
HAL Id: hal-01465421
https://hal.science/hal-01465421

Submitted on 12 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Multi-Scale Supervoxel Matching using
Random Forests for Automatic Semi-Dense Abdominal

Image Registration
Pierre-Henri Conze, Florian Tilquin, Vincent Noblet, François Rousseau,

Fabrice Heitz, Patrick Pessaux

To cite this version:
Pierre-Henri Conze, Florian Tilquin, Vincent Noblet, François Rousseau, Fabrice Heitz, et al.. Hierar-
chical Multi-Scale Supervoxel Matching using Random Forests for Automatic Semi-Dense Abdominal
Image Registration. ISBI 2017 : IEEE 14th International Symphosium on Biomedical Imaging, Apr
2017, Melbourne, Australia. �10.1109/ISBI.2017.7950567�. �hal-01465421�

https://hal.science/hal-01465421
https://hal.archives-ouvertes.fr


HIERARCHICAL MULTI-SCALE SUPERVOXEL MATCHING USING RANDOM FORESTS
FOR AUTOMATIC SEMI-DENSE ABDOMINAL IMAGE REGISTRATION

P.-H. Conze?,�, F. Tilquin?, V. Noblet?, F. Rousseau�, F. Heitz? and P. PessauxM
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ABSTRACT
This paper addresses the estimation of pairwise supervoxel
correspondences toward automatic semi-dense medical image
registration. Supervoxel matching is performed through ran-
dom forests (RF) with supervoxel indexes as label entities to
predict matching areas in another target image. Ensuring ac-
curate supervoxel boundary adherence requires a fine super-
voxel decomposition which highly increases learning com-
plexity. To alleviate this issue, we extend RF based super-
voxel matching from single to multi-scale using a recursive
hierarchical supervoxel representation. Output RF matching
probabilities obtained for the last scale are gathered with an-
cestor matching probabilities which acts as a coarse-to-fine
matching guidance. The effectiveness of our method is high-
lighted for semi-dense abdominal image registration relying
on liver label propagation and consistency assessment.

Index Terms— semi-dense image registration, super-
voxel matching, random forests, hierarchical multi-scale

1. INTRODUCTION

Estimating an accurate matching between consistent entities
such as voxels, supervoxels or patches is a fundamental task
in image processing with applications to medical image anal-
ysis. In particular, non-rigid image registration is required
for a wide range of medical contexts including organ motion
compensation, longitudinal tumor follow-up, pre- and post-
operative image matching or cohort analysis [1].

These applications require an initial alignment used as an
initialization toward a more complex deformation model esti-
mation. Such complex geometric transformations can be then
derived either from physical models (fluid flow or diffusion
models, flow of diffeomorphisms...) or interpolation theory
(radial basis functions, free-form deformations...) [2]. For
accurate initialization matching, spatial prior is usually con-
sidered based on anatomy recognition or landmark matching
[3]. It requires expert annotations which are time-consuming
and prone to misinterpretation and human error.

This work received the financial support of BPI France, www.
bpifrance.fr

To avoid this interaction, random forests (RF) [4] have
been recently proposed to establish supervoxel correspon-
dences in a unsupervised fashion [5]. Similarly to [6] which
encodes a single labeled image as a forest for multi-atlas label
propagation, [5] describes a single source image as a collec-
tion of supervoxels whose indexes are used via RF to predict
matching areas in another target image, leading to semi-dense
correspondences. For the purpose of supervoxel matching,
the selection of the supervoxel resolution is key to ensure
accurate boundary adherence of supervoxels. The underlying
issue is how to find a good trade-off between large supervox-
els which may overlap different tissue types or organs and
small supervoxels without enough discriminative power [7],
leading to highly complex learning. Merging information
from multiple supervoxel layers may achieve a more flexible
representation [8] but does not carry a hierarchical scheme
allowing coarse-to-fine matching guidance.

In this perspective, we extend automatic semi-dense
medical image registration through RF from single [5] to
multi-scale supervoxel matching. Relying on a hierarchical
multi-scale supervoxel representation successfully applied to
multi-class tissue classification [9, 7], our framework implic-
itly constrains the matching search space in a coarse-to-fine
strategy. We demonstrate its effectiveness in the field of CT
abdominal image registration which remains an open issue
due to wide organ size, shape and appearance heterogeneity.

2. SUPERVOXEL MATCHING USING RF

Automatic semi-dense image registration is considered be-
tween two 3D abdominal images If and Is where each im-
age Ip : Ωp ⊂ N3 → N associates a greyscale value Ip(x)
to each voxel vp located at xp ∈ Ωp with p ∈ {f, s}. To-
ward this goal, we aim at establishing correspondences be-
tween supervoxels over-segmenting If and Is following [5].
Let F = {fi}i∈{1,...,|F|} and S = {sj}j∈{1,...,|S|} be respec-
tively the sef of |F| and |S| connected supervoxels partition-
ing If and Is. The supervoxel decomposition is performed
using a 3D extension of the Simple Linear Iterative Clustering
(SLIC) superpixel algorithm [10] which aggregates neighbor-
ing voxels vp based on spatial and intensity proximity criteria.
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source If single-scale SLIC vx-wise training random forest (RF)

source Is single-scale SLIC vx-wise prediction majority voting

Fig. 1. Single-scale supervoxel matching [5] between If and
Is using random forest [4] applied with SLIC [10] supervoxel
indexes as label entities followed by majority voting.

Semi-dense image registration translates in automatically
learning a mapping function h that maps each supervoxel
sj ∈ S of Is to a given supervoxel fi ∈ F of If [5] such that
∀j ∈ {1, . . . , |S|},∃i ∈ {1, . . . , |F|} | h(sj) = fi.

2.1. Single-scale supervoxel matching

Single-scale supervoxel matching (Fig.1) is carried out via
random forest (RF) [4]. RF builds a voxel/supervoxel index
mapping model aiming at assigning a supervoxel fi ∈ F to
each voxel vs ∈ Ωs. Thus, a training set is built by consider-
ing all voxels vf of Ωf with associated supervoxel index, i.e.
the index of the supervoxel fi they belong to. Once trained,
RF is applied to Is to predict for each vs the index of a su-
pervoxel of F . Majority voting is performed within each su-
pervoxel of S among all voxel-wise predictions to return for
each sj of Is the best match h(sj) among supervoxels of F .

RF consists of T uncorrelated trees made of both internal
nodes splitting data according to binary tests Ψ and leaf nodes
which reach all together a final data partition. At each internal
node, the split sends voxels vp to left and right children nodes.
The associated binary test Ψ focuses on a random subset θ̂(vp)
(p ∈ {f, s}) of visual features θ(vp) assigned to vp (Sect.2.2)
and divides the input voxel set based on the following rule:

Ψ(vp, θ(vp)) =

{
true, if θ̂(vp) > τ
false, otherwise

(1)

where θ̂(vp) is compared to a threshold τ .
Internal node parameters ({τ, θ̂(vp)}) are optimized

via information gain maximization with respect to L =
{vf , c(fi)} combining voxels vf belonging to fi with their
associated supervoxel index c(fi) = i with i ∈ {1, . . . , |F|}.
After optimization, each leaf node lt of the tth tree receives
a partition Llt of L and produces an entire class probability
distribution: plt(c(fi)|L) ∀i ∈ {1, . . . , |F|}.

To predict the corresponding supervoxel index c(fi) of a
given voxel vs∈ Ωs with associated visual features θ(vs) dur-
ing testing, vs is injected into each optimized tree and finally

reaches a leaf node lt per tree following successive split rules
(Eq.1). Let us define p(h(vs) = fn) as the probability that fn
is assigned to voxel vs. For each supervoxel fn ∈ F , we get:

p(h(vs) = fn) =
1

T

T∑
t=1

plt(c(fn)|L)

=
1

T

T∑
t=1

|{vf , c(fl)} ∈ Llt | l = n |
|Llt |

(2)

The final voxel (vs) to supervoxel (fi) mapping is obtained by
maximizing p(h(vs) = fn).

h(vs) = fi = arg max
fn∈F

p(h(vs) = fn) (3)

The last step deals with majority voting among all the
voxels of a given supervoxel sj ∈ S . The most represented
supervoxel index is thus selected as follows:

h(sj) = fi | c(fi) = arg maxhist({c(h(vs)) | vs ∈ sj})
(4)

2.2. Voxel-wise context appearance features

Denoting Īwp (vp) the mean intensity on a local box of size w
centered on vp, context appearance features [6, 3, 5] θ(vp) =
{θm(vp)}m∈{0,...,Ka−1} assigned to voxels vp following are:

θm(vp) = Īwp (vp + ∆r)− b× Īw
′

p (vp + ∆r′) (5)

where ∆{r,r′} ∈ B(0,Φ), Φ is the maximal offset and b ∈
{0, 1}. By randomly generating many different box sizes w
and offsets ∆r, we obtain a large set of Ka features describ-
ing the extended spatial context. {w,w′,∆r,∆

′
r, b} are gen-

erated once and remain similar for each voxel of If and Is.

3. EXTENSION TO A HIERARCHICAL
MULTI-SCALE REPRESENTATION

Using single-scale supervoxel decomposition for semi-dense
registration is prone to errors. Supervoxel resolutions must
be carefully selected since large supervoxels may overlap dif-
ferent tissues or organs contrary to small ones which lead to
computationally intensive learning while being not enough
representative (huge number of classes with few samples) [7].
Manually setting the scale is cumbersome since it requires ex-
haustive trials. Even the best compromise may not provide
optimal results without relying on multi-scale guidance to ac-
curately match consistent anatomies. We now describe how
[5] can be extended in a hierarchical multi-scale fashion.

3.1. Hierarchical multi-scale supervoxel representation

The proposed original extension (Fig.2) is based on a hierar-
chical multi-scale supervoxel representation [9, 7]. For If , it
requires a decomposition of Ωf into a set of K + 1 partitions



source If hierarchical multi-scale SLIC [7] training random forest [4]

source Is hierarchical multi-scale SLIC [7] single-scale pred. [5] proposed prediction

Fig. 2. Proposed extension of automatic semi-dense registration via random forest [4] from single [5] to multi-scale supervoxel
matching based on a hierarchical supervoxel representation [7]. Colors for training and prediction illustrate supervoxel indexes.

Pk
f = {fki } defined at scales k ∈ {0, . . . ,K} where 0 and K

denote resp. coarsest and finest scales. Each partition {Pk
f } is

a collection of connected 3D supervoxels {fki } built at scale
k such that fki ∩ fkj 6=i = ∅ and

⋃
i f

k
i = Ωf . The sequence of

partitions {Pk
f } is encoded in the layers of a multi-resolution

tree Mf = {Mk
f} where the layer Mk

f maps each super-
voxel fki ∈ Pk

f to a set of child supervoxels {fk+1
j } ⊂ Pk+1

f

such that fki =
⋃

j f
k+1
j . This multi-scale decomposition is

similarly applied to Is leading toK+1 partitions Pk
s = {ski }.

This representation is obtained through a recursive coarse-
to-fine process. We consider an initial partition P0

f (resp. P0
s )

of only one supervoxel. This supervoxel is then split into Ks

children supervoxels {f1j } ⊂ P1
f ({s1j} ⊂ P1

s ) using SLIC
applied on the region formed by its voxels1. Once built, each
f1j (s1j ) is split intoKs children and this procedure is repeated
iteratively down to the Kth layer ofMf (Ms) [7].

3.2. Hierarchical multi-scale supervoxel matching

The first step consists in performing a single-scale supervoxel
matching [5] for each scale k independently using context fea-
tures θ(vp). Each supervoxel skj belonging to partition Pk

s is
thus matched to a given supervoxel h(skj ) = fki ∈ Pk

f . Then,
the hierarchical matching occurs. Let A(fki , d) ∈ Pk−d

f be
the ancestor of fki of degree d defined at scale k− d. The
intuition behind our contribution is that the matching prob-
ability obtained via RF at scale k should be affected by the
matching probabilities arising from the previous scales. We
rely in practice on a multi-scale probability aggregation strat-
egy starting from supervoxels of scale K. Their output RF
matching probabilities are updated as follows:

p̂
(
h(sKj )=fKi

)
= p

(
h(sKj )=fKi

)
×

K∏
d=1

p
(
h(A(sKj , d))=A(fKi , d)

)
(6)

1implementation of B. Irving, http://maskslic.birving.com.

The supervoxel (sKj ) to supervoxel (fKi ) mapping at scale K
is finally obtained by maximizing p̂(h(sKj ) = fKn ).

h(sKj ) = fKi = arg max
fK
n ∈PK

f

p̂(h(sKj ) = fKn ) (7)

By focusing on finest supervoxels, we get a fine repre-
sentation not prone to overlap issues. Single-scale matching
[5] applied on these supervoxels results in many bad matches
(Fig.2) due to too many small-size, non-discriminative classes.
Our coarse-to-fine hierarchical guidance alleviates ambigui-
ties by implicitly reducing the matching search space.

4. SEMI-DENSE REGISTRATION RESULTS

Experiments focus on data collected from 25 examination
pairs stemming from 6 patients with hepato-cellular carci-
noma (HCC). Each pair brings together two CT scans ac-
quired for the same patient at different time points varying
from 41 to 407 days. Image pairs are processed both in for-
ward (FW) and backward (BW) which translates in performing
learning on If (resp. Is) and prediction on Is (If ) to get
mapping functions hFW(skj ) = fki and hBW(fki ) = skj ∀k.

To compare the single (sgl-) [5] and proposed multi-
scale (mlt-) supervoxel matching (SM) methods, we rely on
a hierarchical supervoxel decomposition with K = 12 scales,
empirically set to get an accurate description of each scan.
sgl-SM is directly applied on the finest scale K whereas
mlt-SM applies sgl-SM at each scale independently before
gathering ancestor probabilities (Eq.6). Each supervoxel at
scale k is split into Ks = 2 children defined at scale k + 1 al-
lowing a progressive multi-scale guidance. A SLIC compact-
ness [10] of 0.25 with CT intensities rescaled to [0, 1] reaches
a good trade-off between compactness and boundary adher-
ence. Ka = 400 features are generated for each vp with a
maximal offset of Φ=50 voxels and box sizes w ∈ {3, 5, 7}.

Supervoxel matching allows a straightforward propaga-
tion of anatomical labels. To evaluate {sgl,mlt}-SM quan-
titatively, we provide liver label propagation results through

http://maskslic.birving.com.


sgl-SM mlt-SM sgl-SM mlt-SM

SLIC without a-priori with a-priori

DICE 72.21± 9.72 82.27 ± 5.00 67.82± 13.8 95.21 ± 6.64

sens 72.60± 12.7 83.54 ± 7.84 62.56± 17.8 93.27 ± 10.1

spec 92.91± 5.23 95.28 ± 3.08 95.23± 3.81 99.55 ± 0.91

χ(h) 21.10± 7.03 10.07 ± 4.49 24.33± 6.91 10.27 ± 4.46

Table 1. Quantitative comparisons of RF-based single-scale
(sgl-) [5] and hierarchical multi-scale (mlt-) supervoxel
matching (SM) via liver label propagation and inconsistency
averaged over the database (FW and BW). Best results in bold.

DICE, sensitivity and specificity scores comparing liver prop-
agation and ground-truth2 (GT) masks. Supervoxel corre-
spondences are also assessed through FW/BW inconsistency
scores defined for each supervoxel fKi and sKj similarly to:

χ(fKi ) =
∥∥C(fKi )− C(hBW(hFW(fKi ))

)∥∥
2

(8)

with C(.) the supervoxel centroid. Global inconsistency
scores χ(hFW) (resp. χ(hBW)) for {If , Is} are then computed
via a normalized sum of all χ(fKi ) (resp. χ(sKj )) weighted
by their belonging voxels number, |fKi | (|sKj |).
{sgl,mlt}-SM are applied with two different SLIC

decompositions: without and with a-priori liver segmenta-
tion awareness to evaluate supervoxels matchings without
being disturbed by boundary adherence issues. In this latter
case, the first scale is used to separate the liver from other
abdominal structures. Multi-scale decompositions are then
performed independently for both areas and finally merged.

We present a comparative assessment of {sgl,mlt}-SM
in Tab.1. Without a-priori, it reveals better results using
mlt-SM which achieves highest DICE (82.3 against 72.2),
sens and spec combined with lowest inconsistency (from
22.1 to 10.1 voxels). More significant gains arise with liver
segmentation a-priori, especially for DICE whose improve-
ment is≈27.4%. DICE for sgl is worse with than without a-
priori since liver-awarness decomposition generates more su-
pervoxels by construction. Despite additional computational
cost, results confirm the significant impact of our multi-scale
matching probability aggregation scheme, as highlighted by
the accuracy of prediction and liver propagation shown Fig.3.

5. CONCLUSION

Our work focuses on automatic semi-dense image registra-
tion using maching learning. We extended random forest (RF)
based supervoxel matching from single to multi-scale using a
recursive hierarchical supervoxel representation. RF match-
ing probabilities are gathered together with ancestor proba-
bilities acting as a coarse-to-fine guidance. We demonstrate
its effectiveness on challenging abdominal CT scans and will
further explore this scheme using forward-backward consis-
tency for multi-phases and multi-modal registration.

2provided by Visible Patient, www.visiblepatient.com
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Fig. 3. Assessment of {sgl,mlt}-SM with training, predic-
tion (no a-priori), GT and propagated liver (a-priori) masks.
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“Advances and challenges in deformable image registration:
From image fusion to complex motion modelling,” Medical
Image Analysis, vol. 33, pp. 145–148, 2016.

[2] A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable med-
ical image registration: A survey,” Medical Imaging, IEEE
Transactions on, vol. 32, no. 7, pp. 1153–1190, 2013.

[3] B. Glocker, D. Zikic, and D. R. Haynor, “Robust registration
of longitudinal spine CT,” in Medical Image Computing and
Computer-Assisted Intervention, 2014, pp. 251–258.

[4] L. Breiman, “Random Forests,” Machine learning, vol. 45, no.
1, pp. 5–32, 2001.

[5] F. Kanavati, T. Tong, K. Misawa, M. Fujiwara, K. Mori,
D. Rueckert, and B. Glocker, “Supervoxel classification
forests for estimating pairwise image correspondences,” Pat-
tern Recognition, vol. 63, pp. 561–569, 2016.

[6] D. Zikic, B. Glocker, and A. Criminisi, “Encoding atlases by
randomized classification forests for efficient multi-atlas label
propagation,” Medical image analysis, vol. 18, no. 8, pp. 1262–
1273, 2014.

[7] P-H. Conze, V. Noblet, F. Rousseau, F. Heitz, V. de Blasi,
R. Memeo, and P. Pessaux, “Scale-adaptive supervoxel-
based random forests for liver tumor segmentation in dynamic
contrast-enhanced CT scans,” International Journal of Com-
puter Assisted Radiology and Surgery, 2016, published online.

[8] M. P. Heinrich, I. J.A. Simpson, B. W. Papież, M. Brady, and
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