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Abstract

We are interested in the design of survivable capacitated rooted Steiner networks.
Given a graph G = (V,E), capacity and cost functions on E, a root r, a subset T
of V of terminals and an integer k, we search for a minimum cost subset E′ ⊂ E,
covering T and r, such that the network induced by E′ is (k+1)-survivable: after the
removal of any k edges, there still exists a feasible flow from r to T . We also consider
the possibility of protecting a given number of edges. We propose three different
formulations: a cut-set, a flow and a bi-level formulation where the second-level is
a min-max problem (with an attacker and a defender). We propose algorithms for
each problem formulation and compare their efficiency.
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1 Introduction

Nowadays, the design of networks is crucial in many fields such as trans-
port, telecommunications or energy. We are interested here in the design of
survivable networks [5,6] able to route a given flow from a root to a set of
terminals while respecting capacity constraints. We say that a network is
(k+1)-survivable if, after any breakdowns on k arcs, it is possible to route the
same amount of flow. We also take into account the possibility of protecting
a subset of k′ arcs of the graph: those arcs cannot be deleted. The resolution
of capacitated spanning and steiner tree problems has been studied in [4,1].

We introduce here the Capacitated Protected Rooted Survivable Network
Problem (CPRSNP). Given a directed graph G = (V,A, c, u) where c and
u are respectively the cost and the capacity functions on the set of arcs A,
a set T ⊆ V of terminals, a root r ∈ V \ T and two positive integers k and
k′ with k + k′ ≤ |A|, CPRSNP is to find a subset A′ ⊆ A of selected arcs
of minimum cost and a subset A′

p ⊂ A′ with |A′
p| ≤ k′ of protected arcs such

that there is a feasible flow (i.e. it respects the arc capacities) routing a unit
of flow from r to each vertex of T in the subgraph of G induced by A′, even
if a breakdown occurs on any k arcs in A′ \ A′

p.

We focus on wiring networks in windfarms, designed to route the energy
produced by the wind turbines to the sub-station with respect to some techni-
cal constraints (cable capacities, non-splitting constraints, etc.) [3,2].Furthermore,
we want those networks to be resilient to cable failures. The wind turbines are
identical so we can assume that each one produces one unit of energy. Then
A is the set of all possible cable locations and V = T ∪ J ∪ {r} where T (resp
J) is the set of terminal nodes (resp. junction nodes between cables), and
r ∈ V is the substation collecting the energy and delivering it to the electric
distribution network. In that case, the flow is routed from T to r. In the
case of windfarm wiring, one can see the protected arcs as robust cables or
additional parallel cables. We consider a budget of protection such that we
can only protect k′ arcs.

We assume without loss of generality that u is an integer function. In this
paper, we work on the oriented version of the problem, however the results
can easily be adapted to the non-oriented one.



2 Formulations of the problem

2.1 Definitions and notations

We add to the input graph a vertex s connected to every terminal t ∈ T by a
fictive arc (t, s) with cts = 0 and uts = 1. Then, s is added to V and the fictive
arcs are added to A, and we denote by AI the set of initial arcs. Finding a
flow which routes one unit of flow between r and each terminal in the input
graph is equivalent to finding a flow of value |T | from r to s in the transformed
graph. For each subset S ⊂ V , let δ−(S) be the set of arcs entering S. We
have δ−(S) = {(i, j) ∈ A | i ∈ V \ S; j ∈ S}. We call Γ−(i) and Γ+(i) the
sets of respectively predecessors and successors of a vertex i ∈ V .

2.2 Cut-set formulation

We introduce, for all (i, j) ∈ A, a binary variable yij equal to 1 if and only if
the arc (i, j) ∈ A′, and a binary variable pij equal to 1 if and only if the arc
(i, j) ∈ A′

p. Consider the r − s cuts [V \ VS, VS] with VS ⊂ V , r ∈ V \ VS,
s ∈ VS and VS 6= {s}, and let S be the set of all the associated cut-sets in
A, i.e. S = δ−(VS). Notice that if S ∈ S then S ∩ A′ is a cut-set in the
selected network. For any set S ⊂ S, let CS

k be the set of subsets of S of
size k. We define MS as the maximum capacity of a subset of k selected and
non-protected arcs of S:

MS = max
C∈CS

k

∑

(i,j)∈C

uij(yij − pij) (1a)

MS corresponds to the maximum capacity that can be lost in the cut-set
S after the deletion of k non-protected arcs. We propose the following cutset
formulation:

min
y,p

∑

(i,j)∈A

cijyij

s.t.
∑

(i,j)∈δ−(VS)

uijyij − MS ≥ |T | ∀S ∈ S

∑

(i,j)∈A

pij ≤ k′

yts = 1 ∀t ∈ T
pts = 0 ∀t ∈ T
yij, pij ∈ {0, 1} ∀(i, j) ∈ A

(2a)

(2b)

(2c)
(2d)

Constraints (2a) ensure that for each cut, the capacity of the cut after the
worst-case deletion of k non-protected arcs of the cut-set is at least equal to



the number of terminals, i.e. the graph is (k+1)-survivable. Constraints (2b)
ensure that we have at most k′ protected arcs while (2c) and (2d) guarantee
that all fictive arcs are selected and none of them are protected. Notice that
we do not have to impose p ≤ y since, from any optimal solution, we can get
an equivalent one where this holds.

Constraints (2a) are non linear because of the use of the maximum operator
in the definition of MS. To linearize it, we add the following constraints:

MS ≥
∑

(i,j)∈C

uij(yij − pij) ∀S ∈ S, ∀C ∈ CS
k (3a)

The number of constraints (2a) and (3a) being exponential (and so is the
number of variables MS), we propose a constraints-and-columns generation
algorithm. We begin with a small subset of S in constraints (2a) and (3a).
We obtain a lower bound for our problem. Then we select a cut-set that does
not verify some constraint (2a): given a network induced by the current value
of y, we find by a using a MIP the cut of minimum residual capacity once we
delete its k most capacitated non-protected arcs. If this capacity is inferior to
|T |, we add the constraints associated to this cut-set, otherwise the algorithm
terminates.

2.3 Flow formulation

Now we define F as the set of all possible arc-failure scenarios: it corresponds
to the set of all k-combinations in AI . We introduce the variable xF

ij which
represents the amount of flow routed through the arc (i, j) ∈ A when the
scenario F ∈ F occurs. The variables y and p are defined as in the previous
formulation (Section 2.2). We propose the following flow formulation:

min
x,y,p

∑

(i,j)∈A

cijyij

s.t.
∑

i∈Γ−(j)

xF
ij −

∑

k∈Γ+(j)

xF
jk = 0 ∀j ∈ V \ {r, s}, ∀F ∈ F

∑

t∈Γ−(s)

xF
ts = |T | ∀F ∈ F

∑

(i,j)∈AI

pij ≤ k′

xF
ij ≤ uijyij ∀(i, j) ∈ A, ∀F ∈ F

xF
ij ≤ uijpij ∀F ∈ F , ∀(i, j) ∈ F

x ∈ R
|A|×|F|
+ , y ∈ {0, 1}|A|, p ∈ {0, 1}|AI |

(4a)

(4b)

(4c)

(4d)
(4e)



Constraints (4a) and (4b) ensure that there is a flow of value |T | for each
arc-failure scenario. Constraint (4c) ensure that we have at most k′ protected
arcs. Constraints (4d) are the capacity constraints, for each scenario of failure.
Finally, constraints (4e) ensure that in a scenario F where (i, j) ∈ F , we can
route some flow through (i, j) only if the arc is protected. Notice that w.l.o.g.
we can assume that p ≤ y.

The number of variables xF
ij and constraints (4a) and (4b) being exponen-

tial, as in the previous section we propose a constraints-and-columns genera-
tion algorithm to solve the problem. We begin with a small subset of F . The
separation problem is the problem of the k most vital links in a flow network
[7]: we search for the k non-protected arcs which, once simultaneously deleted,
reduce the most the value of the maximum s− t flow.

2.4 Bilevel formulation

The bilevel formulation proposed here is particular in that the second-level is
a minmax problem. It can be seen as a game with a defender and an attacker
(corresponding respectively to the leader and the follower).

For each (i, j) ∈ A, we introduce a variable xij which corresponds to the
amount of flow that the defender chooses to route through the arc (i, j). The
variables y and p are defined as in Section 2.2. We also introduce the binary
variables bij , ∀(i, j) ∈ A: bij = 1 if and only if the attacker chooses to delete
the arc (i, j). We define the following polyhedron:

X (y, b, p) =



















x ∈ R
|A|
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

xij ≤ uijyij ∀(i, j) ∈ A

xij ≤ uij(1− bij + pij) ∀(i, j) ∈ AI



















This polyhedron X (y, b, p) corresponds to the set of possible flows on the
subgraph of G induced by the arcs (i, j) such that yij = 1 provided they have
not been deleted (thus non-protected). In X (y, b, p) there are the flow con-
servation constraints, the capacity constraints and the constraints imposing a
flow equal to 0 on any arc which is non-protected and deleted. We also define
the two following polyhedrons:

B = {b ∈ {0, 1}A |
∑

(i,j)∈A bij ≤ k ; bts = 0 ∀t ∈ T}

Y = {(y, p) ∈ {0, 1}A
2

| p ≤ y ;
∑

(i,j)∈A

pij ≤ k′}

The polyhedron B defines the set of possible scenarios of arc failures while
Y defines the set of possible selected and protected arcs (there are at most k′



protected arcs in the selected network). Then we propose the following bilevel
program:

min
(y,p)∈Y

∑

(i,j)∈A

cijyij

s.t. f(y, p) ≥ |T |

where f(y, p) = min
b∈B

max
x∈X (y,b,p)

∑

j∈Γ+(r)

xrj

(5a)

(5b)

At the upper-level, the defender selects the set of arcs he wants to add to
the network as well as the one he wants to protect, by choosing a couple (y, p)
in Y . The attacker then deletes some arcs by setting the variable b ∈ B in or-
der to minimize the maximum flow that the defender will compute by setting
the variable x in the flow polyhedron X (y, b, p). The aim of the defender is to
ensure that this flow is at least equal to |T | (Constraint (5a)).

Consider the max problem in the lower-level: y, p and b are already fixed
to b̂, p̂ and ŷ. The problem is a max-flow problem from r to s, with two sets
of capacity constraints. In our problem, the flow must be integer since it cor-
responds to a number of terminals. However, it is well known that the matrix
of coefficients M in the arc-formulation of a max-flow is totally unimodular.
Then, adding the second set of capacity constraints is equivalent to append-
ing the identity matrix to M : the matrix remains totally unimodular and the
capacities being integer, we ensure that the extreme points of the polyhedron
defined by X (y, b, p) are integer. Thus, we can relax integrality constraints on
x.

There always exists a feasible flow of value 0 and the lower-level problem
is also trivially upper bounded. Hence, the strong duality holds and we can
introduce the dual of the lower-level problem, after a slight reformulation due
to the totally unimodular matrix:

min
λ,µ,γ

∑

(i,j)∈A

uij ŷijλij + uij(1− b̂ij + p̂ij)γij

s.t λij + γij − µi + µj ≥ 0 ∀(i, j) ∈ A
µr = 1
µs = 0
λ, γ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |

(6a)
(6b)
(6c)

This problem is a special formulation of a min-cut problem: µ defines the two
parts of the cut (sets of vertices i such that either µi = 0 or µi = 1). The
variable γij is equal to 1 at least for all the edges (i, j) in the cut-set with



pij = 0 and bij = 1, λ is equal to 1 for all other edges in the cut-set (if an edge
(u, v) is not in the cut-set, we have λuv = γuv = 0). We denote the polyhedron
defined by the dual constraints by D.

As the lower-level can be reformulated as a minmin function by using the
dual described above, it can then be rewritten as follows:

(2LP )

∣

∣

∣

∣

∣

∣

∣

∣

∣

min
b,λ,µ,γ

∑

(i,j)∈A

uij ŷijλij + uij(1− bij + p̂ij)γij

s.t b ∈ B

(λ, µ, γ) ∈ D

At this point, b is a variable so the objective function is non-linear. We
linearize the terms bijγij in a classical way by introducing binary variables
lij verifying the set of constraints lij ≤ bij , lij ≤ γij and lij ≥ γij − (1 −
bij), ∀(i, j) ∈ A, which is denoted by L(b, γ). We also define the function
g(y, p, λ, γ, l) =

∑

(i,j)∈A uijyijλij + uijγij − uijlij + uijpijγij . We can then
rewrite the bilevel program as:

min
(y,p)∈Y

∑

(i,j)∈A

cijyij

s.t. f(y, p) ≥ |T |
where f(y, p) = min

b,λ,γ,µ,l
g(y, p, λ, γ, l)

s.t. b ∈ B
l ∈ L(b, γ)
(λ, µ, γ) ∈ D

In this bilevel reformulation, the polyhedron of the lower-level defined by
B, L(b, γ) and D depends on neither y nor p. We can then consider the
convex hull of the lower-level polyhedron and we denote by H the set of its
extreme points; (b̂h, λ̂h, γ̂h, µ̂h, l̂h) are respectively the values of (b, λ, γ, µ, l) at
the extreme point h ∈ H. We can then reformulate the bilevel formulation as
a single-level one as follows:

min
∑

(i,j)∈A

cijyij

s.t. g(y, p, λ̂h, γ̂h, l̂h) ≥ |T | ∀h ∈ H
(BP) b ∈ B

l ∈ L(b, γ)
(y, p) ∈ Y
(λ, µ, γ) ∈ D

(7a)
(7b)
(7c)
(7d)
(7e)



Constraints (7a) ensure that for each extreme point of H, f(y, p) is greater
than |T | (i.e. the minimum value of f(y, p) over the polyhedron defined by
(7b), (7c) and (7e) is greater than |T |), meaning that the flow cannot be
decreased after any k breakdowns.

Remark 2.1 In (BP), g(y, p, λ, γ, l) is non-linear because of the products

yijλij and pijγij but they can be linearized as it has been done for bijγij above.

However, there is an exponential number of constraints (7a) and we do not
know how to describe explicitly the convex hull H. To tackle this issue, we
use a constraints generation algorithm where we relax the set of constraints
(7a) and use (2LP ) as the separation problem: while the optimum value of
(2LP ) is lower than |T | for the current optimal solution (ŷ, p̂), we generate the
constraint (7a) associated to the extreme point corresponding to the optimal
values of (b, λ, γ, µ, l) in (2LP ).

Proposition 2.1 Let (ŷ1, p̂1) and (ŷ2, p̂2) be two feasible solutions of (BP)
such that ŷ1 ≥ ŷ2 and p̂1 ≥ p̂2. If adding a constraint g(y, p, λ, γ, l) ≤
g(y, p, λ̂a, γ̂a, l̂a) makes any solution with (y, p) = (ŷ1, p̂1) infeasible, then it

also makes any solution with (y, p) = (ŷ2, p̂2) infeasible.

Proof. For any value (λ̂a, γ̂a, l̂a) of (λ, γ, l), we have g(ŷ1, p̂1, λ̂a, γ̂a, l̂a) ≥
g(ŷ2, p̂2λ̂a, γ̂a, l̂a) since ŷ1 ≥ ŷ2 and p̂1 ≥ p̂2 (as u, λ and γ are positive).
Hence, if g(ŷ1, p̂1, λ̂a, γ̂a, l̂a) ≤ |T | − 1 then g(ŷ2, p̂2, λS, γS, lS) ≤ |T | − 1. ✷

To improve the cut obtained by solving (2LP ), we try to inject better
values ŷ of variables y in it. To get these values, we first solve the following
problem, and then we compute the new ŷ accordingly (as explained later).
Given a starting solution (ŷ, p̂), we want to find a cut-set in the support
network with a minimum number of arcs such that this cut-set is non-valid
in the network induced by (ŷ, p̂) (meaning that if we remove k non-protected
arcs of the cut-set, its remaining capacity is smaller than |T |). This can be
modeled as follows:

min
∑

(i,j)∈A

λij

s.t
∑

(i,j)∈A

uij ŷijλij + p̂ijγij ≤ |T | − 1

∑

(i,j)∈A

γij ≤ k

γts = 0 ∀t ∈ T

(λ, µ, γ) ∈ D

µ ∈ {0, 1}V

(8a)

(8b)

(8c)



The variables (λ, µ, γ) define a cut as in (2LP ) since they belong to D (re-
call that D is the set constraints (6) ). However, adding the other constraints
makes the constraints matrix not unimodular anymore: we have to set µ as
a 0-1 variable. Constraint (8a) ensures that the cut-set selected is non-valid
(as defined before). Constraint (8b) bounds the number of deleted arcs to at
most k, while constraints (8c) forbid the deletion of fictive arcs.

Then the new values of ŷij are computed as follows: we set ŷij to 1 for all
(i, j) with λij = γij = 0 and let the others to their current value. It implies that
the new value of y will include the previous one and, using Proposition 2.1,
we generate a better constraint than the original by calculating the extreme
points associated to this new value of y.

3 Tests and conclusion

All experiments were performed on a computer with a 2.40GHz Intel(R)
Core(TM) i7-5500U CPU and a 16GB RAM using the solver CPLEX version
12.6.1. We present 3 tables of results. For each table, we present the solving
time (limited to 2000 seconds) and the gap if the optimum is not reached.
The cut-set and flow formulations were solved using an iterative procedure in
which after the generation of the constraint, the model is resolved as a MIP.

Table 1 shows the performances of the different formulation on an uniform
capacities generated instance (those results reflect the general tendency ob-
tained on tests made on other instances) with no protected arcs. One can see
that the cut-set formulation is the most efficient one: this can be explained by
the fact that the variableMS is a constant in this case. The bilevel formulation
is also efficient here whereas the flow formulation becomes inefficient for k ≥ 2.

Instance Bilevel Cut-set Flow

|V |-|T |-|A| k k’ t (s) gap t (s) gap t (s) gap

20-5-90 1 0 5.9 0 2.17 0 21.3 0

- 2 0 49.3 0 7.8 0 2000 0.25

- 3 0 22.8 0 21.1 0 2000 0.15

Table 1: Comparison of the performance for uniform capacities with k′ = 0

Table 2 shows the difference of performance between the three different
formulations for different values of k and k′ on a generated instance with non-
uniform capacities. Although the flow formulation competes with the bilevel
one for k = 1, it seems obvious that the bilevel formulation is the best one
to solve CPRSNP when k > 1. This can be explained by the fact that the



number of variables (MS and x) and constraints is exponential in k for the
two other formulations.

Table 3 shows the results obtained on three different instances of the bilevel
formulation for different values of k and k′. We can see that even if the solving
time generally grows with k and k′, the formulation is much less sensitive to
those two parameters.

I Bilevel Cut-set Flow

k k’ t (s) gap t (s) gap t (s) gap

1 0 9.3 0 1812.2 0 15.8 0

1 1 11.6 0 658.8 0 5.14 0

1 2 13.0 0 691.3 0 5.3 0

2 0 43.8 0 2000 0.12 2000 0.01

2 1 30.9 0 2000 0.22 2000 0.05

2 2 30.5 0 2000 0.04 112.6 0

3 0 29.0 0 2000 0.19 2000 0.18

3 1 21.0 0 2000 0.24 2000 0.21

3 2 66.5 0 2000 0.2 2000 0.16

Table 2: Comparison of the 3 formula-
tions for |V | = 30, |T | = 3, |A| = 140

Instance k′ = 0 k′ = 1 k′ = 2 k′ = 3

|V |-|T |-|A| k t (s) gap t (s) gap t (s) gap t (s) gap

20-5-100 1 6.4 0 19.0 0 26.5 0 18.0 0

- 2 15.2 0 58.9 0 167.2 0 223.7 0

- 3 - - 58.2 0 315.8 0 822.3 0

25-8-120 1 22.0 0 152.0 0 87.9 0 67.3 0

- 2 76.4 0 161.1 0 546.3 0 794.4 0

- 3 - - 34.2 0 158.0 0 1670.3 0

35-3-175 1 35.7 0 101.4 0 82.3 0 159.6 0

- 2 180.6 0 1077.3 0 2000 0.11 1245.7 0

- 3 244.3 0 2000 0.03 2000 0.45 2000 0.49

Table 3: Performance of the bilevel formulation
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[5] Hervé Kerivin and A Ridha Mahjoub. Design of survivable networks: A survey.
Networks, 46(1):1–21, 2005.

[6] Thomas L Magnanti and S Raghavan. Strong formulations for network design
problems with connectivity requirements. Networks, 45(2):61–79, 2005.

[7] H Donald Ratliff, G Thomas Sicilia, and SH Lubore. Finding the n most vital
links in flow networks. Management Science, 21(5):531–539, 1975.


	Introduction
	Formulations of the problem
	Definitions and notations
	Cut-set formulation
	Flow formulation
	Bilevel formulation

	Tests and conclusion
	References

