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Abstract

Given a graph G = (V,E) with a root r ∈ V , positive capacities {c(e)|e ∈
E}, and non-negative lengths {`(e)|e ∈ E}, the minimum-length (rooted)
edge capacitated Steiner tree problem is to find a tree in G of minimum total
length, rooted at r, spanning a given subset T ⊂ V of vertices, and such
that, for each e ∈ E, there are at most c(e) paths, linking r to vertices in T ,
that contain e. We study the complexity and approximability of the problem,
considering several relevant parameters such as the number of terminals, the
edge lengths and the minimum and maximum edge capacities. For all but
one combinations of assumptions regarding these parameters, we settle the
question, giving a complete characterization that separates tractable cases
from hard ones. The only remaining open case is proved to be equivalent
to a long-standing open problem. We also prove close relations between our
problem and classical Steiner tree as well as vertex-disjoint paths problems.

1 Introduction

The graphs in this paper can be directed or undirected. Consider a connected graph
G = (V,E) with a set T ⊂ V of terminal vertices, or simply terminals, and a
length (or cost) function ` : E → Q+. Let r ∈ V \ T be a root vertex (i.e. there
is a path from r to any vertex in V ) if G is directed or a special vertex called
root if G is undirected. The (rooted) Steiner tree problem (STEINER-TREE) is to
determine a directed tree S in G, rooted at r, spanning all terminals of T and
having a minimum total length. The undirected Steiner tree problem, where one
searches for a minimum-length tree spanning the terminals in an undirected graph,
has been widely studied and the associated decision problem was one of Karp’s 21
NP-complete problems [19, 23, 30]. It also has many applications, as shown in [8, 12].
This problem is APX-hard [3], but it can be solved in polynomial time when the
number of terminals is fixed [11, 16, 38], and admits constant ratio approximation
algorithms otherwise [6, 32]. There are less results about the directed version, which
is a generalization of the undirected one and of the Set Cover problem, and only
non constant ratio approximation algorithms are known [7, 15]. Directed problems
occur for instance in VLSI design [9] or in multicast routing [8].
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We consider in this paper a generalization of the (rooted) Steiner tree problem.
Assume we are given a capacity function c : E → N∗, where c(e) is an upper bound
on the number of paths containing e and linking r to terminals. Equivalently, for
every e = (u, v) in a tree S rooted at r, the subtree of S rooted at v cannot contain
more than c(e) terminals. Without loss of generality, we assume that c(e) ≤ K
for each edge e. The minimum-length capacitated (rooted) Steiner tree problem is
defined as follows:

Minimum-length (rooted) Capacitated Steiner Tree Problem (ML-CAP-STEINER-TREE)
Input. A connected graph G = (V,E); a set T = {t1, ..., tK} ⊂ V of K ≥ 2 terminals;
a root vertex r ∈ V \ T ; two functions on E: a nonnegative length function ` and a
positive capacity function c.
Objective. Determine, if it exists, a minimum-length directed tree S rooted at r,
that spans all the vertices of T and does not violate the capacity constraints.

If G = (V,E) is undirected and e = (u, v) is an arc of S, then [u, v] must be an
edge of E. Note that STEINER-TREE is the special case of ML-CAP-STEINER-TREE

where c(e) = K for all e ∈ E (in this case, a feasible solution always exists).
ML-CAP-STEINER-TREE appears naturally in several contexts, for example when de-
signing a wind farm collection network [22, 29], in the design of telecommunication
networks [26] or in power distribution system optimization [13]. When `(e) = 0
for all e ∈ E, ML-CAP-STEINER-TREE turns into a decision problem, denoted by
CAP-STEINER-TREE, and consisting of determining whether there exists or not a tree
rooted at r, spanning all the terminals, and not violating the capacity constraints.

When K = n−1, i.e. a feasible solution is a spanning tree, ML-CAP-STEINER-TREE
is solvable in polynomial time if c(e) = 2 for all e ∈ E, while it is NP-hard if
c(e) = 3 for all e ∈ E [19, 28]. Several authors propose models and methods based
on mathematical programming to solve this capacitated spanning tree problem for
real-life applications such as telecommunication network design problems [5, 36, 37].
Their methods allow to solve the case where there is a positive integer demand at
each vertex (instead of a unit demand as in ML-CAP-STEINER-TREE). In [2, 24], the
authors provide approximation algorithms for a variant of ML-CAP-STEINER-TREE

where the capacities are uniform and the problem always admits a feasible solution,
since it is assumed that a metric completion of the graph is available. This paper
addresses the problem where the demand is equal to 1 for each terminal vertex and
K ≤ n− 1.

As will be made clear in the next sections, there are strong links between
ML-CAP-STEINER-TREE and the two following famous problems, namely the minimum-
length vertex-disjoint paths problem (ML-VDISJ-PATH) and the minimum-length
edge-cost flow problem (EDGE-COST-FLOW).

Minimum-Length Vertex-Disjoint Paths Problem (ML-VDISJ-PATH)
Input. A graph G = (V,E); a nonnegative length function ` on E; p disjoint vertex
pairs (s1, s

′
1), . . . , (sp, s

′
p).

Objective. Find p mutually vertex-disjoint paths µ1, . . . , µp of minimum total length
so that µi links si to s′i (i = 1, . . . , p).
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Minimum Edge-Cost Flow Problem (EDGE-COST-FLOW)
Input. A graph G = (V,E); a positive integer K; two specified vertices s and t; a
nonnegative length function ` on E; a positive capacity function c on E.
Objective. Find a minimum-length feasible flow of K units from s to t, where the
length of a flow is the sum of the lengths of the arcs/edges carrying a positive flow.

When `(e) = 0 for all e ∈ E, ML-VDISJ-PATH is known as the vertex-disjoint
paths problem and will be denoted by VDISJ-PATH. It is NP-complete in directed and
undirected graphs [19] and remains NP-complete for fixed p in directed graphs [18],
but it can be solved in polynomial time if p is fixed and the graph is either undirected
[31] or a directed acyclic graph [18]. The NP-hardness results for VDISJ-PATH apply
to ML-VDISJ-PATH as well, but for this latter problem the complexity is unknown in
the case where p is fixed and the graph is undirected. However, a polynomial-time
probabilistic algorithm for p = 2 has been recently presented in [4].

For any graph theoretical terms not defined here, the reader is referred to [39].
We use the term path both for a chain when the graph is undirected, and for a
directed path when the graph is directed, i.e. when it is a digraph. If the graph
is directed, recall that, in the definition of ML-CAP-STEINER-TREE, r is assumed to
be a root vertex. This is a trivial necessary condition for the existence of a feasible
solution and can be easily checked. Since all trees studied in this paper are directed
from r towards the terminals, we use the term tree instead of directed tree. For a
vertex v in a tree S, we denote by S(v) the subtree of S rooted at v. For a subgraph
G′ = (V ′, E ′) of G, we indifferently denote by `(G′) or `(E ′) the sum of the lengths
of the arcs/edges in G′. Also, for e ∈ E, a rooted tree S in G, and two vertices
u and v such that v is a descendant of u in S, we say that u is e-linked (resp.
ē-linked) to v in S if e belongs (resp. does not belong) to the path µuv from u to v
in S. Similarly, when we write that r is ē-linked to a subset T ′ of terminals in S,
this means that e does not belong to the paths in S that link r to the terminals of
T ′. The capacity constraints therefore impose that, for all e ∈ E, r is e-linked to at
most c(e) terminals in any feasible solution S to an ML-CAP-STEINER-TREE instance.
Equivalently, S(v) contains at most c(e) terminals for all e = (u, v) in S.

The next section gives an overview of our results concerning ML-CAP-STEINER-TREE

and explains how the paper is organized.

2 Overview of the results
In this section we show that our results provide a complete characterization of the
complexity of ML-CAP-STEINER-TREE that allows us to distinguish beween easy and
hard cases of the problem for digraphs, directed acyclic graphs (called DAGs) and
undirected graphs. Notice that any undirected instance of ML-CAP-STEINER-TREE

can be transformed into a directed one by replacing each edge by two opposite arcs
having the same length and capacity. Hence, any positive result (existence of a
polynomial-time algorithm or approximation result) for directed graphs is also true
for undirected graphs, while any negative result for undirected graphs (NP-hardness
or non-approximability result) is also true for directed graphs.

Apart from the assumption on the graph itself (undirected, directed or directed
without circuits), the following parameters are considered: the numberK of terminal
vertices, the minimum and maximum edge capacities, and the edge lengths. More
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precisely, K can be fixed or not; the minimum and maximum edge capacities can
be non depending on K (equal to 1 or not), they can be greater than or equal to
K − κ (1 ≤ κ ≤ K − 1), and they can be equal (uniform capacity) or not; the
edge lengths can be all equal to 0, all equal to a positive value (i.e. uniform),
or non uniform. We settle all cases except one, namely the undirected case with
uniform capacity and fixed K ≥ 3, but we prove that ML-CAP-STEINER-TREE is then
equivalent to ML-VDISJ-PATH in undirected graphs with fixed p, whose complexity
is a long-standing open problem in this case [25].

Our results are summarized in four tables. Each line of each table corresponds to
a specific case of ML-CAP-STEINER-TREE and refers to the theorem where the case is
settled. The first table contains results that are valid for the three types of graphs,
while the next three tables contain results that are specific to digraphs, undirected
graphs, and DAGs, respectively. In these tables, we denote by ρ the best possible
approximation ratio for STEINER-TREE, and by ρ′ the best possible approximation
ratio for ML-VDISJ-PATH with a fixed number of source-sink pairs.

The three trees drawn in Figure 1 provide another picture of the possible cases for
the three types of graphs (digraphs, DAGs and undirected graphs). The numbers
assigned to the leaves of these trees refer to the corresponding rows in the tables.
The values of the three parameters appear on the branches and each branching node
corresponds to a partition of the possible cases: the value on a branch excludes the
values on the branches to the left. For instance, in undirected graphs, the capacities
can be either uniform equal to 1, or at least K − 1, or uniform of value at least 2
and at most K − 2, or, finally, any capacities not yet considered.

Moreover, if a leaf corresponds to a branch where the values of some parameters
are unspecified, then this means that the associated result holds even in the most
general case (if it is a positive, i.e., tractability result) or in the most specific case
(if it is a negative, i.e., hardness result) with regard to the unspecified values. For
instance, the NP-hardness result associated with Leaf 7 holds even if K is fixed
and if all lengths are 0 (since neither the value of K nor the lengths appear on
this branch), and the result associated with Leaf 11 holds for any lengths and any
capacities (since only the assumption on K being fixed appears on this branch).

Therefore, for digraphs, the branch “any capacity” includes the case of uniform
capacities between 2 and K − 2 for K fixed (or not). Concerning the last line of
Table 3, if the capacity is uniform and K is fixed, then there exists some constant κ
such that all capacities are equal to K−κ: hence, in the tree dealing with undirected
graphs in Figure 1, the branch “any capacity”, which leads to Case 8 of Table 3,
excludes the case where K is fixed.

Condition Complexity Theorem

1 Unit capacities Polynomial Theorem 4.1

2 K = 2 Polynomial Theorem 7.3

3 Capacities ≥ K−κ, for any con-
stant κ ≥ 0

NP-hard, even with lengths 1, even with
uniform capacities

Theorem 5.7

4 Capacities ≥ K − 1 Polynomial with lengths 0
(CAP-STEINER-TREE), and (1 + ρ)-
approximable otherwise

Theorem 7.4

5 Capacities ≥ K−1, for fixed K Polynomial Theorem 7.3

Table 1: General results for ML-CAP-STEINER-TREE in digraphs, DAGs, and undi-
rected graphs.
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Condition Complexity Theorem

6 K ≥ 3 (fixed or not) NP-complete even if all lengths are 0
(CAP-STEINER-TREE), and even if the
minimum capacity cmin and the maxi-
mum capacity cmax ≥ cmin are any fixed
constants, with cmin ∈ {1, . . . ,K − 2}
and cmax ≥ 2

Theorem 5.1

Table 2: Results for ML-CAP-STEINER-TREE in digraphs.

Condition Complexity Theorem

7 Non uniform capacities and
K ≥ 3 (fixed or not)

NP-complete even if all lengths are 0
(CAP-STEINER-TREE), and even if the
minimum capacity cmin and the maxi-
mum capacity cmax > cmin are any val-
ues, with cmin ∈ {1, . . . ,K − 2}

Theorem 5.3

8 Uniform capacity (non unit and
not depending on K)

NP-complete even if all lengths are 0
(CAP-STEINER-TREE), and even if the uni-
form capacity is any value ≥ 2 not de-
pending on K

Theorem 5.5

9 Uniform capacity equal to K −
κ, for any constant κ ≥ 0

Polynomial if all lengths are 0
(CAP-STEINER-TREE), and (ρ + ρ′)-
approximable otherwise

Theorems 6.1
and 7.1

10 Uniform capacity and fixed
K ≥ 3

Equivalent to ML-VDISJ-PATH with fixed
p, and hence open

Theorem 6.1

Table 3: Results for ML-CAP-STEINER-TREE in undirected graphs.

Condition Complexity Theorem

11 Fixed K Polynomial Theorem 6.3

12 Non unit capacities not depend-
ing on K

NP-complete even if all lengths are 0
(CAP-STEINER-TREE), and even if the ca-
pacity is uniform and takes any value ≥ 2
not depending on K

Theorem 5.5

13 Capacities larger than K − κ,
for any constant κ ≥ 0

Polynomial if all lengths are 0
(CAP-STEINER-TREE), and (1 + ρ)-
approximable otherwise

Theorem 7.2

Table 4: Results for ML-CAP-STEINER-TREE in DAGs.

We describe in Section 3 the structure of optimal solutions to an ML-CAP-STEINER-TREE

instance. Section 4 is devoted to relations between ML-CAP-STEINER-TREE and
ML-VDISJ-PATH. We prove in Section 5 some NP-hardness results for the general
case, while special cases where the number K of terminals is fixed, or where all
capacities are almost equal to K, are studied in Sections 6 and 7.

3 Structural properties of optimal solutions

We can assume, without loss of generality, that there is a bijection between the set
of 1-degree vertices (leaves) in V \ {r} and T . Indeed, if t ∈ T is not a leaf, we
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Figure 1: Results for ML-CAP-STEINER-TREE (CAP-STEINER-TREE if all lengths
are 0) in digraphs, DAGs and undirected graphs.

can add a new terminal vertex t′ and an edge [t, t′] (or an arc (t, t′)) with capacity
1 and length 0, and replace t by t′ in T . Moreover, if there is a leaf v /∈ T ∪ {r} in
G, then v can be removed from G since the removal of v from a solution S to an
ML-CAP-STEINER-TREE instance gives a solution S ′ which is at least as good as S.

A solution S (if any) to an ML-CAP-STEINER-TREE instance is a tree rooted at r,
and defines K paths from r to the K terminals. The vertices with degree at least 3
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in S\{r} are called junction vertices.
To each junction vertex v, we associate the set Tv ⊆ T of terminals in the subtree

S(v) rooted at v. Moreover, for an arc e = (u, v) in S, |Tv| is the number of terminals
to which r is e-linked in S. If there is no directed path linking two vertices v and w
in S, then Tv ∩ Tw = ∅, otherwise S would contain a cycle.

Given a tree S spanning a set T of terminals, its skeleton is the tree obtained
from S by iteratively contracting vertices v /∈ T ∪{r} with exactly one incoming arc
(u, v) and exactly one outgoing arc (v, w) (i.e., the path (u, v, w) is replaced by an
arc (u,w)). This means that there is an arc (u, v) in the skeleton of S if and only
if there is a path from u to v in S, each internal vertex of this path being of degree
2 in S. When all capacities are 1, the skeleton of a feasible solution is a star, since
the root is the only possible vertex with degree ≥ 2 in this skeleton. We now prove
some properties which will be useful later.

Property 3.1 The skeleton of an inclusion-wise minimal tree S rooted at r and
spanning K terminals (all of degree 1) contains at most 2K + 1− dr vertices, where
dr is the degree of root r in S.

Proof: Let nJ be the number of junction vertices in the skeleton R of S. Clearly,
R contains nR = K+ 1 +nJ vertices and nR−1 edges. Since the sum of the degrees
of all vertices in R is 2(nR − 1) = 2K + 2nJ , we have 2K + 2nJ ≥ K + dr + 3nJ ,
which implies nJ ≤ K − dr and nR ≤ 2K + 1− dr. �

Property 3.2 Given an inclusion-wise minimal tree S rooted at r and spanning K
terminals (all of degree 1), the path with minimum number of vertices from root r
to a terminal in the skeleton of S contains at most O(log(K)) vertices.

Proof: Let R be the skeleton of S, nR its number of vertices, and lmin the minimum
number of vertices on a path from r to a terminal in R.

• If r has degree 1 in S, then R contains one vertex at levels 1 and 2, and at least
2i−2 vertices at levels i = 3, . . . , lmin. Hence, nR ≥ 2 +

∑lmin−2
i=1 2i = 2lmin−1,

which implies lmin ≤ log2(nR) + 1.

• If r has degree at least 2 in S, then R contains at least 2i−1 vertices at levels
i = 1, . . . , lmin. Hence, nR ≥

∑lmin−1
i=0 2i = 2lmin − 1, which implies lmin ≤

log2(nR + 1).

In both cases, it follows from Property 3.1 that lmin = O(log(K)). �

Notice that, if S is a complete binary tree, then lmin = Ω(log(K)): therefore, up
to a constant factor, the bound in the previous property cannot be improved.

Given a graph G with a root r and K terminals, a potential skeleton in G is
defined as a tree P , rooted at r, spanning the K terminals, and such that the only
vertices without outgoing arc are the K terminals, while any other vertex, except
possibly r, has degree at least 3 in P (and hence in G). While the skeleton of a
solution to an ML-CAP-STEINER-TREE instance is a potential skeleton, the reverse is
not necessarily true, as illustrated in Figure 2. If we select the left arc incident to
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r in the first potential skeleton of the figure, then there are no three vertex-disjoint
paths from the left neighbor of r to the terminals in G.

A potential skeleton which is the skeleton of four solutions to 
 ML-CAP-STEINER-TREE

A potential skeleton

which is not the

skeleton of a solution to 
ML-CAP-STEINER-TREE

r

t1 t2 t3

An undirected graph with uniform capacity 3

Figure 2: Potential skeletons in a graph G.

Property 3.3 Given a graph G with n vertices, K terminals, and a root vertex r, it
is possible to enumerate in O(nK−1KO(K)) time all potential skeletons of inclusion-
wise minimal trees rooted at r and spanning the K terminals in G.

Proof: As shown in the proof of Property 3.1, the skeleton of such a tree contains
at most K − 1 junction vertices. There are O(nK−1) ways of choosing at most
K − 1 junction vertices, and, for each such choice, it follows from Cayley’s formula
that there are at most (2K)2K−2 different labelled trees containing only r, the K
terminals, and the chosen junction vertices. We can orient the edges of every labelled
tree from the root r towards the other vertices, which takes O(K) time per tree,
and reject the labelled rooted trees that do not satisfy the definition of a potential
skeleton. The whole procedure therefore takes O(nK−1KO(K)) time. �

4 Links with vertex-disjoint paths problems

We detail in this section several links between ML-CAP-STEINER-TREE and some
vertex-disjoint paths problems. Other links between Steiner problems in capacitated
networks and vertex-disjoint paths have already been shown in [27]. We begin with
a simple complexity result in the case of unit capacities. In this case, an optimal
solution to ML-CAP-STEINER-TREE necessarily consists of K vertex-disjoint paths
with minimum total length, each one linking r to a terminal, and we obtain the
following theorem.

Theorem 4.1 ML-CAP-STEINER-TREE is polynomial-time solvable if c(e) = 1 ∀e ∈
E.
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Proof: Assume the input graph G is directed, and let us add to G a new vertex
s and an arc (tk, s) of length 0 and capacity 1 for each terminal t1, . . . , tk. Solving
ML-CAP-STEINER-TREE then amounts to finding K internally vertex-disjoint paths
from r to s, with minimum total length. It is well-known that this can be done
in polynomial time, but we briefly recall how. We consider the graph H obtained
from G by replacing each vertex v /∈ {r, s, t1, . . . , tk} by an arc (v′, v′′) of length
0, and each arc (v1, v2) (resp. (r, v), (v, ti), i = 1, ..., k) by an arc (v′′1 , v

′
2) (resp.

(r, v′), (v′′, ti), i = 1, ..., k) having the same length as the original one. All capacities
are set equal to 1. It is then sufficient to determine a minimum-cost flow of k units
from r to s in H by using any min-cost flow algorithm [20]. Recall that, if the graph
G is undirected, we can transform it into a directed one by replacing each edge by
two opposite arcs. In this case, only one of two opposite arcs associated to an edge
carries a positive flow in the solution. �

The following problem is a generalization of ML-VDISJ-PATH.

Minimum-Length Labelled Vertex-Disjoint Paths Problem (ML-LAB-VDISJ-PATH)
Input. A graph G = (V,E); an integer k ≥ 1; a nonnegative length function ` on
E; a label λ(e) ∈ {1, . . . , k} on every e ∈ E; p disjoint vertex pairs (si, s

′
i), each one

being associated with a set Li ⊆ {1, . . . , k} of labels.
Objective: find p mutually vertex-disjoint paths µ1, . . . , µp of minimum total length
so that µi links si to s′i and all labels on µi belong to Li (i = 1, . . . , p).

When `(e) = 0 for all e ∈ E, ML-VDISJ-PATH (resp. ML-LAB-VDISJ-PATH) turns into
a decision problem, denoted by VDISJ-PATH (resp. LAB-VDISJ-PATH). Notice that
ML-VDISJ-PATH is the special case of ML-LAB-VDISJ-PATH where Li = {1, . . . , k} for
i = 1, . . . , p. We now show several links between ML-CAP-STEINER-TREE and some
variants of ML-VDISJ-PATH and ML-LAB-VDISJ-PATH.

Theorem 4.2 ML-VDISJ-PATH with p source-sink pairs is polynomially reducible to
ML-CAP-STEINER-TREE with p(p+ 1)/2 terminals.

Proof: Assume first that the input graph G = (V,E) of the ML-VDISJ-PATH

instance is undirected. Let G′ = (V ′, E ′) be defined as follows: V ′ is obtained by
adding to V a vertex r and K = p(p + 1)/2 terminals tij , 1 ≤ j ≤ i ≤ p; E ′ is
obtained from E by adding an edge of capacity i and length 0 between r and every
si, i = 1, . . . , p, as well as edges of capacity 1 and length 0 between s′i and every
tij , 1 ≤ j ≤ i ≤ p. The edges of E keep their original length, while their capacity
is fixed to p. We prove that solving ML-VDISJ-PATH in G is equivalent to solving
ML-CAP-STEINER-TREE in G′. The construction of G′ from G is illustrated in Figure
3 for p = 3, with the pair (c(e), `(e)) on every e ∈ E ′.

Given a solution S to ML-VDISJ-PATH in G, one can get a solution S ′ to
ML-CAP-STEINER-TREE in G′ of same total length by orienting all paths from si
to s′i, i = 1, . . . , p, and then adding the p arcs (r, si), as well as the p(p + 1)/2 arcs
incident to the terminals.

Now, assume there is a solution S ′ for ML-CAP-STEINER-TREE in G′. Since there
are p(p+ 1)/2 terminals while the sum of the capacities of the edges incident to r is
precisely this amount, we know that r is (r, si)-linked to exactly i terminals in S ′,
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Figure 3: From ML-VDISJ-PATH in G = (V,E) with p = 3 to ML-CAP-STEINER-TREE

in G′ = (V ′, E ′) with K = 6.

i = 1, . . . , p. In particular, r is (r, sp)-linked to p terminals, and these are necessarily
tp1 , . . . , tpp , otherwise S ′ would contain a cycle. Using the same argument, with i
decreasing from p to 1, we get that r is (r, si)-linked to ti1 , . . . , tii . Notice that all
paths from r to tij , j = 1, ..., i, use the same sub-path from si to s′i. Hence, by
removing from S ′ all arcs incident to r and to the terminals, we get a solution S to
ML-VDISJ-PATH with same total length.

The proof for digraphs is obtained by replacing “edge” by “arc” in the construc-
tion of G′. �

Theorem 4.3 Given two integers K and c with K ≥ 4 and 2 ≤ c ≤ K − 2,
ML-VDISJ-PATH with p = 2 source-sink pairs is polynomially reducible to
ML-CAP-STEINER-TREE with K terminals and uniform capacity c.

Proof: The proof is similar to the previous one. The main difference is the def-
inition of G′ = (V ′, E ′). In the undirected case, V ′ is obtained by adding to V
two vertices r and v and K terminals t1, . . . , tK ; E ′ is obtained from E by adding
the edges [r, v], [r, s2], [v, s1], [v, t1], [s′1, t2], [s′2, ti] for i = 3, . . . , c + 2, and [r, ti] for
i = c+3, . . . , K. The edges of E keep their original length while those in E ′\E have
length 0. All capacities are set equal to c. We then prove that ML-VDISJ-PATH on
G is equivalent to ML-CAP-STEINER-TREE in G′ in a similar way as in the previous
theorem. The only path that goes from r to t1 contains rv, and hence the remaining
capacity on this edge is c− 1: this implies that the paths from r to the c terminals
adjacent to s′2 must contain rs2, and the rest of the proof is unchanged. The proof
for digraphs is obtained by adding arcs instead of edges to obtain G′. �

Theorem 4.4 ML-VDISJ-PATH with p ≥ 2 source-sink pairs is polynomially re-
ducible to ML-CAP-STEINER-TREE with p2 terminals and uniform capacity p.

Proof: Again, the proof is similar to the one of Theorem 4.2. In this case, G′ =
(V ′, E ′) is constructed as follows. V ′ is obtained by adding to V a vertex r, p − 1
vertices v1, . . . , vp−1 and p2 terminals tij with 1 ≤ i, j ≤ p; E ′ is obtained from E
by adding the edges [r, sp], [r, vi] and [vi, si] for i = 1, . . . , p − 1, as well as edges
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between s′i and every tij with 1 ≤ j ≤ i ≤ p and edges between vi and every tij with
1 ≤ i < j ≤ p. The edges of E keep their original length while those in E ′ \E have
length 0. All capacities are set equal to p. We then prove that ML-VDISJ-PATH on
G is equivalent to ML-CAP-STEINER-TREE in G′ in a similar way as in Theorem 4.2.
Notice that, in this case, given any solution S ′ to ML-CAP-STEINER-TREE in G′, r is
necessarily (r, vi)-linked to terminals tij (j = 1, . . . , p) for all i = 1, . . . , p− 1, and r
is (r, sp)-linked to terminals tpj (j = 1, . . . , p). �

Remark 4.1 The results stated in Theorems 4.2, 4.3 and 4.4 are also valid for
ML-VDISJ-PATH and ML-CAP-STEINER-TREE with strictly positive lengths, since the
arcs or edges added to G in order to obtain G′ can have arbitrary lengths. Indeed,
the total length of a solution S to ML-VDISJ-PATH will then differ from the total
length of the corresponding solution S ′ to ML-CAP-STEINER-TREE by a value equal
to the total length of the added arcs or edges.

We next show that, when the numberK of terminals is fixed, ML-CAP-STEINER-TREE
is polynomially reducible to ML-LAB-VDISJ-PATH.

Theorem 4.5 When K ≥ 1 is fixed, ML-CAP-STEINER-TREE can be reduced in
polynomial time to ML-LAB-VDISJ-PATH with a fixed number of source-sink pairs.

Proof: We first consider the undirected case. Let I be an instance of
ML-CAP-STEINER-TREE in a graph G containing K terminals. It follows from Prop-
erty 3.3 that the set of potential skeletons of optimal solutions to I can be enumer-
ated in O(nK−1) time (since K is a constant), where n is the number of vertices in
G.

To every such potential skeleton S, we associate a graph G′ = (V ′, E ′) constructed
as follows, in order to deal with vertex-disjoint paths (and not internally vertex-
disjoint paths). For each arc (u, v) of S, we create a copy uv of u and a copy vu
of v; hence, every vertex v of S is replaced in G′ by dv copies of v, where dv is the
degree of v in S. All vertices of G that do not appear in S are also put in V ′ (with
only one copy of each). For each edge [u, v] of G we put an edge of same length in
G′ between each copy of u and each copy of v. This construction is illustrated in
Figure 4.

We then create a source-sink pair (uv, vu) in G′ for all arcs (u, v) in S. From
Property 3.1, S contains at most 2K vertices, and there are therefore at most 2K−1
such pairs. For each v ∈ V , let Kv denote the number of terminals in the subtree
S(v) of S rooted at v, and let Luv be the set of labels associated with the source-
sink pair (uv, vu). We set Luv = {Kv, . . . , K}. In the example of Figure 4, we have
Lrb = {3}, Lbe = {2, 3}, and Lbt1 = Let2 = Let3 = {1, 2, 3}. The label λ(e) associated
with an edge e in G′ is the capacity of the corresponding edge in G.

An optimal solution to ML-LAB-VDISJ-PATH in G′ (if any) corresponds to a
minimum-length solution to ML-CAP-STEINER-TREE in G having S as skeleton. Since
we enumerate all potential skeletons, the best solution to ML-CAP-STEINER-TREE ob-
tained during this enumeration is an optimal solution for I.
The proof is similar for digraphs, by replacing edge by arc. �
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Figure 4: From ML-CAP-STEINER-TREE in G = (V,E) to ML-LAB-VDISJ-PATH in
G′ = (V ′, E ′). (The length of [b, e] is equal to 3, and all other lengths are equal to
1.)

Theorem 4.6 When K ≥ 1 is fixed, ML-CAP-STEINER-TREE (resp. CAP-STEINER-TREE)
with uniform capacity is polynomially reducible to ML-VDISJ-PATH (resp. VDISJ-PATH)
with a fixed number of source-sink pairs.

Proof: The proof is similar to the proof of Theorem 4.5. However, since the
capacities are all equal to a constant c, we do not have to use labels. Consider
any potential skeleton S: if r has at least one successor v such that the number of
terminals in the subtree S(v) of S rooted at v is strictly larger than c, then S can be
rejected since it cannot correspond to the skeleton of a tree satisfying the capacity
constraints. Otherwise, an optimal (resp. a feasible) solution to ML-VDISJ-PATH is
a minimum-length (resp. a feasible) solution to ML-CAP-STEINER-TREE having S as
skeleton. �

The relations proved in this section are summarized in Figure 5, where a trivial
polynomial reduction corresponds to a generalization of a special case. We recall
that VDISJ-PATH is NP-complete in digraphs, even with p = 2 souce-sink pairs [18],
while it is polynomial-time solvable in undirected graph [31] and DAGs [18] when p
is fixed.

We close this section by mentioning that the reductions given in Theorems 4.2
and 4.4 are FPT-reductions [10] with parameters p and K = O(p2).

5 NP-hardness of the general case

In this section, we prove some NP-hardness and NP-completeness results. We first
show that CAP-STEINER-TREE in digraphs is NP-complete even if K ≥ 3 is fixed, the
minimum capacity cmin is any value in {1, . . . , K − 2}, while the maximum capacity
cmax is at least 2.
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Figure 5: Polynomial-time reductions between capacitated Steiner tree and vertex-
disjoint paths problems.

Theorem 5.1 CAP-STEINER-TREE is NP-complete in digraphs, even if K ≥ 3 is
fixed, for any cmin ∈ {1, . . . , K − 2} and cmax ≥ 2, with cmin ≤ cmax.

Proof: This is a direct consequence of Theorem 4.2 (for K = 3, cmin = 1 and
cmax = 2) and Theorem 4.3 (for K ≥ 4). Indeed, VDISJ-PATH is NP-complete
in digraphs with p = 2 source-sink pairs [18], and the two theorems show how
to polynomially reduce VDISJ-PATH in this case to CAP-STEINER-TREE with the
right number of terminals. Notice that we can fix the values of cmin and cmax in the
constructed CAP-STEINER-TREE instances (with cmin ∈ {1, . . . , K−2}, and cmax ≥ 2)
by assigning these two values to two different arcs incident to terminals. �

Corollary 5.2 CAP-STEINER-TREE with uniform capacity c ∈ {2, . . . , K − 2} is
NP-complete in digraphs, even if K ≥ 4 is fixed.

For undirected graphs, we have the following result:

Theorem 5.3 CAP-STEINER-TREE is NP-complete in undirected graphs, even if
K ≥ 3 is fixed and if the minimum capacity cmin and the maximum capacity cmax

are two fixed constants, with cmin ∈ {1, . . . , K − 2} and cmin < cmax.

Proof: We give a polynomial-time reduction from SAT. Assume first that K = 3
and all edge capacities are equal to 1 or 2. Let X = {x1, ..., xξ} be the set of variables
and let C = {C1, ..., Cν} be the set of clauses in an arbitrary instance I of SAT. For
each variable xi, we denote by oi (resp. ōi) the number of occurrences of xi (resp.
x̄i) in the clauses. We can assume, without loss of generality, that oi ≥ ōi for every
i (by exchanging xi and x̄i everywhere in the clauses, if necessary). The following
instance I ′ of CAP-STEINER-TREE is associated to I.

For each variable xi, we construct a variable gadget as follows: we add two ver-
tices vi0 and vi2oi+1, and two vertex-disjoint paths between them. The first one, µi,
corresponding to literal xi, is vi0, v

i
1, . . . , v

i
2oi+1, where, for each j ∈ {1, . . . , oi}, the

edge vi2j−1v
i
2j has capacity 2, and, for each j ∈ {0, . . . , oi}, the edge vi2jv

i
2j+1 has
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capacity 1. The second path, µ̄i, corresponding to literal x̄i, is vi0, v̄
i
1, . . . , v̄

i
2ōi
, vi2oi+1,

where, for each j ∈ {1, . . . , ōi}, the edge v̄i2j−1v̄
i
2j has capacity 2, and, for each

j ∈ {1, . . . , ōi − 1}, the edge v̄i2j v̄
i
2j+1 has capacity 1. The edges vi0v̄

i
1 and v̄i2ōiv

i
2oi+1

also have capacity 1. The variable gadgets are linked together as follows: for each
i ∈ {1, . . . , ξ − 1}, there is an edge vi2oi+1v

i+1
0 of capacity 1.

For each clause Cj, we construct a clause gadget as follows: we add two vertices
uj1, u

j
2, and, for each literal xi (or x̄i) contained in Cj, we add edges uj1v

i
2`−1 (or

uj1v̄
i
2`−1) and vi2`u

j
2 (or v̄i2`u

j
2) of capacity 2, if this literal occurs ` − 1 times in

clauses C1, . . . , Cj−1. The clause gadgets are linked together as follows: for each
j ∈ {1, . . . , ν − 1}, there is an edge uj2u

j+1
1 of capacity 2.

We complete the construction of I ′ by adding a root r and 3 terminals t1, t2, t3, as
well as 3 edges vξ2oξ+1t1, uν2t2 and uν2t3 of arbitrary capacity (1 is fine, but any value

fits), an edge rv1
0 of capacity 1, and an edge ru1

1 of capacity 2. The construction of I ′

is illustrated in Figure 6 for I with X = {x1, x2, x3} and C = {x1x̄2, x1x2x3, x̄1x2x̄3}.
Solid lines have capacity 2 while dotted edges have capacity 1.
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Figure 6: From SAT to CAP-STEINER-TREE.

Let S be a feasible solution to I ′ (if any). To avoid cycles, the paths from r to
t2 and t3 must use the same sub-path π2 from r to uν2, and thus all edges of π2

must have capacity 2. So, π2 starts with the edge ru1
1. Then, the only possibility

is to use the edge u1
1v
i
1 (or u1

1v̄
i
1) for some i, and then the edges vi1v

i
2 and vi2u

1
2 (or

v̄i1v̄
i
2 and v̄i2u

1
2). The next step is to use the edge u1

2u
2
1. Using similar arguments

with increasing values of j, we get that π2 necessarily contains all edges uj2u
j+1
1 with

1 ≤ j < ν, and ends at uν2 (which is adjacent to t2 and t3).
Since π2 starts with the edge ru1

1, the path π1 from r to t1 starts with the edge
rv1

0. Moreover, to avoid cycles, π1 and π2 are internally vertex-disjoint. Since uj1
and uj2 belong to π2 for all j, we conclude that, for each i, either π1 contains µi and
then π2 may contain only edges of µ̄i, or π1 contains µ̄i and then π2 may contain
only edges of µi. This means that, for each j, there is a subpath of three edges of
π2, from uj1 to uj2, containing one edge of µi (resp. µ̄i) for i such that xi (resp. x̄i)
is one of the literals contained in clause Cj, and there is no k for which the subpath
from uk1 to uk2 contains one edge of µ̄i (resp. µi). We can therefore define a satisfying
truth assignment τ : X → {true, false} as follows: for each i, if µi is a subpath of
π1, then τ(xi) = false, else τ(xi) = true.

Conversely, if there is a satisfying truth assignment τ for I, we construct a feasible
solution for I ′ as follows. The path π1 from r to t1 begins with the edge rv1

0 and,
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for each i, π1 has µi as a subpath if τ(xi) = false, and it has µ̄i as a subpath
if τ(xi) = true. The path π2 from r to uν2 begins with the edge ru1

1 and can be
constructed sequentially by using edges not contained in π1 (this is always possible,
since τ is a satisfying truth assignment for I). The solution to I ′ is then obtained by
adding edges vξ2oξ+1t1, uν2t2 and uν2t3 to π1 ∪ π2. The solution to I ′ corresponding to

the truth assignment τ(x1, x2, x3) = (true, true, false) for I is represented in Figure
6 with bold lines.

In order to generalize this reduction to any K ≥ 3, any cmin ∈ {1, . . . , K−2}, and
any cmax > cmin, we attach cmin + 1 terminals to uν2 (instead of 2) and K − cmin − 2
terminals to r (instead of 0): the edges with capacity 1 and 2 become edges with
capacity cmin and cmin + 1, respectively. Moreover, since the edges incident to the
terminals can have any capacity, we can set the capacity of one of them to cmax. �

Notice that the previous result is not valid for DAGs since the graphs constructed
in the above proof possibly contain circuits. We now prove a complexity result for
LAB-VDISJ-PATH, i.e. ML-LAB-VDISJ-PATH with lengths 0.

Corollary 5.4 LAB-VDISJ-PATH with p source-sink pairs is NP-complete in undi-
rected graphs, and hence in digraphs, for any fixed p ≥ 2, even if Li contains all
labels for every i < p and Lp contains all labels but one.

Proof: For p = 2, this follows from the proof of Theorem 5.3. Indeed, consider the
two source-sink pairs (s1, s

′
1) = (v1

0, v
ξ
2oξ+1) and (s2, s

′
2) = (u1

1, u
ν
2), identify the label

of each edge with its capacity, and set L1 = {1, 2} and L2 = {2}. We have shown
that there is a feasible solution to the instance I of SAT if and only if there are two
vertex-disjoints paths P1 and P2 linking s1 to s′1 and s2 to s′2, and such that P1 uses
edges of label 1 or 2, while P2 uses only edges with label 2. For larger values of p,
we simply add dummy source-sink pairs. �

Note that this is in contrast with VDISJ-PATH, which is polynomial-time solvable
in undirected graphs [31] and in DAGs [18] when p is fixed. A similar problem
has been studied in [40]. More precisely, TWOCOL-VDISJ-PATH is defined as follows:
given an undirected graph in which every edge has color 1 or 2, and two source-
sink pairs (s1, s

′
1) and (s2, s

′
2), determine whether G contains two vertex-disjoint

paths, the first one from s1 to s′1 using only edges of color 1, and the second one
from s2 to s′2 using only edges of color 2. TWOCOL-VDISJ-PATH is the special case of
ML-LAB-VDISJ-PATH where there are p = 2 source-sink pairs, all lengths are 0, and
Li = {i} for each i ∈ {1, 2}. It is proved in [40] that this problem is NP-complete.
The reduction given in the proof of Theorem 5.3 yields an alternative proof of the
NP-completeness of TWOCOL-VDISJ-PATH: indeed, as in the previous corollary, we
can fix (s1, s

′
1) = (v1

0, v
ξ
2oξ+1) and (s2, s

′
2) = (u1

1, u
ν
2), and identify the colors of the

edges with their capacities. Also, for every variable gadget, we add a path consisting
of two edges of capacity (color) 1 between the endpoints of the edges of capacity 2
so that P1 (the path that goes through edges of capacity 1 and 2) can avoid edges
with color 2.

The next result deals with DAGs and undirected graphs with uniform capacity.
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Theorem 5.5 CAP-STEINER-TREE is NP-complete in DAGs and undirected graphs,
even in the case of uniform capacity c, for any c ≥ 2 (not depending on K).

Proof: Let 3-SAT3 be the satisfiability problem in which every clause contains at
most 3 variables, every variable appears in at most 3 clauses, and every litteral (a
variable or its complement) appears in at most 2 clauses. 3-SAT3 is known to be NP-
complete [35]. We show how to polynomially reduce 3-SAT3 to CAP-STEINER-TREE

with uniform capacity c ≥ 2.
Let I = (X,C) be an instance of 3-SAT3 with X = {x1, ..., xξ} as set of variables

and C = {C1, ..., Cν} as set of clauses. To obtain an instance I ′ of CAP-STEINER-TREE
with uniform capacity c, we construct the following graph G = (V,E): for every vari-
able xi ∈ X, we create three vertices vi, v̄i, si and c terminals TVi,1, . . . , TVi,c; for
every clause Cj ∈ C we create a terminal TCj; finally we add a vertex r. For the
directed case, we consider the following arcs: for every i = 1, ..., ξ, we create the arcs
(r, vi), (r, v̄i), (vi, si), (v̄i, si), (si, TVi,1), . . . , (si, TVi,c); for every j = 1, ..., ν we create
the arcs (vi, TCj) (resp. (v̄i, TCj)) if xi (resp. x̄i) is in Cj. All the arcs have capacity
c. The resulting graph G can clearly be obtained in polynomial time and is a DAG.
For the undirected case, we consider the same graph, but we replace each arc by an
edge. The construction is illustrated in Figure 7 for c = 2 and the 3-SAT3 instance
where X = {x1, x2, x3, x4} and C = {x1x̄2x3, x̄2x̄3x4}, the arcs being oriented from
r down to the terminals in the directed case.

r

TV1,1 TV1,2 TV2,1 TV2,2 TV3,1 TV3,2 TV4,1 TV4,2

s1 TC1 s2 s3 TC2 s4

v1 v1 v2 v2 v3 v3 v4 v4

Figure 7: From 3-SAT3 to CAP-STEINER-TREE.

Assume there is a truth assignment τ : X → {true, false} for I. We construct
a feasible solution S to I ′ as follows. If τ(xi) = false (resp. τ(xi) = true) then we
include (vi, si) (resp. (v̄i, si)) in S. For each clause Cj, we choose one of the true
litterals in Cj, say xi (resp. x̄i), and add the arc (vi, TCj) (resp. (v̄i, TCj)) to S.
Finally, for all i = 1, ..., ξ, we add the arcs (r, vi), (r, v̄i), (si, TVi,1), . . . , (si, TVi,c)
to S. Clearly, S is a tree rooted at r and spanning all the terminals; in fact, S is
a spanning tree. For every i = 1, . . . , ξ with τ(xi) = false (resp. τ(xi) = true), r
is (r, vi)-linked (resp. (r, v̄i)-linked) to TVi,1, . . . , TVi,c, and is (r, v̄i)-linked (resp.
(r, vi)-linked) to at most two terminals TCj associated with clauses containing
x̄i (resp. xi), since there are at most two such clauses. Since c ≥ 2, all capac-
ity constraints are satisfied. The solution S associated with the truth assignment
τ(x1, x2, x3, x4) = (true, false, false, true) is represented in Figure 7 with bold lines.
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Now, let S be a feasible solution to I ′. Consider first the directed case. For all
j = 1, ..., ν, there is at least one index i such that either (vi, TCj) ∈ S and we then
set τ(xi) = true or (v̄i, TCj) ∈ S and we then set τ(xi) = false. If a variable did
not get any value, we arbitrarily choose one, say true. This gives a truth assignment
satisfying each clause Cj. Let us verify that we have not assigned simultaneously
values true and false to some variable. Notice first that, since S has no cycle,
r is either (r, vi)-linked or (r, v̄i)-linked to the c terminals TVi,1, . . . , TVi,c. Since
all capacities equal c, this means that either vi or v̄i has no TCj (j = 1, . . . , ν)
as successor, which means that we do not assign both values true and false to a
variable xi.

Consider now the undirected case. If there is an index i such that (si, vi) ∈ S,
then (v̄i, si) ∈ S since, in this case, r must be (v̄i, si)-linked to TVi,1, . . . , TVi,c in
S. Hence, (r, vi) /∈ S (otherwise, there would be a cycle in S) and we can replace
(si, vi) by (r, vi). Similarly, if (si, v̄i) ∈ S for some index i, we replace this arc by
(r, v̄i). Assume now that (vi, TCj) ∈ S and (r, vi) /∈ S for some i ∈ {1, . . . , ξ} and
j ∈ {1, . . . , ν}. Then, we have (TCh, vi) ∈ S for some index h 6= j and we replace
(TCh, vi) by (r, vi). We make a similar exchange if (v̄i, TCj) ∈ S and (r, v̄i) /∈ S.
After having performed all these replacements, we get a new spanning tree S ′, since
each vertex (except the root) still has exactly one incoming arc. Moreover, S ′ has
the same structure as the tree S analyzed in the directed case. We can therefore
obtain a satisfying truth assignment using the same rules as above. �

Remember (see Section 1) that EDGE-COST-FLOW consists in determining a
minimum-length feasible flow of K units from s to t in a given graph, where
the length of a flow is the total length of the arcs/edges carrying a positive flow.
EDGE-COST-FLOW is very close to ML-CAP-STEINER-TREE. Indeed, given an instance
of ML-CAP-STEINER-TREE in a graph G with K terminals, we can construct a graph
G′ obtained from G by adding a vertex r′ and linking every terminal to this new
vertex. Solving EDGE-COST-FLOW in G′ with s = r and t = r′ is then equivalent to
solving ML-CAP-STEINER-TREE in G, except that a feasible solution is not required
to be a tree. The proof of Theorem 5.5 provides the following corollary:

Corollary 5.6 EDGE-COST-FLOW is NP-hard in DAGs and undirected graphs, even
if all lengths are 1 and all capacities are 1 or 2.

Proof: Consider first the directed acyclic case. Given an instance I = (X,C)
of 3-SAT3, let us construct a graph G = (V,E), as in the proof of Theorem 5.5,
setting c = 2. We then add a vertex r′ and link TVi,1, TVi,2 (i = 1, . . . , ξ) and TCj
(j = 1, . . . , ν) to r′. For all arcs e incident to r, as well as those linking si to TVi,1
and TVi,2, we set `(e) = 1, while `(e) is set to 4ξ + 1 for all other arcs e. All arcs
have capacity 2, except those incident to r′ which have capacity 1. We then solve
an EDGE-COST-FLOW instance, looking for a flow of K = 2ξ + ν units from r to r′.
Let I ′ be this instance. We prove that I is satisfiable if and only if the total length
of an optimal solution to I ′ is at most L = (4ξ + 1)(3ξ + 2ν) + 4ξ.

If there is a satisfying truth assignment for I, we construct a solution S to I ′ as
in the proof of Theorem 5.5, except that we add an arc from every terminal to r′.
It is not difficult to check that the total length of such a solution is at most L.
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Consider now a solution S to I ′ of total length at most L. Since the 2ξ + ν
arcs incident to r′ have capacity 1, they all carry a positive flow. Hence, for every
j = 1, . . . , ν, there is at least one index i such that (vi, TCj) or (v̄i, TCj) carries a
positive flow in S. Moreover, for every i = 1, . . . , ξ, at least one of the arcs (vi, si)
and (v̄i, si) carries a positive flow in S. Therefore, the total length of S is at least
(4ξ + 1)(3ξ + 2ν) = L− 4ξ, which means that no other arc e with `(e) = 4ξ + 1 can
belong to S. In particular, for every j = 1, . . . , ν, there is exactly one arc in S with
a positive flow linking a vertex in {v1, v̄2, v2, v̄2, . . . , vξ, v̄ξ} to TCj, and, for every
i = 1, ..., ξ, exactly one of the arcs (vi, si) and (v̄i, si) carries a positive flow flow in
S. If (vi, si) (resp. (v̄i, si)) carries a positive flow in S, then there is no flow on the
arcs linking vi (resp. v̄i) to a TCj since (r, vi) (resp. (r, v̄i)) has capacity 2 while 2
units of flow are used to reach TVi,1 and TVi,2. Hence the structure of S is the same
as in the proof of Theorem 5.5, and we can set xi = false if (vi, si) carries a positive
flow in S, and xi = true otherwise, to obtain a satisfying truth assignment for I.

To obtain a graph with uniform length 1, we replace each arc e by a path with
`(e) arcs of length 1.

The proof is similar for the undirected case. �

We close this section by considering a final uniform case for ML-CAP-STEINER-TREE.

Theorem 5.7 ML-CAP-STEINER-TREE is NP-hard in any graph, even if all capaci-
ties are equal to K − κ for any positive constant κ and if all lengths are 1.

Proof: It is well-known that STEINER-TREE is NP-hard even in the case of unit
lengths [19]. Given any positive number κ, we show how to polynomially reduce
STEINER-TREE with unit lengths to ML-CAP-STEINER-TREE with uniform capacity
K − κ and unit lengths. Let I ′ be an instance of STEINER-TREE in a graph G′ =
(V ′, E ′) with K ′ terminals and `(e) = 1 for all e ∈ E. We construct a graph G =
(V,E) from G′ by adding κ terminals and linking them to r with edges/arcs of length
1. We then set all capacities to K ′ to obtain an instance I of ML-CAP-STEINER-TREE
with K = K ′+κ terminals, `(e) = 1 and c(e) = K−κ for all e ∈ E. Clearly, solving
I ′ is equivalent to solving I, and I can be built from I ′ in polynomial time. �

6 ML-CAP-STEINER-TREE with a fixed number of ter-

minals

In this section, we assume that the number K of terminals is fixed. The first theorem
deals with undirected graphs having uniform capacity, and complements Theorems
5.3 and 5.5.

Theorem 6.1 In undirected graphs with a fixed number K of terminals and uniform
capacity, CAP-STEINER-TREE is solvable in polynomial time, and ML-CAP-STEINER-TREE

is polynomially equivalent to ML-VDISJ-PATH with a fixed number of source-sink
pairs.

Proof: The first part of the theorem is a direct consequence of Theorem 4.6, since
VDISJ-PATH is polynomial-time solvable –and even FPT– in undirected graphs when
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the number of source-sink pairs is fixed [31]. The second part comes from Theorems
4.4 and 4.6. �

On the one hand, recall that, for a fixed number p of source-sink pairs, the
complexity of ML-VDISJ-PATH in undirected graphs is open for a long time [25] (and
so determining the one of ML-CAP-STEINER-TREE in this case is as hard as settling
this open problem); however, there exists a probabilistic polynomial-time algorithm
to solve the case with two source-sink pairs [4], although no deterministic one is
known yet. On the other hand, Corollary 5.4 shows that ML-LAB-VDISJ-PATH with
lengths 0 is already NP-complete in undirected graphs when p ≥ 2 is fixed. The next
theorem shows that ML-LAB-VDISJ-PATH is tractable in DAGs if p is fixed, which
will come in handy for proving that ML-CAP-STEINER-TREE is solvable in polynomial
time in DAGs if K is fixed.

Theorem 6.2 In DAGs, ML-LAB-VDISJ-PATH is solvable in polynomial time for
any fixed number of source-sink pairs.

Proof:
We solve ML-LAB-VDISJ-PATH by using a dynamic programming algorithm. More

precisely, consider a DAG G = (V,E) with a label λ(e) on each arc e ∈ E, and with
p vertex-disjoint pairs (si, s

′
i) and their associated label sets Li. We first order the

vertices of G using a topological ordering, and denote by num(v) the position of
each vertex v in such an ordering (i.e., num(u) < num(v) for all (u, v) ∈ E).

Let P be the set of p-tuples (v1, . . . , vp) of vertices of G, and let f : P → N
be the function such that f(v1, . . . , vp) is the minimum total length of a set of p
vertex-disjoint paths in G such that the ith one goes from si to vi and uses only arcs
with labels in Li. If num(vi) ≤ num(si) for all i = 1, . . . , p, then f(v1, . . . , vp) = 0
if vi = si for all i, and f(v1, . . . , vp) = +∞ otherwise. Consider now a p-tuple
(v1, . . . , vp) such that num(vi) > num(si) for at least one index i, and let h be
the index such that num(vh) = maxi:num(vi)>num(si){num(vi)}. If vh = vi for some
i 6= h, then f(v1, . . . , vp) = +∞. Otherwise, let F be the set of vertices v such that
num(v) ≥ num(sh) and there exists an arc (v, vh) whose label is in Lh. If F = ∅
then f(v1, . . . , vp) = +∞; otherwise, we have

f(v1, . . . , vh−1, vh, vh+1, . . . , vp) = min
v∈F
{`(v, vh) + f(v1, . . . , vh−1, v, vh+1, . . . , vp)}.

The dynamic programming algorithm works as follows. For val from 2 to n, we
enumerate all p-tuples v1, . . . , vp with maxi:num(vi)>num(si){num(vi)} = val and, for
each of them, we compute the corresponding value of f . The number of enumerated
p-tuples is thus in O(np+1) and the value of each one can be computed in O(n), which
yields an O(np+2)-time algorithm. The optimal value to the ML-LAB-VDISJ-PATH

instance is then equal to f(s′1, . . . , s
′
p). �

Theorem 6.3 ML-CAP-STEINER-TREE is solvable in polynomial time in DAGs if K
is fixed.

Proof: This is a direct consequence of Theorems 4.5 and 6.2. �
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Notice that ML-LAB-VDISJ-PATH in DAGs cannot be FPT in p (unless FPT=W[1]),
since VDISJ-PATH (i.e., the special case where all arcs have zero length and Li =
{1, . . . , k} for each i) is W[1]-hard with respect to p in DAGs [34]. Moreover,
ML-CAP-STEINER-TREE cannot be FPT in K (unless FPT=W[1]), since Theorem
4.4 shows that ML-VDISJ-PATH can be FPT-reduced to ML-CAP-STEINER-TREE (with
respective parameters p and K = p2).

7 ML-CAP-STEINER-TREE with large capacities

In this section, we study the case where all capacities are almost equal to the number
of terminals. We first consider the case where the minimum capacity cmin is at least
equal to K−κ, where κ ≥ 0 is an arbitrary constant. In what follows, we denote by
ρ the best possible approximation ratio for STEINER-TREE (ρ ≤ 1.39 in undirected
graphs [6]), and by ρ′ the best possible approximation ratio for ML-VDISJ-PATH

with a fixed number of source-sink pairs. As mentioned in the previous section,
ρ′ = 1 in DAGs, and determining whether ρ′ = 1 or not in undirected graphs is a
long-standing open problem.

Without loss of generality, we assume in this section that `(e) ∈ N∗ for all e ∈ E.
If this is not the case, we modify the lengths as follows: for all e ∈ E, we multiply
`(e) by D|E| if `(e) > 0, where D is the lowest common multiple of the denominators
of the lengths `(e), and we set `(e) = 1 if e has length zero.

7.1 ML-CAP-STEINER-TREE with cmin ≥ K−κ for any constant
κ ≥ 0

The first result obtained in this section complements Theorem 5.7 and generalizes
the first part of Theorem 6.1. Notice that, from Theorem 5.1, CAP-STEINER-TREE is
NP-complete in digraphs with uniform capacity c = K − κ for any constant κ ≥ 2.

Theorem 7.1 In DAGs and undirected graphs having uniform capacity c = K − κ,
CAP-STEINER-TREE is solvable in polynomial time and ML-CAP-STEINER-TREE can
be approximated within a ratio of ρ′ + ρ, for any constant κ ≥ 0.

Proof: We first state and prove some useful properties. Let I be an instance of
CAP-STEINER-TREE.

Claim 7.1 There is a feasible solution S for I if and only if there is a tree SR

(called reduced tree) rooted at r, spanning a subset T ′ ⊆ T of terminals, and such
that, for every edge e incident to r in SR, r is ē-linked to at least κ terminals in SR.

Proof: A feasible solution for I is clearly such a tree. So, assume that such a tree
SR exists. We iteratively complete SR to obtain a Steiner tree S spanning also the
terminals in T \ T ′ as follows. For every terminal t /∈ T ′, we consider any path µ
from r to t in G, and we add to SR the subpath of µ from v to t, where v is the
vertex in SR ∩ µ the closest to t on µ. From the hypothesis, given any edge e of G
(including those not in SR), we know that r is ē-linked to at least κ terminals in
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SR. Hence, S does not violate the capacity constraints and is therefore a feasible
solution to I. �

Claim 7.2 If SR is a minimal, i.e. inclusion-wise minimal, reduced tree, then each
of its subtrees rooted at a vertex distinct from r contains at most κ terminals.

Proof: Let SR be a minimal reduced tree, and assume it contains a vertex v 6= r
such that SR(v) contains at least κ + 1 terminals. We can assume without loss of
generality that v is a child of r. Since all terminals are leaves, we can remove one
of the terminals of SR(v) from SR to obtain a smaller reduced tree, a contradiction.
�

Claim 7.3 A minimal reduced tree contains at most 2κ terminals.

Proof: Assume a minimal reduced tree SR contains at least 2κ+ 1 terminals, and
consider any child v of r in SR. It follows from the previous claim that r is (r, v)-
linked to at least κ+ 1 terminals in SR. All terminals being leaves, we can therefore
delete any terminal from SR to obtain a smaller reduced tree, a contradiction. �

We can now prove Theorem 7.1. We first consider CAP-STEINER-TREE. According
to Claim 7.3 and Property 3.1, the undirected skeleton of a minimal reduced tree
can contain up to 4κ vertices. We therefore enumerate all labelled trees (including
potential skeletons of reduced trees) on at most 4κ vertices. We then orient each of
them from the root to the leaves, and for each such rooted tree we try to replace
the arcs by vertex-disjoint paths in a similar way as in Theorem 4.6. If such a
replacement is possible, we test whether the extended skeleton is a reduced tree:
in such a case, we stop the enumeration since we know from Claim 7.1 that the
CAP-STEINER-TREE instance I has a feasible solution. If no potential skeleton can
be extended to a reduced tree, then I has no solution: indeed, if such a solution S
exists, it contains a minimal reduced tree, whose skeleton is necessarily considered in
our enumeration and then extended to a reduced tree, which leads to a contradiction.

There are O(K2κ) ways of choosing at most 2κ terminals among K. For each
such choice of at most 2κ terminals, it then follows from Property 3.3 that the
set of potential skeletons of minimal reduced trees spanning these terminals can be
enumerated in O(n2κ−1) time (since κ is a constant). Finally, at most 4κ − 1 arcs
must be replaced by vertex-disjoint paths in every potential skeleton (recall that
this can be done in polynomial time in DAGs and undirected graphs, since κ is a
constant). Hence, the whole process takes a polynomial time.

Consider now a ML-CAP-STEINER-TREE instance I ′. We proceed as above, but in-
stead of choosing arbitrary vertex-disjoint paths, we solve the associated ML-VDISJ-PATH

instance with a ρ′-approximation algorithm, and, instead of stopping the enumer-
ation when a reduced tree is found, we enumerate all of them and store the best
one, denoted by S1. Notice that the total length of S1 is at most ρ′ times larger
than the total length of an optimal solution to I ′ since such an optimal solution
contains a reduced tree. We then use a ρ-approximation algorithm to determine a
minimum-length Steiner tree S2 spanning all the terminals not already spanned by
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S1. Clearly, the total length of S2 is at most ρ times larger than the total length
of an optimal solution to I ′. We finally build a solution S to I ′ by removing from
S1 ∪ S2 all arcs of S2 entering a vertex with in-degree 2 in S1 ∪ S2. This yields a
(ρ′+ρ)-approximation algorithm to ML-CAP-STEINER-TREE (with ρ′ = 1 for DAGs).
�

It follows from Theorem 5.3 that CAP-STEINER-TREE with non-uniform capacities
is NP-complete in undirected graphs when the minimum capacity cmin equals K−κ,
for any constant κ ≥ 2. We show however that Theorem 7.1 can be extended to
DAGs with non-uniform capacities.

Theorem 7.2 In DAGs with cmin ≥ K−κ, CAP-STEINER-TREE is solvable in poly-
nomial time and ML-CAP-STEINER-TREE can be approximated within a ratio of 1+ρ,
for any constant κ ≥ 0.

Proof: As was the case for the previous theorem, we start with some claims. In
particular, we extend the definition of a reduced tree to take into account the non-
necessarily uniform capacities. Let I be an instance of CAP-STEINER-TREE in a DAG
with cmin ≥ K − κ for some constant κ ≥ 0. If K < κ, then the result follows from
Theorem 6.3. So, assume K ≥ κ.

Claim 7.4 There is a feasible solution S to I if and only if there is a tree SR (called
a reduced tree) rooted at r, spanning at least κ terminals, and such that, for each arc
a with capacity c(a) (not only those incident to r), r is ā-linked to at least K − c(a)
terminals in SR.

Proof: A solution for I is clearly such a tree. Now, assume the existence of a
reduced tree SR that spans a subset T ′ of at least κ terminals. We complete SR to
obtain a Steiner tree S spanning also the terminals in T \ T ′, as in Claim 7.1. From
the hypothesis, for each arc a of SR, r is ā-linked to at least K − c(a) terminals in
SR, and, for each arc b of G not in SR, r is b̄-linked to at least |T ′| ≥ κ ≥ K − c(a)
terminals of SR. Hence, S does not violate the capacity constraints and is thus a
feasible solution to I. �

Claim 7.5 In any minimal, i.e. inclusion-wise minimal, reduced tree SR, no vertex
has out-degree greater than κ+ 1.

Proof: Assume that a minimal reduced tree SR contains a vertex v with at least
κ + 2 outgoing arcs and let v′ be a child of v in SR. Let S ′R denote the subtree
obtained from SR by removing all vertices of SR(v′). Since every subtree SR(w)
of SR rooted at a child w of v contains at least one terminal (otherwise SR is not
minimal), we know that S ′R(v) (and thus also S ′R) spans at least κ+1 > κ terminals.
Hence, for every arc a of S ′R not on the path from r to v in SR and not in S ′R(v),
we know that r is ā-linked to at least κ+ 1 > K − c(a) terminals in S ′R. For every
child w of v in S ′R, we know that, for any arc a in S ′R(w)∪{(v, w)}, r is ā-linked to
the at least κ ≥ K − c(a) terminals in the subtree of S ′R(v) obtained by removing
all the vertices of S ′R(w). Finally, for any arc a on the path from r to v in S ′R, we
know that r is ā-linked to at least K − c(a) terminals in S ′R, since this was the case
in SR. Hence, we have proved that S ′R satisfies the definition of a reduced tree, and
is included in SR while being smaller, a contradiction. �
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Claim 7.6 Any directed path in the skeleton of a minimal reduced tree SR contains
at most κ+ 1 arcs.

Proof: Assume that the skeleton of a minimal reduced tree SR contains a directed
path with at least κ+ 2 arcs. Without loss of generality, we can choose such a path
µ from r to a terminal t ∈ T , since each leaf is a terminal (otherwise SR is not
minimal). We denote by v the predecessor of t in µ. Since each internal vertex of
µ has degree at least 3 in the skeleton of SR (and hence in SR), and since SR is
minimal, we know that SR spans at least κ+ 2 terminals. We now remove the path
from v to t in SR and thus obtain a subtree S ′R spanning at least κ + 1 terminals.
Using arguments similar to those in the proof of Claim 7.5, it is easy to check that
S ′R satisfies the definition of a reduced tree, which means that SR was not minimal,
a contradiction. �

We can now prove Theorem 7.2. It follows from Claims 7.5 and 7.6 that the
skeleton of a minimal reduced tree has maximum out-degree κ + 1 and maximum
height κ+ 1. Hence, the undirected skeleton of a minimal reduced tree contains at
most Λ = (κ + 1)κ+1 terminals (which are its leaves), and it follows from Property
3.1 that such a skeleton has at most 2Λ vertices.

We therefore enumerate all trees with at most 2Λ vertices, keeping only those
that span at least κ and at most Λ terminals, in order to ensure that any potential
skeleton of a minimum reduced tree is enumerated. Each such enumerated tree is
oriented from r to the leaves, and we then try to replace its arcs by vertex-disjoint
paths but, unlike in Theorem 7.1, when replacing an arc (u, v) of a tree by a path,
we impose that each arc of the path from u to v has a label (capacity) ≥ K − x,
where x is the number of terminals which are not descendant of v in the tree. In
other words, instead of solving a VDISJ-PATH instance, we solve a LAB-VDISJ-PATH

instance. If all arcs can be replaced by labelled vertex-disjoint paths, we test whether
the extended skeleton is a reduced tree: in such a case, we stop the enumeration,
since we know from Claim 7.4 that I has a feasible solution. Otherwise, we conclude
that I has no solution.

Let us show that the whole process takes a polynomial time. Λ being a constant,
this means that, from Cayley’s formula and from the number of ways for choosing
at most 2Λ vertices among n, there is a polynomial number of labelled trees to
enumerate. Besides, since the number of arcs that must be replaced by vertex-
disjoint paths is at most 2Λ − 1 in each tree, this means, from Theorem 6.2, that
the associated LAB-VDISJ-PATH instance can be solved in polynomial time.

Consider now a ML-CAP-STEINER-TREE instance I ′. We proceed in a similar way
as in Theorem 7.1. More precisely, instead of choosing arbitrary vertex-disjoint
paths, we solve an ML-LAB-VDISJ-PATH instance with a fixed number of vertex
pairs, which takes a polynomial time in DAGs according to Theorem 6.2. However,
instead of stopping the enumeration when a reduced tree is found, we enumerate all
of them and store the best one, that we denote by S1. The total length of S1 is a
lower bound on the total length of an optimal solution to I ′, since such an optimal
solution contains a reduced tree. We then use a ρ-approximation algorithm to
determine a minimum-length Steiner tree S2 spanning all the terminals not already
spanned by S1. The total length of S2 is at most ρ times larger than the total length
of an optimal solution to I ′. We finally build a solution S to I ′ by removing from
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S1 ∪ S2 all arcs of S2 entering a vertex with in-degree 2 in S1 ∪ S2. This yields a
(1 + ρ)-approximation algorithm for ML-CAP-STEINER-TREE in DAGs. �

7.2 ML-CAP-STEINER-TREE with cmin ≥ K − 1

The results given in this section generalize the main results known about the com-
plexity and approximation of STEINER-TREE.

If cmin ≥ K, then any Steiner tree is a feasible solution to CAP-STEINER-TREE, and
thus ML-CAP-STEINER-TREE is equivalent to STEINER-TREE, which can be solved in
polynomial time whenK is fixed [11, 16, 38]. So consider the case where cmin = K−1.
In what follows, we denote by EK the subset of arcs/edges with capacity at least
K. Let I be an ML-CAP-STEINER-TREE instance and let S be an optimal solution
to I. Let w be the closest vertex to r in S having out-degree at least 2 (with
possibly r = w). All arcs on the path linking r to w are in EK , while those in S(w)
can have any capacity since r is e-linked to at most K − 1 terminals for all e in
S(w). Moreover, S(w) spans all terminals and, since we can assume that all vertices
without outgoing arcs in S are terminals, we know that S contains at most K − 1
vertices of degree at least 3 (see the proof of Property 3.1).

Assume we can find in G a vertex w and two terminals ti and tj such that there
are three internally vertex-disjoint paths: µrw from r to w (with possibly r = w)
with all its arcs in EK , µwti from w to ti, and µwtj from w to tj. We can then
build a feasible solution to I by extending µrw ∪ µwti ∪ µwtj arbitrarily to obtain
a Steiner tree spanning all terminals. Indeed, any arc in µrw ∪ µwti ∪ µwtj has a
residual capacity ≥ K − 2, and there are K − 2 other terminals to span in order to
get a Steiner tree. Conversely, if there is a feasible solution to I, then there is such
a triple (w, ti, tj).

Claim 7.7 Let S be an optimal solution to an instance I of ML-CAP-STEINER-TREE
in a graph G = (V,E) with cmin = K − 1 and `(e) > 0 for all e ∈ E. Let w be the
vertex with out-degree at least 2 the closest to r in S, and let µrw be the path from r
to w in S. Then all shortest paths from r to w in G′ = (V,EK) intersect S(w) only
at w, and µrw is one of them.

Proof: First notice that S = µrw ∪S(w) and all arcs of µrw belong to EK . Let µ′rw
be any shortest path from r to w in G′, and let W be the set of vertices that belong
to both µ′rw and S(w). If W = {w} then S ′ = µ′rw ∪S(w) is a feasible solution to I,
which means that `(µrw) = `(µ′rw), otherwise S would not be optimal.

So assume W 6= {w} and let S ′ be the tree obtained from S by replacing µrw by
µ′rw, and by removing all arcs (u, v) /∈ µ′rw with v ∈ W , to ensure that each vertex
(except r) still has in-degree 1. Notice that `(S ′) < `(S), since µ′rw ≤ µrw and at
least one arc (of length > 0) is removed from S(w) to obtain S ′. Then, we remove all
arcs (u, v) such that S ′(v) contains no terminal (since they are useless in a solution
to I). This way, we obtain a new tree S ′′ rooted at r, spanning all terminals, and
such that `(S ′′) < `(S) and S ′′(v) ∩ T 6= ∅ ∀v ∈ S ′′. This is illustrated on Figure 8.

Let w′ be a vertex in W \ {w}, and let t be any terminal in S(w′). In S ′′, there
is a path from r to t, while there is no path from w to t. So w′′, which is the closest
vertex to w on µ′rw verifying t ∈ S ′′(w′′), has outdegree at least 2 in S ′′.
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Figure 8: Illustration of the proof of Claim 7.7.

Let ŵ be the vertex with outdegree at least 2 which is the closest to r in S ′′ (ŵ
belongs to µ′rw \ {w}, from the previous paragraph), and let µ′′rŵ be the path from
r to ŵ in S ′′. Note that the only vertices v in S ′′ with S ′′(v) ∩ T = T are those on
µ′′rŵ, and that all arcs on µ′′rŵ have capacity at least K since they also belong to µ′rw.
Moreover, since S ′′(v) ∩ T 6= ∅ for every child v of ŵ in S ′′, all arcs in S ′′(ŵ) only
need to have capacity K−1. Hence, S ′′ is a feasible solution to I with `(S ′′) < `(S),
a contradiction. �

We now consider ML-CAP-STEINER-TREE with cmin ≥ K − 1 and show that, when
K is fixed, it is solvable in polynomial time.

Theorem 7.3 If K is fixed and cmin ≥ K−1, ML-CAP-STEINER-TREE can be solved
by an algorithm whose running time is polynomial, and whose only non FPT factor
with respect to K is O(nO(log(K))). In particular, ML-CAP-STEINER-TREE is solvable
in polynomial time if K = 2.

Proof: The case cmin ≥ K has already been settled at the beginning of this section.
So, assume cmin = K − 1. Given an instance I of ML-CAP-STEINER-TREE, we solve
I as follows. We consider all vertices w such that w is either the root r or a vertex
of degree at least 3 in G. For each such vertex w:

• We determine a shortest path µrw from r to w in G′ = (V,EK), and we denote
by Gw the subgraph of G obtained by removing all vertices of µrw, except w;

• We consider all pairs (ti, tj) of distinct terminals and all subsets W of at most
2 log2(K)− 2 vertices v 6= w of degree at least 3 in Gw.

So, let (w, ti, tj,W ) be such a quadruple. We first determine two internally vertex-
disjoint paths µwti and µwtj linking w to ti and to tj in Gw, and such that µwti ∪µwtj
contains all vertices of W and has minimum total length. As in the proof of Theorem
4.1, this can be done in polynomial time: we add a sink s and two arcs (ti, s)
and (tj, s), and we determine two internally vertex-disjoint paths of minimum total
length from w to s by using a min-cost flow algorithm; in addition, we impose a
flow equal to 1 on each arc (v′, v′′) corresponding to a vertex v of W in the graph H
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obtained from Gw (as in the proof of Theorem 4.1), to ensure that the paths contain
W .

Assume we are able to find the two internally vertex-disjoint paths µwti and µwtj
in Gw. We then consider the graph G′w obtained from Gw by assigning a length 0
to all arcs on µwti ∪ µwtj , and we determine a directed tree Swtitj of minimum total
length in G′w, rooted at w, and spanning all terminals in T \ {ti, tj}. Let Rwtitj

denote the set of arcs (u, v) in Swtitj with v not belonging to µwti ∪ µwtj . We finally
build a solution to I by taking all arcs of µrw ∪ µwti ∪ µwtj ∪Rwtitj .

Among all built solutions, we keep the best one, which we denote by Sbest. We
now prove that Sbest is an optimal solution to I. Let S∗ be an optimal solution to
I, and let w be the vertex in S∗ the closest to r with out-degree at least 2. Let v1

and v2 be two children of w in the skeleton of S∗, and let ti (resp. tj) be a terminal
in S∗(v1) (resp. S∗(v2)) closest to v1 (resp. v2) in terms of the number of vertices
on the path linking them in the skeleton of S∗(v1) (resp. S∗(v2)). We denote by
µ∗rw, µ

∗
wti

and µ∗wtj the paths in S∗ linking r to w, w to ti, and w to tj, respectively.
Finally, let W be the set of vertices v 6= w on µ∗wti ∪ µ

∗
wtj

having degree at least 3 in
S∗, and let R∗ denote the set of arcs in S∗ that do not belong to µ∗rw ∪ µ∗wti ∪ µ

∗
wtj

.
We first prove that the proposed algorithm considers the quadruple (w, ti, tj,W ).

Since w has out-degree at least 2, it is either the root r or a vertex of degree at least
3 in G. It follows from Claim 7.7 that Gw contains all vertices of W . Hence, we
only have to prove that |W | ≤ 2 log2(K) − 2. Let n1 (resp. n2) be the number of
vertices in the skeleton of S∗(v1) (resp. S∗(v2)). If n1 = 1, the path from v1 to ti in
the skeleton of S∗ is reduced to 1 = log2(n1 + 1) vertex v1 = ti; otherwise, v1 has
out-degree at least 2 in S∗, and we know from the proof of Property 3.2 that the
path from v1 to ti in the skeleton of S∗ has at most log2(n1 + 1) vertices. Similarly,
the path from v2 to tj in the skeleton of S∗ has at most log2(n2 + 1) vertices. Hence
W contains at most log2(n1 + 1) + log2(n2 + 1)− 2 vertices. Since w has out-degree
at least 2, it follows from Property 3.1 that the skeleton of S∗(w) contains at most
2K−1 vertices, which implies n1+n2 ≤ 2K−2. The sum log2(n1+1)+log2(n2+1)−2
is therefore maximized for n1 = n2 = K− 1, which implies that W contains at most
2 log2(K)− 2 vertices.

We now prove that `(Sbest) ≤ `(S∗). Let µrw ∪µwti ∪µwtj ∪Rwtitj be the solution
returned by the proposed algorithm for the quadruple (w, ti, tj,W ). It follows from
Claim 7.7 that `(µrw) = `(µ∗rw), and that Gw contains all vertices of S∗(w). Since
µ∗wti and µ∗wtj are two internally vertex-disjoint paths linking w to ti and to tj in Gw,
we have `(µwti) + `(µwtj) ≤ `(µ∗wti) + `(µ∗wtj). Consider now the set R′∗ of arcs (u, v)
in R∗ with v not belonging to µwti ∪µwtj , and let S be the tree obtained from S∗(w)
by replacing µ∗wti and µ∗wtj by µwti and µwtj , and by removing the arcs in R∗ \ R′∗.
Note that S is a tree rooted at w, spanning all terminals in T ⊃ T \ {ti, tj}, and
with total length at most equal to `(R∗) in G′w (since all arcs in µwti ∪ µwtj have
length 0 in G′w). Hence, `(Rwtitj) ≤ `(Swtitj) ≤ `(S) ≤ `(R∗) in G′w, which implies
`(Rwtitj) ≤ `(R∗) in G. In summary,

`(Sbest)=`(µrw) + `(µwti) + `(µwtj) + `(Rwtitj)

≤ `(µ∗rw) + `(µ∗wti) + `(µ∗wtj) + `(R∗)

= `(S∗).
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The total number of possible quadruples is O(K2nO(log(K))). For each of them,
we have to compute a shortest path, a minimum-cost flow, and an optimal Steiner
tree spanning K − 2 terminals. The latter problem can be solved in time FPT with
respect to the number of terminals [11, 16, 38], and the other two problems can be
solved in polynomial time [1]. �

Together with Theorem 6.1, the previous theorem shows, in particular, that The-
orems 5.1 and 5.3 are best possible. It also implies, together with Theorem 4.1, that
ML-CAP-STEINER-TREE is polynomial-time solvable if K = 3 and all capacities are
equal. When K is part of the input (i.e., not fixed), we have the following result,
which complements Theorem 5.7.

Theorem 7.4 If cmin ≥ K − 1, CAP-STEINER-TREE is solvable in polynomial time
and ML-CAP-STEINER-TREE can be approximated within a ratio of 1 + ρ.

Proof: We use the same ideas as those used in the proof of the previous theorem.
More precisely, for solving an instance I of CAP-STEINER-TREE, we enumerate all
triples (w, ti, tj), where w is either the root r or a vertex of degree at least 3 in G,
and ti, tj both belong to T . For each such triple, we determine a shortest path µrw
from r to w in G′ = (V,EK), remove all vertices of µrw, except w, to create Gw, and
determine two internally vertex-disjoint paths µwti and µwtj from w to ti and to tj
in Gw. This can be done in polynomial time using path and flow techniques similar
to those used in the previous proof (without lengths on the arcs). If we succeed in
finding the three paths µrw, µwti , µwtj for a triple (w, ti, tj), then we greedily complete
their union into a Steiner tree rooted at r and spanning all terminals, which gives
a solution to I. Otherwise, I does not have any feasible solution. All this can be
done in polynomial time, since there are O(nK2) triples (w, ti, tj) to enumerate.

For an instance I ′ of ML-CAP-STEINER-TREE, we again enumerate all triples
(w, ti, tj), and determine for each such triple a shortest path µrw from r to w in
G′, as well as two internally vertex-disjoint paths of shortest total length, µwti and
µwtj from w to ti and to tj in Gw (as in the proof of Theorem 7.3). If we suc-
ceed in finding the three paths µrw, µwti , µwtj for a triple (w, ti, tj), we then use
a ρ-approximation algorithm to determine a directed tree Swtitj of minimum total
length, rooted at r, and spanning all terminals in T \ {ti, tj}. Let Rwtitj be the set
of arcs (u, v) in Swtitj with v not belonging to µrw ∪ µwti ∪ µwtj ; we build a solution
to I ′ by taking all arcs of µrw ∪ µwti ∪ µwtj ∪ Rwtitj . Among all built solutions, we
keep the best one, which we denote by Sbest. Now, let S∗ be an optimal solution to
I ′, and let w be the vertex in S∗ the closest to r with out-degree at least 2. Let v1

and v2 be two distinct children of w in S∗, and let ti be a terminal in S∗(v1), and tj
a terminal in S∗(v2). The triple (w, ti, tj) is considered in our enumeration, and we
clearly have `(µrw) + `(µwti) + `(µwtj) ≤ `(S∗) and `(Rwtitj) ≤ `(Swtitj) ≤ ρ`(S∗).
Hence, `(Sbest) ≤ (1 + ρ)`(S∗).

Again, the whole process takes a polynomial time. Indeed, there are O(nK2)
enumerated triples, and, for each of them, we have to determine a shortest path, a
minimum-cost flow, and a ρ-approximate solution to an instance of STEINER-TREE.
All these problems can be solved in polynomial time. �
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8 Concluding remarks

We have studied the complexity of ML-CAP-STEINER-TREE in digraphs, DAGs and
undirected graphs, and we have dealt with any possible case with respect to all the
parameters that we considered (minimum and maximum capacities, lengths, and
number of terminals). Moreover, whenever ML-CAP-STEINER-TREE was intractable
while CAP-STEINER-TREE, the case with lengths 0, was not, we have provided ap-
proximation results for ML-CAP-STEINER-TREE nearly as good as the best ones for
STEINER-TREE.

While we have also obtained some results about the parameterized complexity of
ML-CAP-STEINER-TREE, several questions remain open in this area:

• The results associated with leaves 11 and 13 in Figure 1 are best possible,
since the FPT-reduction from VDISJ-PATH parameterized by p described in
Theorem 4.4 shows in particular that CAP-STEINER-TREE is W[1]-hard
with respect to either K or κ in this case, even with uniform capacities (note
that, in this reduction, we have K = O(p2) and κ = O(p2)).

• However, the result associated with leaf 9 in Figure 1 may not be the best
possible one (i.e., this case might actually be FPT with respect to κ), since
in undirected graphs VDISJ-PATH is FPT with respect to p (so Theorem 4.4
does not provide any useful information in this case).

• Finally, we think that the main open problem is related to the result pro-
vided in Theorem 7.3 (and associated to leaf 5 in Figure 1). We have proved
that ML-CAP-STEINER-TREE is polynomial-time solvable in this case, hence
generalizing the same result already known for STEINER-TREE, but it may
actually be FPT with respect to K: in particular, notice that this is indeed
the case for STEINER-TREE.
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