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A classical non linear unified field theory

A classical electromagnetic covariant non linear theory of matter is formulated where electric four-current and the total stress-energy tensor are local functions of Faraday's tensor and its derivatives. General covariance is immediate, resulting in a classical unified field theory. If the Lagrangian density is an analytic function of Faraday's tensor and Lorentz invariance corresponds to reality, this theory must be true in the low energy limit.

Introduction

Since the discovery of Coulomb's Law-in fact, since the time Newton successfully presented Kepler's laws as logical consequences of his Universal Law of Gravitation-there was a concern among physicists that the concept of action at a distance was incompatible with that of space as a scenario of physical reality.

According to original atomistic ideas, there is nothing in the physical world but atoms and the void, which is immaterial or not a thing. This raised the objection that nothing cannot be the link between action-reaction pairs of forces. If space in itself is nothing, then an electric charge should, in some way, be aware or know of the presence and position of other electric charges in its neighborhood and figure out how to move, which is untenable. This problem was in part addressed with the introduction of the electric and magnetic fields, by Faraday, which was the starting point of Maxwell's synthesis of an electromagnetic theory.

The theoretical discovery of electromagnetic waves, confirmed by Hertz's experiments, brought up the problem of the system of reference, which was solved by Einstein in 1905, providing a unified description of electric and magnetic fields in terms of Faraday's tensor-which explains not only our failure to detect the motion of earth through the ether, but the fact that we have not observed magnetic mono-poles. However, as Einstein pointed out, the problem of the nature of electric charges remained unsolved.

Our current understanding of the structure of matter involves the concept of electric charge which appears as a physical constant (the electronic charge e) characterizing the interaction of particles and the electromagnetic field. There is an objective difference between positive and negative electric charges as it is evident when we consider that they produce different effects. If electric charges exist independently of the electromagnetic field they produce, this creates some logical difficulties. If positive and negative charges are objectively different they must be different in nature and, therefore, there must exist at least two kinds of substance, corresponding to the two kinds of electricity, a situation which is complicated by the existence of anti-particles like positrons, anti-protons, and other kinds of matter. In addition, the way electric charges are tied to the electromagnetic field they produce remains a mystery. In Einstein's words [1, p. 49] "Maxwell's equations determine the electromagnetic field when the distribution of electric charges and currents is known. But we do not know the laws which govern the currents and charges. We do know, indeed, that electricity consists of elementary particles (electrons, positive nuclei), but from a theoretical point of view we cannot comprehend this. We do not know the energy factors which determine the distribution of electricity in particles of definite size and charge, and all attempts to complete the theory in this direction have failed."

We go a step further: the equations of electromagnetism in a vacuum as they are written in [2, pp. 71 & 79]

∂F ik ∂x l + ∂F kl ∂x i + ∂F li ∂x k = 0, (1) 
∂F ik ∂x k = - 4π c j i . (2) 
do not include any provision to preclude a four-current for which the material speed of electricity is superluminal.

To illustrate our claim we consider a time dependent one-dimensional density

ρ(x, t) = Q πa cos 2 (σt) 1 + x+b a 2 + sin 2 (σt) 1 + x-b a 2 (3) 
For this argument we assume that x and t are measured in the same units, in such manner that c = 1. We also assume that σ > 0, a > 0 and b > 0 are constants.

∞ -∞ ρ(x, t)dx = Q πa ∞ -∞ cos 2 (σt) 1 + x+b a 2 dx + Q πa ∞ -∞ sin 2 (σt) 1 + x-b a 2 dx = Q From the continuity equation ∂ρ ∂t + ∂jx ∂x = 0 or ∂jx ∂x = -∂ρ ∂t ∂j x ∂x = σ sin(2σt)Q πa 1 1 + x+b a 2 - 1 1 + x-b a 2 (4) 
we get

j x = σ sin(2σt)Q π tan -1 x + b a -tan -1 x -b a (5) 
Using the functions (3) and ( 5) we can define a four-dimensional current with the components: (ρ(x, t)δ(y)δ(z), j x (x, t)δ(y)δ(z), 0, 0) and then, in principle, solve Maxwell's equations. However, the solution will not always correspond to a physical field, not even disregarding the idealization of a linear distribution of charge.

The material velocity of the density of charge at point x is:

v x (x, t) = j x ρ = σa sin(2σt) tan -1 x+b a -tan -1 x-b a cos 2 (σt) 1+( x+b a ) 2 + sin 2 (σt) 1+( x-b a ) 2 (6)
In particular, we have

v x (b, t) = σa sin(2σt) tan -1 (2) cos 2 (σt)/5 + sin 2 (σt)
The maximum value of this function of time is positive and proportional to σa which means that, by increasing σ, a, or both, we can have superluminal material speed of electric charge at x = b which is incompatible with the principle of relativity and the assumption that electric charge is an attribute of material particles. In principle if we consider this four-current density as a four-dimensional vector and transform it accordingly, the continuity equation [2, p. 65] ∂j i ∂x i = 0 is covariant and, by solving equations (1) and (2) we can find the corresponding configuration of electromagnetic field. The Lorentz' force law

mc dµ i ds = q c F ik µ k where µ i = dx i ds (7) 
will allow us to find out how an electric charge moves under the action of the corresponding electromagnetic forces. Nevertheless, the whole solution is no more than a mathematical artifact with no physical interpretation compatible with the most fundamental assumptions of special relativity. Maxwell's theory of electromagnetism ascribes a density of energy and momentum to the electromagnetic field. This, the fact highlighted by Einstein, that matter is made of charged particles (electrons and nuclei), and our prior arguments clearly suggest that there is a need to make an effort to "complete the theory in this direction." If electrons are treated as point particles there is the problem of infinite self-energy. On the other side, if an electron is considered as a density of charge inside a finite region of space-which is what Lorentz did in an early attempt to formulate a theory of electrons that could be used to explain the optical and electro-magnetic properties of the different kinds of ordinary matter [3, p. 14]-there are problems to define the motion and therefore the acceleration of an electron as a whole in space [1, p. 47]. Equation 7 is covariant and the problem of defining the world line that represents the motion of a mechanical system as a whole in space has not a satisfactory covariant solution in the domain of special relativity. [START_REF] Dirac | A new classical theory of electrons[END_REF] This world-line is defined in classical mechanics in such manner that it makes the whole theory logically consistent because in classical mechanics time-and simultaneity-is treated as universal and absolute. For the definition of the center of mass of a system of particles in classical mechanics, the simultaneous positions of the parts of the system are considered.

In this paper an attempt is made to generalize Maxwell's theory in empty space, which is a linear theory, including non-linear terms in Farady's tensor and its derivatives, to account for electric currents.

Though "we do not know the laws which govern the currents and charges," we will see that we can advance a reasonable hypothesis on the relation between electromagnetic field and charge & current densities. The concept of particle does not play a fundamental role in this theory and therefore there is no place for a wave-particle duality. Nevertheless, quantization is not discussed.

Action of the field in a vacuum

Maxwell's equations in a vacuum-in the absence of any electric charges-are equivalent to the necessary extreme condition (δS = 0) for the action

S = - 1 16πc Ω F ik F ik dΩ ( 8 
)
where Ω is a region of space-time [2, p. 75] and F ij is Faraday's tensor

F ij = ∂A j ∂x i - ∂A i ∂x j (9) 
From the expressions for the fields E and H in terms of the electrodynamic potentials [2, p. 65]

F ik =     0 E x E y E z -E x 0 -H z H y -E y H z 0 -H x -E z -Hy -H x 0     , F ik =     0 -E x -E y -E z E x 0 -H z H y E y H z 0 -H x E z -Hy H x 0     (10) The first variation is δS = - 1 8πc Ω F ik δF ik dΩ δS = 1 8πc Ω F ik ∂δA i ∂x k - ∂δA k ∂x i dΩ = 1 4πc Ω F ik ∂δA i ∂x k dΩ
from this it is not difficult to derive the condition

∂F ik ∂x k = 0, (11) 
which is equivalent to the second pair of Maxwell's equations in a vacuum. The first pair of Maxwell's equations is obtained from the definition of Faraday's tensor [START_REF] Ketov | Born-infeld non-linear electrodynamics and string theory[END_REF]:

∂F ij ∂x k + ∂F jk ∂x i + ∂F ki ∂x j = 0. ( 12 
)
In fact, from the well known relations between the electrodynamic potentials and the electric and magnetic field

E = -∇A 0 - 1 c ∂A ∂t and H = ∇ × A it is easily proved that ∇ × E = - 1 c ∂H ∂t and ∇ • H = 0.
Those equations are the three-dimensional version of (12), while (11) can be written as

∇ • E = 0 and ∇ × H = 1 c ∂E ∂t .
In the presence of an electric current j i equations (11) are replaced by [START_REF] Landau | The classical theory of fields[END_REF].

In [START_REF] Dirac | A new classical theory of electrons[END_REF] Dirac proposed to break the gauge invariance including a term in the lagrangian by imposing an additional condition on the electrodynamic potentials:

A k A k = κ 2
, where κ 2 is a constant. This lead him to the action

S = Ω - 1 16πc F ik F ik + λ A k A k -κ 2 dΩ (13)
including a Lagrangian multiplier λ(x i ). The first variation leads to the equations:

∂F ik ∂x k = - 4πλ c A i (14) A k A k = κ 2 Using (14) λ = - c 4πκ 2 A j ∂F jk ∂x k and then ∂F ik ∂x k = 1 κ ∂F jk ∂x k A i A j (15)
Introducing the condition A k A k = κ 2 is unjustified but for the fact that it allows to achieve the desired goal of establishing an hypothetical connection between current density and field components. Otherwise it is not backed up by any physical or mathematical arguments. Dirac himself, after a remark by Gabor, abandoned this specific formulation of his ideas improving his model in two papers [START_REF] Dirac | A new classical theory of electrons ii[END_REF] [START_REF] Dirac | A new classical theory of electrons iii[END_REF]. Then, in 1962, he published another paper [START_REF] Dirac | An extensible model of an electron[END_REF] where he presented a model of the electron as a charged surface-which is essentially a variation of the idea behind classical string theories-in an attempt to explain muons as excited states of electrons. Those are, as we said, mathematical models and not fundamental theories. The introduction of strings or surfaces is justified only because those models provide extra degrees of freedom that can be used to accommodate excited states and, therefore, a variety of particles.

Dirac's approach, however provides some insight. We notice that the left side of Maxwell's equations comes from the quadratic term in the integral (13). If we assume that the Lagrangian density is an analytic function of the field intensities-Faraday's tensor (F) expressed in terms of the electrodynamic potentials-the action integral is written as

S = Ω L(F)dΩ where L(F) = L 0 + ∂L ∂F i0i1 F i0i1 + 1 2 ∂ 2 L ∂F i0i1 ∂F i2i3 F i0i1 F i2i3 + • • •
Considering that L must be a scalar and explicitly independent of position in space-time, the first not trivial term in this series is the second-order term. The action of Maxwell's electromagnetic field in a vacuum is obtained if all terms of higher order are neglected.

The coefficient

C i0i1i2i3 = 1 2 ∂ 2 L ∂F i0i1 ∂F i2i3
can only be a linear combination of the three fourth-rank independent isotropic tensors

C i0i1i2i3 = λ • δ i0i1 δ i2i3 + µ • δ i0i2 δ i1i3 + ν • δ i0i3 δ i1i2
Given that δ i0i1 δ i2i3 F i0i1 F i2i3 = 0, the last equation can be simplified to

C i0i1i2i3 = µ • δ i0i2 δ i1i3 + ν • δ i0i3 δ i1i2 Next δ i0i2 δ i1i3 F i0i1 F i2i3 = F i0i1 F i0i1 and δ i0i3 δ i1i2 F i0i1 F i2i3 F i0i1 F i1i0 = -F i0i1 F i0i1 . In consequence: C i0i1i2i3 = (µ -ν)F i0i1 F i0i1 ∝ F i0i1 F i0i1 , as announced.
The third-order coefficient (C i0i1i2i3i4i5 ) can only be a linear combination of the following sixth-rank isotropic tensors [START_REF] Kearsley | Linearly independent sets of isotropic cartesian tensors of ranks up to eight[END_REF]:

δ i0i1 δ i2i3 δ i4i5 , δ i0i1 δ i2i4 δ i3i5 , δ i0i1 δ i2i5 δ i3i4 , δ i0i2 δ i1i3 δ i4i5 , δ i0i2 δ i1i4 δ i3i5 δ i0i2 δ i1i5 δ i3i4 , δ i0i3 δ i1i2 δ i4i5 , δ i0i3 δ i1i4 δ i2i5 , δ i0i3 δ i1i5 δ i2i4 , δ i0i4 δ i1i2 δ i3i5 δ i0i4 δ i1i3 δ i2i5 , δ i0i4 δ i1i5 δ i2i3 , δ i0i5 δ i1i2 δ i3i4 , δ i0i5 δ i1i3 δ i2i4 , δ i0i5 δ i1i4 δ i2i3
The terms including δ i0i1 , δ i2i3 , and δ i4i5 do not make any contribution to the sum C i0i1i2i3i4i5 F i0i1 F i2i3 F i4i5 -because Faraday's tensor is antisymmetric. Each one of the remaining terms

δ i0i2 δ i1i4 δ i3i5 F i0i1 F i2i3 F i4i5 , δ i0i2 δ i1i5 δ i3i4 F i0i1 F i2i3 F i4i5 , δ i0i3 δ i1i4 δ i2i5 F i0i1 F i2i3 F i4i5 , δ i0i3 δ i1i5 δ i2i4 F i0i1 F i2i3 F i4i5 δ i0i4 δ i1i2 δ i3i5 F i0i1 F i2i3 F i4i5 , δ i0i4 δ i1i3 δ i2i5 F i0i1 F i2i3 F i4i5 , δ i0i5 δ i1i2 δ i3i4 F i0i1 F i2i3 F i4i5 , δ i0i5 δ i1i3 δ i2i4 F i0i1 F i2i3 F i4i5 can be reduced to ±δ i0i4 F i0i1 F i1i2 F i3i4 . Also F jb F bc F ci = -F jb F cb F ci = -F ic F cb F bj = -F ib F bc F cj Thus, the tensor Π ij = F ib F bc F cj (16) is antisymmetric, δ i0i4 F i0i1 F i1i2 F i3i4 ≡ 0, and 
C i0i1i2i3i4i5 F i0i1 F i2i3 F i4i5 ≡ 0.
Therefore, the next term to consider is the fourth-order term. To determine the coefficient C i0i1i2i3i4i5 we have to consider 105 isotropic tensors that are products of four Kronecker Delta tensors and 35 that are products of two Levi-Civita tensors-this set is not linearly independent. (See the Appendix.) Direct computation shows that the fourth-order term can only be a linear combination of

F ab F ab 2 , F a b F b c F c d F d a , F ⋆ ab F ab 2 , F ⋆ ab F bc F ⋆ cd F da ǫ abcd F ae F bf F cg F dh ǫ ef gh
where F ⋆ ab = 1 2 ǫ abcd F cd , F ⋆ab = 1 2 ǫ abcd F cd is the dual of Faraday's tensor:

F ⋆ ik =     0 -H x -H y -H z H x 0 -E z E y H y E z 0 -E x H z -E y E x 0     , F ⋆ik =     0 H x H y H z -H x 0 -E z E y -H y E z 0 -E x -H z -E y E x 0    
(17) The corresponding-approximated-lagrangian density has the form

L 4 = - 1 16πc F ab F ab + α 2 F ab F ab 2 - β 2 F a b F b c F c d F d a (18) + κ F ⋆ ab F ab 2 -2λF ⋆ ab F bc F ⋆ cd F da + σ 2 ǫ abcd F ae F bf F cg F dh ǫ ef gh
where α, β, κ, λ, and σ are constants. Note that our argument is a paraphrase of the argument used in classical mechanics to study the general properties of the simple harmonic oscillator, irrespective of the nature of the mechanical system. Therefore, thought this model depends on unknown constants, our assumptions are essentially more physical than Dirac's purely mathematical ideas. We assume that:

1. The electromagnetic field F ij is an autonomous dynamical system.

2. Its dynamical laws obey the principle of relativity.

3. Those laws can be obtained from the principle of minimum action, using a Lagrangian density that is an analytic function of Faraday's tensor.

If those assumptions correspond to reality, then this is a sound non-linear generalization of Maxwell's linear theory.

In addition, as it is well known from classical field theory, a three-dimensional vector field f can be represented in the form

f = -∇φ + ∇ × A (19)
where the fields φ and A can be determined from ∇ • f and ∇ × f . From this we find it interesting, at least, that Maxwell's equations (precisely) determine the divergence and the curl of the fields E and H, and we ask ourselves if, in some way, those equations are not necessary consequences of a fundamental law. Accordingly, we consider the problem of approximating a vector field f in a region Ω by the gradient of a scalar potential g = ∇φ. As a measure of proximity we use the quadratic norm (with the classical euclidean norm) and we pose a variational problem

δ Ω 1 2 (f i -g i ) 2 -φ ij (g i,j ) dω = 0
where φ ij = -φ ji are some Lagrange multipliers (we must have g i,j -g j,i ≡ 0). The corresponding Euler-Lagrange equations are

f i = g i + ∂φ ij ∂x j
We notice that

∂f i ∂x i = ∂g i ∂x i
and, if ∂f i ∂x i = 0 then g i can be chosen zero and

∂φ ij ∂x j = f i
which has the form of the second pair of Maxwell equations-regardless of the dimension of the space under consideration and/or the specific metric. Thus, from the assumption that electric charge is conserved ∂j i ∂x i = 0 it follows that there is a field with the properties of the Faraday tensor field.

In addition, if x a (τ ) is the worldline of a particle-τ is the corresponding proper time-then µ a µ a = 1, where

µ a = dx a dτ
is the fourvelocity. This means that for any specific worldline we can always write dµ a dτ ∝ φ ij (τ )µ j where φ ij (τ ) is an antisymmetric tensor field defined along the world-line. The last equation is exactly of the form of the Lorentz force. At the said fourth order, the Born-Infeld lagrangian[9]

L = 1 b 2 1 --det (g ij + bF ij )
as well as the lagrangian

L = -T -det (g ij + 2παF ij )
which is used in open strings theory, are particular cases of (18) in the corresponding limit (fourth order in the field intensities).

To facilitate obtaining the Euler-Lagrange equations and the canonical stressenergy tensor we first notice that

δ F ab F ab = 2F ab δF ab = 2F ab (δA b,a -δA a,b ) = -4F ab δA a,b where A a,b = ∂Aa ∂x b ; δ F ab F ab 2 = 2F cd F cd δ F ab F ab = -8F cd F cd F ab δA a,b ; δ F a b F b c F c d F d a = 4F bc F cd F da δF ab = -4F ac F cd F db δF ab -4F ac F cd F db (δA b,a -δA a,b ) = 8F ac F cd F db δA a,b ; δ F ⋆ ab F ab 2 = F ⋆ ab F ab ǫ opqr (F qr δF op + F op δF qr ) = 2 F ⋆ cd F cd F ⋆ab δF ab = -4 F ⋆ cd F cd F ⋆ab δA a,b ; δ F ⋆ ab F bc F ⋆ cd F da = 2 F bc F ⋆ cd F da δF ⋆ ab + F ⋆bc F cd F ⋆da δF ab = -2 F ac F ⋆cd F db δF * ab + F ⋆ac F cd F ⋆db δF ab = -2 1 2 F pc F ⋆cd F dq ǫ pqab + F ⋆ac F cd F ⋆db δF ab = 2 F pc F ⋆cd F dq ǫ pqab + 2F ⋆ac F cd F ⋆db δA a,b ; δ ǫ abcd ǫ ef gh F ae F bf F cg F dh = 4ǫ acde ǫ bf gh F cf F dg F eh δF ab = -8ǫ acde ǫ bf gh F cf F dg F eh δA a,b .
From those relations we get this

∂L 4 ∂A a,b = 1 4πc F ab + α F cd F cd F ab + βF ac F cd F db + κ F cd F ⋆ cd F ⋆ab (20) +λ F pc F ⋆cd F dq ǫ pqab + 2F ⋆bc F cd F ⋆da + σǫ acde ǫ bf gh F cf F dg F eh
The condition δ L 4 dΩ = 0 leads to the tensor equation

∂ ∂x b ∂L 4 ∂A a,b = 1 4πc ∂ ∂x b F ab + α F cd F cd F ab + βF ac F cd F db + κ F cd F ⋆ cd F ⋆ab (21) 
+λ

F gc F ⋆cd F df ǫ f gab + 2F ⋆bc F cd F ⋆da + σǫ acde ǫ bf gh F cf F dg F eh = 0 or ∂F ab ∂x b = - 4π c j a , (22) 
j a = c 4π ∂ ∂x b α F cd F cd F ab + βF ac F cd F db + κ F cd F ⋆ cd F ⋆ab (23) +λ F gc F ⋆cd F df ǫ f gab + 2F ⋆bc F cd F ⋆da + σǫ acde ǫ bf gh F cf F dg F eh
In addition, the tensor ∂L4 ∂A a,b is antisymmetric. Therefore

∂ 2 ∂x a ∂x b ∂L 4 ∂A a,b = 0,
and, accordingly, the continuity equation ∂ a j a = 0 is an identity. Considering that

∂L 4 ∂x b = ∂L 4 ∂A u,a A u,ab = ∂ ∂x a ∂L 4 ∂A u,a A u,b because ∂ ∂x a ∂L 4 ∂A u,a = 0
(on shell ) the canonical stress-energy tensor

T a b = ∂L 4 ∂A u,a A u,b -δ a b L 4 (24) 
satisfies the condition

∂T a b ∂x a = 0, (25) 
but it explicitly includes derivatives of the four-potential, which is unacceptable according to our assumptions. From (21):

∂L 4 ∂A u,a A b,u = ∂χ ua b ∂x u (26) 
(on shell also) where

χ ua b = ∂L 4 ∂A u,a A b and χ ua b = -χ au b
In consequence, because of (26), the components of T a b can be replaced with

T a b = ∂L 4 ∂A u,a (A u,b -A b,u ) -δ a b L 4 = - ∂L 4 ∂A u,a F ub -δ a b L 4 (27) = ∂L 4 ∂A a,u F ub -δ a b L 4
which is the stress-energy tensor of the electromagnetic field in this theory. Equations ( 22), (23), and ( 27) are the fundamental equations of a unified classical field theory describing electric current, electromagnetic field, and matter in terms of Faraday's tensor. The generalization of this theory to general relativity is straightforward.

Concluding remarks

As aformentioned, if our assumptions that 1. The electromagnetic field F ij is an autonomous dynamical system.

2. Its dynamical laws obey the principle of relativity.

3. Those laws can be obtained from the principle of minimum action, using a Lagrangian density that is an analytic function of Faraday's tensor.

correspond to reality, the non-linear theory presented here must be true-to the fourth order in the field intensities-for appropiate values of the constants α, β, κ, λ, and σ. We must be aware, however, that this approach is not exempt of logical difficulties, because it depends on the soundness of the concept of a fourdimensional continuous space-time which, in turn, is grounded on our everyday experience of the existence of solid rigid bodies-as stressed by Einstein-as well as on the assumption that whatever the electromagnetic field is, it is completely described by the Faraday tensor field. Therefore, the soundness of this approach is granted at a macroscopic level and, at most, at a mesoscopic level, because there are no solid bodies of atomic dimensions.
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Forty five of the corresponding terms in the sum

C i0i1i2i3i4i5i6i7 F i0i1 F i2i3 F i4i5 F i6i7
include δ i0i1 , δ i2i3 , δ i4i5 , or δ i6i7 and are, therefore, null. Each of the remaining sixty terms can be simplified to ± ab F ab 2 or ±F ab F bc F cd F da . There is another set of thirty five isotropic tensors that are products of Levi-Civita tensors, as shown below. There are three possibilities to consider when simplifying the product of one of those tensors and F i0i1 F i2i3 F i4i5 F i6i7 1. None of the F factors shares both of its indexes with the left factor of the ǫ-product. Those terms can be grouped into a single term that is proportional to ǫ abcd F ae F bf F cg F dh ǫ ef gh 2. One of the F factors shares both indexes with the left factor of the ǫproduct and, accordingly, there is one and only one factor that shares both indexes with the right factor of the ǫ-product. Those terms add up to a single term that is proportional to F ⋆ ab F bc F ⋆ cd F da where

F ⋆ cd = 1 2 ǫ abcd F ab
is the dual of Faraday's tensor.

3. Each of the ǫ factors shares indexes with two of the F factors. Those terms can be grouped into a single term proportional to F ⋆ ab F ab 2 . ǫ i0i1i2i3 ǫ i4i5i6i7 , ǫ i0i1i2i4 ǫ i3i5i6i7 , ǫ i0i1i2i5 ǫ i3i4i6i7 , ǫ i0i1i2i6 ǫ i3i4i5i7 , ǫ i0i1i2i7 ǫ i3i4i5i6 ǫ i0i1i3i4 ǫ i2i5i6i7 , ǫ i0i1i3i5 ǫ i2i4i6i7 , ǫ i0i1i3i6 ǫ i2i4i5i7 , ǫ i0i1i3i7 ǫ i2i4i5i6 , ǫ i0i1i4i5 ǫ i2i3i6i7 ǫ i0i1i4i6 ǫ i2i3i5i7 , ǫ i0i1i4i7 ǫ i2i3i5i6 , ǫ i0i1i5i6 ǫ i2i3i4i7 , ǫ i0i1i5i7 ǫ i2i3i4i6 , ǫ i0i1i6i7 ǫ i2i3i4i5 i0i2i3i4 ǫ i1i5i6i7 , ǫ i0i2i3i5 ǫ i1i4i6i7 , ǫ i0i2i3i6 ǫ i1i4i5i7 , ǫ i0i2i3i7 ǫ i1i4i5i6 , ǫ i0i2i4i5 ǫ i1i3i6i7 ǫ i0i2i4i6 ǫ i1i3i5i7 , ǫ i0i2i4i7 ǫ i1i3i5i6 , ǫ i0i2i5i6 ǫ i1i3i4i7 , ǫ i0i2i5i7 ǫ i1i3i4i6 , ǫ i0i2i6i7 ǫ i1i3i4i5 ǫ i0i3i4i5 ǫ i1i2i6i7 , ǫ i0i3i4i6 ǫ i1i2i5i7 , ǫ i0i3i4i7 ǫ i1i2i5i6 , ǫ i0i3i5i6 ǫ i1i2i4i7 , ǫ i0i3i5i7 ǫ i1i2i4i6 ǫ i0i3i6i7 ǫ i1i2i4i5 , ǫ i0i4i5i6 ǫ i1i2i3i7 , ǫ i0i4i5i7 ǫ i1i2i3i6 , ǫ i0i4i6i7 ǫ i1i2i3i5 , ǫ i0i5i6i7 ǫ i1i2i3i4

Appendix

There are 105 isotropic tensors of rank eight that are products of Kronecker Delta tensors: