and modelled loudness with the different regressions.

Unauthenticated
Download Date | 2/12/17 6:04 PM



Urban soundscape maps modelled with geo-referenced data | 285

Table 3: Adjusted R-squared values, Root mean square errors and Correlations between perceived and modelled loudness for different
linear regressions.

Regressions Models of perceived loudness R2adj. RMSE Correlation between
perceived and modelled

loudness
R2 4.93 + 2.7x10−4 · Cd_10_75 (2) 0,60 1,03 0.78
R3 4.52 + 2.9x10−4 · Cd_10_75 + 0.016 · D_Voice (3) 0.66 0.96 0.82
R4 −1.98 + 2.42 · log (Cd_10_75 corrected with 2.7) (4) 0.67 0.95 0.82
R5 −0.21 + 1.93 · log (Cd_10_75 corrected with 2) (5) 0.61 1.02 0.79
R6 −6.94 + 0.21 · Lday (6) 0.56 1.09 0.75

Table 4: Correlations between perceived and modelled traflc time ratio for different linear regressions.

Regressions Models of perceived loudness R2adj. RMSE Correlation between
perceived and modelled

traflc time ratio
R7 3.93 + 4.3x10−4 · Cd_10_75 (7) 0,70 1,30 0.84
R8 −6.09 + 3.55 · log (Cd_10_75 corrected 2.7) (8) 0.68 1.33 0.82
R9 −2.76 + 2.60 · log (Cd_10_75 corrected 2) (9) 0.53 1.62 0.73
R10 −13.86 + 0.32 * Lday (10) 0.60 1.49 0.78

Figure 6: Relation between perceived and modelled loudness with
the Lday.

3.2 Traflc time ratio

The traffic time ratio is close in concept to traffic density. It

is therefore logical to seek a link between this perceptive

variable and the Cd_10_75 traffic density which allowed

the optimization of the kernel density (see §2.1).

The linear density traffic model explains 70% of the

variance, with an average error of 1.30 compared with the

actually perceived traffic time ratio (Table 4). If we try to

model this time by the logarithm of traffic density (cor-

rected with the smallest value 2), the model then only ex-

plains 53% of the variance, with an average difference of

1.62, which is not as good as the linear model.

In the same way as in the previous paragraph, it is in-

teresting to seek a relationship between the perceived traf-

fic time ratio and the Lday, as both should be correlated.

The latter model explains 60% of the variance (r = 0.78),

with an average error of 1.49. The Lday is slightly better cor-

related to the perceived traffic time ratio (r = 0.78) than to

the perceived loudness (r = 0.75). This is not surprising

because the Lay does not include noises other than road

traffic.

3.3 Time ratio of birds

The best regression predicting the time ratio of birds with

significant geo-referenced data (p<0.05) and independent

data (correlations <0.5) is as follows:

Time Ratio of Birds = 5.28 + 0.07 · D_Gardens (11)

− 0.01 · D_Voices

− 0.92 · log(Cd_10_75_cor_2)
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Figure 7: Relation between the perceived time ratio of birds and this
time ratio modelled by the Eq. (11).

This regression can explain 67% of the variance with

an average error of 1.02. It shows that birds are mainly

present in the gardens. These birds can be heard only

when traffic density is low, as well as the voice density

characterizing the human presence in the place. On the 89

points, the time ratio of birds is usually very low (TR_Birds

< 4 for 83% of the evaluated situations), except for some

special locations that have been evaluated in Parisian gar-

dens (Figure 7).

3.4 Time ratio of voices

The best regression found tomodel the time ratio of voices

is as follows:

Time Ratio of Voices = 4.3 + 0.05 · D_Voices (12)

+ 0.04 · D_Gardens

This equation reflects the fact that voices are not only

present around shops, restaurant and such places (§2.3),

but are also present in the gardens. This regression only

explains 31% of the variance, with an average error of 1.52

on a scale from 1 to 11. On Figure 8, it can be seen that

the perceived time ratio of voices varies from 2 to 10, but

the predicted values are limited to the range of 4 to 8. Fur-

ther researches are needed to develop potential improve-

ments on the prediction of voices, by weighting the differ-

ent geo-referenced layers which allowed constructing the

voice density variable, by adding such elements as subway

Figure 8: Relation between the perceived time ratio of voices and
this time ratio modelled by the Eq. (12).

exits, or by optimizing themany parameters that allow the

calculation of kernel densities.

4 Modelling of urban sound quality

4.1 From perceptual variables

We have seen in the introduction (Eq. 1) that pleasantness

could be predicted from 4 independent perceptual vari-

ables. This equation was established from 3409 individ-

ual perceptual measures through the Cart_ASUR project

on 204 different places at specific times (day, evening,

night, weekend, etc.), but in the day and during the week,

only 70 situations (plus 19 situations evaluated in GRAFIC

project), on average of 20measures, could be crossed with

the geo-referenced data. Of these 89 situations, the “Traf-

fic” variable is strongly correlated with the “Loudness”

variable (r = 0.77). One of these two variables then had to

be excluded from our model, in order to find the optimal

variance of the perceptual referencemodel. It was decided

to use the “Loudness” variable because it is better corre-

lated to the pleasantness (r = 0.85) than to the traffic time

ratio (r = 0.81). Equation 13 provides the optimal percep-

tual regression for the 89 studied situations.

Sound pleasantness = 8.71 − 0.74 · (Overall (13)

Loudness) + 0.33 · (Time Ratio of Voices)

+ 0.18 · (Time Ratio of Birds)
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This linear regression explains 90% of the adjusted

variance (correlation r = 0.94 between the predicted qual-

ity of the acoustic environment and the really perceived

quality) with an average error from the actual value of

pleasantness RMSE = 0.51 (on a range scale from 1 to 11).

4.2 From the density variables

Fromall the density variables thatwe have at our disposal,

we can construct the following linear regressions:

Sound pleasantness = 12.7 − 2.00 (14)

· log(Cd_10_75corrected2.7)

+ 0.03 · D_Gardens + 0.01 · D_Voices.

Sound pleasantness = 11.3 − 1.62 (15)

· log(Cd_10_75corrected2)

+ 0.02 · D_Gardens + 0.01 · D_Voices.

These regressions are actually coherent with the per-

ceptive regression considered in the previous paragraph.

The first model explains 68% of the adjusted variance of

pleasantness (respectively 62% for the second one), with

an average error of 0.89 (respectively 0.97), and a correla-

tion between the perceived and modelled pleasantness of

0.83 (respectively 0.79). We notice that a decision on the

correction of the logarithm for very low traffic density val-

ues (for high pleasantness) has a significant influence on

the degree of variance explained by the models.

4.3 From the Lday

Again, it is tempting to test the intersection of sound qual-

ity with the Lday, the only indicator currently available to

citizens to appraise the sound quality of a place. The re-

gression (Eq. (16)) explains 65% of the variance, with an

average error of 0.93. It therefore corresponds to a correla-

tion of 0.80 between the two variables.

Sound pleasantness = 19.9 − 0.22 · Lday (16)

The Lday is surprisingly better correlated to the sound

quality than to the perceived loudness, or even to the traf-

fic time ratio. It is however less correlated to sound qual-

ity than a linear combination of core densities, which is

much faster to be calculated. On Figure 10, it can be ob-

served that the sound quality modelled linearly by the

Lday overestimates the perceived pleasantness for the ex-

treme rankings corresponding to the quiet areas and to the

noisy boulevards.

(a)

(b)

Figure 9: Relation between the perceived sound quality and the
sound quality modelled by the Eq. 14 (9a) and Eq. 15 (9b).

5 Soundscape mapping
Thanks to the geo-referenced data, it is possible to easily

predict the loudness and other influent variables aswell as

the sound pleasantness of an urban situation. It is there-

fore possible to propose loudness maps or sound quality

maps, at any point of the urban area, and even to predict
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the importance of the perceptual variables that allowed

building this quality. In the following section, all themod-

els will use the variable Cd_10_75 with the correction of

very low values of traffic fixed to 2. Even if the models are

a little bit less good thanmodels with a 2.7 correction, they

are more relevant for large parks. These maps can be pro-

Figure 10: Relationship between perceived sound quality and this
quality modelled by Eq. 16.

Figure 11: Proposed color scale in [38] by B. Weninger.

Figure 12: Color table presented to participants on Internet.

posed by any city which has geo-referenced data from traf-

fic, gardens and shops.

5.1 Choice of colors for mapping

According to recent works on color for sound level cartog-

raphy, the standard color scale used for European noise

maps is not suitable [38] and a new scheme was proposed

for digital uses (Figure 11).

In this study, the final aim is to propose both sound-

scape pleasantness and loudnessmap. In urban context, if

high levels of noise are always correlated with a high level

of annoyance or unpleasantness, it is not the case for lower

levels of noise. For example, high levels can be present in

parks due to the presence of human voices and activities.

Nevertheless this kind of place may be associated to high

soundscape quality.

In order to differentiate pleasantness and loudness

variables, a new color scheme has to be proposed. A quick

online survey has been done on Internet in December 2015

and 150 persons participated. They had to select 3 colors

from a color table (see Figure 12), which ones are appro-

priate, according them, to describe a pleasant soundscape

and then, a silent soundscape. The results are presented

on Figure 13.

The final color is defined as follow: (1) the weighted

barycentric color coordinates r, g, b of the full colorset is

calculated (see Eq. 17); (2) the furthest color of the barycen-

tric coordinates, calculated with Euclidien distance, is

eliminated of the colorset; (3) new barycentric coordinates

are calculated; (4) the final color correspond to the last

color present in the colorset.

Barycentric Color(rb , gb , bb)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rb =
n∑︀
i=1

∝i ri
n∑︀
i=1

∝i

gb =
n∑︀
i=1

∝igi
n∑︀
i=1

∝i

bb =
n∑︀
i=1

∝ibi
n∑︀
i=1

∝i

(17)

with r, g, b the red, green and blue coordinates of each

color and α the number of times the participants selected

a color.

Interestingly, the final color calculated for silent

soundscape is very near of the color selected by B.

Weninger. However, it can also be observed that a lot of

participants chose white, or very light colors. This suggest

that the absence of polluant (noise in our case) could also

be represented by the absence of colorization on the map.
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Figure 13: Results of the Internet color study for a pleasant sound-
scape and for a silent soundscape.

Figure 14: Final color scales for the loudness and the pleasantness
of the sound environment.

By contrast, a pleasant soundscape is linked to intense

colors, which is in line with the bipolar type of the vari-

able “pleasant” (pleasant/unpleasant). The final chosen

scheme scales were obtained from a mix between our re-

sults and those presented in [38] (Figure 14).

5.2 Overall loudness mapping

On Figure 15, a map of overall loudness for the 13

th

district

of Paris is proposed. It should, however, bemade clear that

the modelled variables are only valid in an “urban open

space”, because the geo-referenced model does not take

into account the masking phenomena caused by build-

ings. These areas most often correspond to public spaces,

closed spaces being mostly private spaces. Thus the maps

predicted by geo-referenced data should not include the

interior courtyard of buildings. A 3m buffer is thus applied

around each building to close very small spaces, and then

the visualization of these closed spaces is deleted. If Fig-

ure 15 shows themap calculated from the predictedmodel

of the overall loudness (Eq. 5) at anymesh except those un-

der buildings only, Figure 16 shows the same map where

closed spaces are also not visualized. In Figures 15 and 16,

the points represent the mean values of the actually per-

ceived loudness by participants.

First of all the range of the modeled loudness corre-

sponds quite well to the actual perceived loudness, espe-

cially along the boulevards. Itmay be noted that low inten-

sities are generally overestimated by the selected model

(in small streets or in garden). This is probably due to the

masking phenomenon which is not taken into account by

this model.

5.3 Urban sound quality mapping

The final aim of this study is to predict and propose ur-

ban sound quality maps that are easily understand by city

users. Figure 17 presents the sound quality of the district of

Paris which has been perceptively evaluated. It can be no-

ticed that the unpleasantness of some boulevards is some-

times underestimated by the model. For example, the two

red dots on the upper west side of the map (Figure 18)

correspond to a location where a market takes place on

the Tuesdays between 11AM and 1PM. These two locations

have been assessed during a Monday and a Tuesday in the

frame of the GRAFIC project without the presence of this

market, and the ranking of the sound pleasantness is lim-

ited to 3.7 and 4.1. On the same boulevard, on the right

side, the assessment has been done during the market in

the frame of the Cart_ASUR project, and the human pres-

ence made the ranking increased to 6.3 and 6.4. It is clear

that the identification of voices here has a positive effect

on the sound quality. The model which takes into account

the presence of the market along this boulevard overesti-

mates the sound quality compared to the period when the

market is not there.
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Figure 15:Mapping of loudness modelled on open and closed spaces (Eq. 5).The circles represent the mean values of perceived loudness
evaluated by participants.

Figure 16:Mapping of loudness represented only on open spaces (Eq. 5).The circles represent the mean values of perceived loudness evalu-
ated by participants.

It is also interesting to show in Figure 19 the time pres-

ence of the different sources modelled with the densities

(Eq. 9 for traffic, Eq. 11 for birds and Eq. 12 for voices).

The representation should specify the period of the eval-

uation (week or week-end, day, evening or night). The but-

ton "details" can be used to give the values (if needed by

the reader) of the influent variables such as the loudness,

and the perceived time of source presence.

6 Discussion and conclusion
The aimof this study is to propose predictive soundquality

maps. Thefirst assumption is that theurban soundquality,

which is perceptivelymeasured by the soundpleasantness

of an urban situation, is based on relevant perceptual vari-

ables. Theperceptual variables in this studywere collected

through field studies in 89 Parisian situations in the 13

th
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Figure 17:Mapping of sound quality modelled on public space (Eq. 15).The circles represent the mean values of the pleasantness evaluated
by participants.

Figure 18:Modelled sound quality around the Boulevard Blanqui (on the top of the map) during a market day. The circles represent the
mean values of the assessed pleasantness. The red dots on the boulevard correspond to the mean assessments carried out on a day with-
out the presence of the market. The light green dots on the same boulevard correspond to the mean assessments during a market day.

and 14

th

districts during the day period and on week days.

The global loudness is correlated to the perceivedpresence

of traffic, and has a negative impact of the sound pleasant-

ness. On the contrary, bird songs have a positive impact.

This is perfectly in linewith literature (see the introduction

section). Although an evaluation about the water sounds

was asked to the participants, the final perceptual regres-

sions for sound quality (Eq. 1 for the Cart_ASUR project,
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Figure 19: Final representation of the sound quality with visualization of sound source presence and visualization of the period of the se-
lected map (buttons in black).

and Eq. 13 for this study) are not based on this particular

sound source. This is likely because there were almost no

fountain sound in the sonic environment of the selected

Parisian situations during the experiment. The presence of

voices has a positive impactwhich is not always the case in

literature. The positive effect of voices is due to the pleas-

antness of streets with bars and restaurants. This corre-

sponds to the point of view of passerby’s for who liveliness

is appreciated. It does not correspond to the point of view

of the inhabitants who live along these streets and suffer

about noise during the evening or during the night. So the

proposed sound quality model in this study cannot be ex-

trapolated to any kind of urban context without care.

This study has shown that it is possible to anticipate

sound pleasantness in all places of a city based on geo-

referenced data already available in large cities. The pro-

posed method is very fast to compute, and a full map of a

city as Paris can be easily computed in some minutes on a

standard computer. This prediction is optimized for sound

perception in public space only.

It is therefore possible to provide the population with

soundscape maps, as well as maps showing the presence

of traffic, birds and voices. These maps are close to the felt

experience and allow the reader to better apprehend the

sound environment in the places. Also the chosen scale is

easier to understand to non-expert than dB scale. These

maps could be proposed as a complement to the more ex-

pert and technical view of the standardized noise traffic

maps.

This work must still be pursued because the models

constructed on geo-referenced variables currently predict

68% of the variance of the perceived sound quality, while

the perceptual model explains 88%. Progress should be

made by optimizing models.

A first optimization could concern the choice of the

kernel function and its parameters (point and radius val-

ues). In that paper, a fixed Gaussion kernel function has

been chosen for all the data as it has been already chosen

for previous study about soundscape [27] but this distri-

bution is most adapted for regular distribution of data in
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space. If it seems well adapted for traffic density, it should

have been different for example for shops and schools. It

should have been possible to choose an adaptive radius

instead of a fixed bandwidth, defining the number of data

to include within a circle centered on each point, and tak-

ing the radius of this circle as the bandwidth around that

point. A different choice of parameters for the kernel func-

tion or a different choice of GIS data could optimize the

voice prediction model, as this one is poorly efficient.

A second optimization could concern the substitution

of the null values of traffic densities in middle of parks,

with low traffic density values. For traffic densities inside

parks, the search radius could be increased or adapted in

order to smooth thedecreaseof this density fromboundary

values to central low values.

This work should also be continued to provide maps

that are adapted to evening periods, and why not to night-

time. Finally, a proper work on interactive web develop-

ment should be done so that the reader enjoys reading

these new maps.
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