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We study the asymptotic behavior of a sequence of positive solutions (u ) >0 as → 0 to the family of equations

where (s ) >0 is a sequence of positive real numbers such that lim

and Ω ⊂ R n is a bounded smooth domain such that 0 ∈ ∂Ω. When the sequence (u ) >0 is uniformly bounded in L ∞ , then upto a subsequence it converges strongly to a minimizing solution of the stationary Schrödinger equation with critical growth. In case the sequence blows up, we obtain strong pointwise control on the blow up sequence, and then using the Pohozaev identity localize the point of singularity, which in this case can at most be one, and derive precise blow up rates. In particular when n = 3 or a ≡ 0 then blow up can occur only at an interior point of Ω or the point 0 ∈ ∂Ω.

Introduction

Let Ω be a bounded smooth oriented domain of R n , n ≥ 3, such that 0 ∈ ∂Ω. We define the Sobolev space H 2 1,0 (Ω) as the completion of the space C ∞ c (Ω), the space of compactly supported smooth functions in Ω, with respect to the norm u → u H 2 1,0 (Ω) = |∇u L 2 (Ω) . We let 2 * := 2n n-2 be the critical Sobolev exponent for the embeding H 2 1,0 (Ω) → L p (Ω). Namely, the embedding is defined and continuous for 1 ≤ p ≤ 2 * , and it is compact iff 1 ≤ p < 2 * . Let a ∈ C 1 (Ω) be such that the operator ∆ + a is coercive in Ω, that is there exists A 0 > 0 such that

Ω (|∇ϕ| 2 + aϕ 2 ) dx ≥ A 0 u 2 H 2 1,0 (Ω) for all ϕ ∈ H 2 1,0 (Ω). Solutions u ∈ C 2 (Ω) to the problem    ∆u + a(x)u = u 2 * -1 in Ω u > 0 in Ω u = 0
on ∂Ω (often referred to as "Brezis-Nirenberg problem") are critical points of the functional

u → J(u) := Ω |∇u| 2 + au 2 dx Ω |u| 2 * dx 2/2 * .
Here, ∆ := -div(∇) =i ∂ ii is the Laplacian with minus sign convention. A natural way to obtain such critical points is to find minimizers to this functional, that is to prove that µ a (Ω) = inf u∈H 2 1,0 (Ω)\{0}

J(u)

is achieved. There is a huge and extensive litterature on this problem, starting with the pioneering article of Brezis-Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] in which the authors completely solved the question of existence of minimizers for µ a (Ω) when a ≡constant and n ≥ 4 for any domain, and n = 3 for a ball. Their analysis took inspiration from the contributions of Aubin [START_REF] Th | Problèmes isopérimétriques et espaces de Sobolev[END_REF] in the resolution of the Yamabe problem. The case when a is arbitrary and n = 3 was solved by Druet [START_REF] Druet | Elliptic equations with critical Sobolev exponents in dimension 3[END_REF] using blowup analysis.

In [START_REF] Ghoussoub | Hardy-Sobolev critical elliptic equations with boundary singularities[END_REF], Ghoussoub-Kang suggested an alternative approach by adding a singularity in the equation as follows. For any s ∈ [0, 2), we define 2 * (s) := 2(n -s) n -2 so that 2 * = 2 * (0). Consider the weak solutions u ∈ H 2 1,0 (Ω)\{0} to the problem

     ∆u + a(x)u = u 2 * (s)-1 |x| s in Ω u ≥ 0 in Ω u = 0 on ∂Ω.
Note here that 0 ∈ ∂Ω is a boundary point. Such solutions can be achieved as minimizers for the problem µ s,a (Ω) = inf for s ∈ (0, 2) (1) Consider a sequence of positive real numbers (s ) >0 such that lim →0 s = 0. We let

(u ) >0 ∈ C 2 Ω\{0} ∩ C 1 Ω such that      ∆u + au = u 2 * (s )-1 |x| s in Ω, u > 0 in Ω, u = 0 on ∂Ω. (2) 
Moreover, we assume that the (u )'s are of minimal energy type in the sense that

Ω |∇u | 2 + au 2 dx Ω |u | 2 * (s ) |x| s dx 2/2 * (s ) = µ s ,a (Ω) + o(1) ≤ 1 K(n, 0) + o(1) (3) 
as → 0, where K(n, 0) > 0 is the best constant in the Sobolev embedding defined in [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF]. Indeed, it follows from Ghoussoub-Robert [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF][START_REF]Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF] that such a family (u ) exists if the the mean curvature of ∂Ω at 0 is negative.

In this paper we are interested in studying the asymptotic behavior of the sequence (u ) >0 as → 0. As proved in Proposition 2.2, if the weak limit u 0 of (u ) in H 2 1,0 (Ω) is nontrivial, then the convergence is indeed strong and u 0 is a minimizer of µ a (Ω). We completely deal with the case u 0 ≡ 0, which is more delicate, in which blow-up necessarily occurs. In the spirit of the C 0 -theory of Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF], our first result is the following:

Theorem 1.
Let Ω be a bounded smooth oriented domain of R n , n ≥ 3 , such that 0 ∈ ∂Ω, and let a ∈ C 1 (Ω) be such that the operator ∆ + a is coercive in Ω. Let (s ) >0 ∈ (0, 2) be a sequence such that lim →0 s = 0. Suppose that the sequence (u ) >0 ∈ H 2 1,0 (Ω), where for each > 0, u satisfies (2) and (3), is a blowup sequence, i.e u 0 weakly in H 2 1,0 (Ω) as → 0

Then, there exists C > 0 such that for all > 0

u (x) ≤ C µ µ 2 + |x -x | 2 n-2 2
for all x ∈ Ω where µ

-n-2 2 = u (x ) = max x∈Ω u (x).
With this optimal pointwise control, we to obtain more informations on the localization of the blowup point x 0 := lim →0 x and the blowup parameter (µ ) . We let G : Ω × Ω \ {(x, x) : x ∈ Ω} -→ R be the Green's function of the coercive operator ∆ + a in Ω with Dirichlet boundary conditions. For any x ∈ Ω we write G x as:

G x (y) = 1 (n -2)ω n-1 |x -y| n-2 + g x (y) for y ∈ Ω \ {x}
where ω n-1 is the area of the (n -1)-sphere. In dimension n = 3 or when a ≡ 0, one has that g x ∈ C 2 (Ω \ {x}) ∩ C 0,θ (Ω) for some 0 < θ < 1, and g x (x) is defined for all x ∈ Ω and is called the mass of the operator ∆ + a.

Theorem 2.

Let Ω be a bounded smooth oriented domain of R n , n ≥ 3 , such that 0 ∈ ∂Ω, and let a ∈ C 1 (Ω) be such that the operator ∆ + a is coercive in Ω. Let (s ) >0 ∈ (0, 2) be a sequence such that lim →0 s = 0. Suppose that the sequence

(u ) >0 ∈ H 2 1,0 (Ω)
, where for each > 0, u satisfies (2) and (3), is a blowup sequence, i.e u 0 weakly in H 2 1,0 (Ω) as → 0

We let (µ ) ∈ (0, +∞) and (x ) ∈ Ω be such that µ

-n-2 2 = u (x ) = max x∈Ω u (x).
We define x 0 := lim →0 x and we assume that

x 0 ∈ Ω is an interior point. Then lim →0 s µ 2 = 2 * K(n, 0) 2 * 2 * -2 d n a(x 0 ) for n ≥ 5 lim →0 s µ 2 log (1/µ ) = 256ω 3 K(4, 0) 2 a(x 0 ) for n = 4 lim →0 s µ n-2 = -nb 2 n K(n, 0) n/2 g x0 (x 0 ) for n = 3 or a ≡ 0.
where g x0 (x 0 ) the mass at the point x 0 ∈ Ω for the operator ∆ + a, and

d n = R n 1 + |x| 2 n(n -2) -(n-2) dx for n ≥ 5 ; b n = R n 1 + |x| 2 n(n -2) -n+2 2 dx (4) 
and ω 3 is the area of the 3-sphere. When x 0 ∈ ∂Ω is a boundary point, we get similar estimates:

Theorem 3.
Let Ω be a bounded smooth oriented domain of R n , n ≥ 3 , such that 0 ∈ ∂Ω, and let a ∈ C 1 (Ω) be such that the operator ∆ + a is coercive in Ω. Let (s ) >0 ∈ (0, 2) be a sequence such that lim →0 s = 0. Suppose that the sequence

(u ) >0 ∈ H 2 1,0 (Ω)
, where for each > 0, u satisfies (2) and (3), is a blowup sequence, i.e u 0 weakly in H 2 1,0 (Ω) as → 0

We let (µ ) ∈ (0, +∞) and (x ) ∈ Ω be such that µ

-n-2 2 = u (x ) = max x∈Ω u (x).

Assume that lim

→0 x = x 0 ∈ ∂Ω. Then (1) If n = 3 or a ≡ 0, then as → 0 lim →0 s d(x , ∂Ω) n-2 µ n-2 = n n-1 (n -2) n-1 K(n, 0) n/2 ω n-1 2 n-2 .
Moreover, d(x , ∂Ω) = (1 + o(1))|x | as → 0. In particular x 0 = 0.

(2) If n = 4. Then as → 0

s 4 K(4, 0) -2 + o(1) - µ d(x , ∂Ω) 2 (32ω 3 + o(1)) = µ 2 log d(x , ∂Ω) µ [64ω 3 a(x 0 ) + o(1)] (3) If n ≥ 5. Then as → 0 s (n -2) 2n K(n, 0) -n/2 + o(1) - µ d(x , ∂Ω) n-2 n n-2 (n -2) n ω n-1 2 n-1 + o(1) = µ 2 [d n a(x 0 ) + o(1)]
where d n is as in (4).

Theorem 3 is a particular case of Theorem 7 proved in Section 7.

The main difficulty in our analysis is due to the natural singularity at 0 ∈ ∂Ω. Indeed, there is a balance between two facts. First, since s > 0, this singularity exists and has an influence on the analysis, and in particular on the Pohozaev identity (see the statement of Theorem 2). But, second, since s → 0, the singularity should cancel, at least asymptotically. In this perspective, our results are twofolds. Theorem 1 asserts that the pointwise control is the same as the control of the classical problem with s = 0: however, to prove this result, we need to perform a very delicate analysis of the blowup with the perturbation s > 0, even for the initial steps that are usually standard when s = 0 (these are Sections 3 and 4).

The influence and the role of s > 0 is much more striking in Theorems 2 and 3. Compared to the case s = 0, the Pohozaev identity (see Section 6) enjoys an additional term involving s that is present in the statement of Theorems 2 and 3.

Heuristically, this is due to the fact that the limiting equation ∆u = |x| -s u 2 * (s)-1 is not invariant under the action of the translations when s > 0.

Some classical references for the blow-up analysis of nonlinear critical elliptic pdes are Rey [START_REF] Rey | The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent[END_REF], Adimurthi-Pacella-Yadava [START_REF] Adimurthi | Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity[END_REF], Han [START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF], Hebey-Vaugon [START_REF] Hebey | The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds[END_REF] and Khuri-Marques-Schoen [START_REF] Khuri | A compactness theorem for the Yamabe problem[END_REF]. In Mazumdar [START_REF] Mazumdar | GJMS-type operators on a compact Riemannian manifold: best constants and Coron-type solutions[END_REF] the usefulness of blow-up analysis techniques were illustrated by proving the existence of solution to critical growth polyharmonic problems on manifolds. The analysis of the 3 dimensional problem by Druet [START_REF] Druet | Elliptic equations with critical Sobolev exponents in dimension 3[END_REF] and the monograph [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] by Druet-Hebey-Robert were important sources of inspiration.

This paper is organized as follows. In Section 2 we recall general facts on Hardy-Sobolev inequalities and prove few useful general and classical statements. Section 3 is devoted to the proof of convergence to a ground state up to rescaling. In Section 4, we perform a delicate blow-up analysis to get a first pointwise control on u . The optimal control of Theorem 1 is proved in Section 5. With the pointwise control of Theorem 1, we are able to estimate the maximum of the u 's when the blowup point is in the interior of the domain (Section 6) or on the boundary (Section 7).

Acknowledgements. I would like to express my deep gratitude to Professor Frédéric Robert and Professor Dong Ye, my thesis supervisors, for their patient guidance, enthusiastic encouragement and useful critiques of this work.

2. Hardy-Sobolev inequality and the case of a nonzero weak limit

The space D 1,2 (R n ) is defined as the completion of the space C ∞ c (R n ), the space of compactly supported smooth functions in R n , with respect to the norm

u D 1,2 = ∇u L 2 (R n ) . The embedding D 1,2 (R n ) → L 2 * (R n
) is continuous, and we denote the best constant of this embedding by K(n, 0) which can be characterised as

1 K(n, 0) = inf u∈D 1,2 (R n )\{0} R n |∇u| 2 dx R n |u| 2 * dx 2/2 * (5) 
Interpolating the Sobolev inequality and the Hardy inequality

(6) R n |u(x)| 2 |x| 2 dx ≤ 2 n -2 2 R n |∇u| 2 dx for u ∈ D 1,2 (R n ),
we get the so-called "Hardy-Sobolev inequality" (see [START_REF] Ghoussoub | Hardy-Sobolev critical elliptic equations with boundary singularities[END_REF] and the references therein): there exists a constant K(n, s) > 0 such that

1 K(n, s) = inf u∈D 1,2 (R n )\{0} R n |∇u| 2 dx R n |u| 2 * (s) |x| s dx 2/2 * (s) (7) 
As one checks, lim s→0 K(n, s) = K(n, 0). For a domain Ω ⊂ R n , we also have:

Proposition 2.1. lim s→0 µ s,a (Ω) = µ a (Ω).
Proof. Let u ∈ H 2 1,0 (Ω)\{0}. Hölder and Hardy inequalities yield

  Ω |u(x)| 2 * (s) |x| s dx   2/2 * (s) ≤ 2 n -2 2s/2 * (s)   Ω |∇u(x)| 2 dx   s/2 * (s)   Ω |u(x)| 2 * dx   2-s 2 * (s)
then the Sobolev inequality gives that for all u ∈ H 2 1,0 (Ω)\{0} one has

Ω |∇u| 2 + au 2 dx Ω |u| 2 * dx 2/2 * ≤ Ω |∇u| 2 + au 2 dx Ω |u| 2 * (s) |x| s dx 2/2 * (s) 1 K(n, 0) 1/2 * 2 n -2 s n-2 n-s So µ a (Ω) ≤ µ s,a (Ω) 1 K(n,0) 1/2 * 2 n-2 s n-2
n-s . Passing to limits as s → 0, one obtains that µ a (Ω) ≤ lim inf s→0 µ s,a (Ω). Let u ∈ H 2 1,0 (Ω)\{0}. By Fatou's lemma one has

Ω |u(x)| 2 * dx ≤ lim inf s→0 Ω |u(x)| 2 * (s) |x| s dx ≤ lim inf s→0   1 µ s,a (Ω) Ω |∇u| 2 + au 2 dx   2 * (s)/2 ,   Ω |u(x)| 2 * dx   2/2 * ≤ lim inf s→0 1 µ s,a (Ω) Ω |∇u| 2 + au 2 dx
Therefore lim sup s→0 µ s,a (Ω) ≤ µ a (Ω), hence lim s→0 µ s,a (Ω) = µ a (Ω). This proves Proposition 2.1.

The following proposition is standard:

Proposition 2.2.
Let Ω be a bounded smooth oriented domain of R n , n ≥ 3 , such that 0 ∈ ∂Ω. Let a ∈ C 1 (Ω) be such that the operator ∆ + a is coercive in Ω Let (u ) >0 ∈ C 2 Ω\{0} ∩ C 1 Ω be as in (2) and (3). Then there exists u 0 ∈ H 2 1,0 (Ω) such that, up to extraction, u u 0 weakly in H 2 1,0 (Ω) as → 0.

Indeed, u 0 ∈ C 2 Ω\{0} ∩ C 1 Ω is a solution to    ∆u 0 + au 0 = u 2 * -1 0 in Ω u 0 ≥ 0 in Ω, u 0 = 0 on ∂Ω If u 0 = 0, then u 0 > 0 in Ω and lim →0 u = u 0 in C 1 (Ω).
Moreover, µ a (Ω) is achieved by u 0 .

Preliminary Blow-up Analysis

We define R n -= {x ∈ R n : x 1 < 0} where x 1 is the first coordinate of a generic point in R n . This space will be the limit space in certain cases after blowup. We describe a parametrisation around a point of the boundary ∂Ω. Let p ∈ ∂Ω. Then there exists U ,V open in R n and a smooth diffeomorphism T : U -→ V such that upto a rotation of coordinates if necessary (8)

                           • 0 ∈ U and p ∈ V • T (0) = p • T (U ∩ {x 1 < 0}) = V ∩ Ω • T (U ∩ {x 1 = 0}) = V ∩ ∂Ω • D 0 T = I R n .
Here D x T denotes the differential of T at the point x and I R n is the identity map on R n . • D 0 T (e 1 ) = ν p where ν p denotes the outer unit normal vector to ∂Ω at the point p.

• {D 0 T (e 2 ), • • • , D 0 T (e n )} forms an orthonormal basis of T p ∂Ω.
We start with a scaling lemma which we shall employ many times in our analysis.

Lemma 1.

Let Ω be a bounded smooth oriented domain of R n , n ≥ 3 , such that 0 ∈ ∂Ω, and let a ∈ C 1 (Ω) be such that the operator ∆ + a is coercive in Ω. Let (s ) >0 ∈ (0, 2) be a sequence such that lim →0 s = 0. Consider the sequence

(u ) >0 ∈ H 2 1,0 (Ω)
, where for each > 0, u satisfies (2) and (3). Let (y ) ∈ Ω, and let (ν ) and (β ) be sequences of positive real numbers defined by

ν -n-2 2 = u (y ) β := |y | s /2 ν 2-s 2 for > 0 (9)
Suppose that lim →0 ν = 0 which then implies that lim →0 β = 0. Assume that there exists C 1 > 0 such that for any given R > 0 one has for > 0 small u (x) ≤C 1 u (y ) for all x ∈ B y (Rν ) [START_REF]Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF] Then ν = o (|y |) as → 0. Along with the above assumption also suppose that there exists C 2 > 0 such that for any given R > 0 one has for > 0 small u (x) ≤C 2 u (y ) for all x ∈ B y (Rβ ) [START_REF] Ghoussoub | Hardy-Sobolev critical elliptic equations with boundary singularities[END_REF] Then β = o (d(y , ∂Ω)) as → 0. For > 0 we then rescale and define

w (x) := u (y + β x) u (y ) for x ∈ Ω -y β (12) Then there exists w ∈ C ∞ (R n ) ∩ D 1,2 (R n ) such that w > 0 and for any η ∈ C ∞ c (R n ) ηw ηw weakly in D 1,2 (R n ) as → 0 Further, lim →0 w = w in C 1 loc (R n ) and w satisfies the equation ∆w = w 2 * -1 in R n w ≥ 0 in R n .
Proof. The proof is completed in the following steps.

Step 

(x) = u • T (ν x) u (y ) for x ∈ U ν ∩ {x 1 ≤ 0} Step 1.1: For any η ∈ C ∞ c (R n ), one has that η w ∈ D 1,2 (R n -)
for > 0 sufficiently small. We claim that there exists wη

∈ D 1,2 (R n -) such that upto a subsequence η w wη weakly in D 1,2 (R n -) as → 0 η w (x) → wη (x)
a.e in R n -as → 0

We prove the claim. Let x ∈ R n -, then

∇ (η w ) (x) = w (x)∇η(x) + ν u (y ) η(x)D (ν x) T [∇u (T (ν x))]
Now for any θ > 0, there exists

C(θ) > 0 such that for any a, b > 0, (a + b) 2 ≤ C(θ)a 2 + (1 + θ)b 2 .
With this inequality we then obtain

R n - |∇ (η w )| 2 dx ≤ C(θ) R n - |∇η| 2 w2 dx + (1 + θ) ν 2 u 2 (y ) R n - η 2 D (ν x) T [∇u (T (ν x))] 2 dx Since D 0 T = I R n we have as → 0 R n - |∇ (η w )| 2 dx ≤ C(θ) R n - |∇η| 2 w2 dx + (1 + θ) (1 + O(ν )) ν 2 u 2 (y ) R n - η 2 |∇u (T (ν x))| 2 (1 + o(1))dx
With Hölder inequality and a change of variables this becomes

R n - |∇ (η w )| 2 dx ≤ C(θ) ∇η 2 L n Ω u 2 * dx n-2 n + (1 + θ) (1 + O(ν )) Ω |∇u | 2 dx (14) 
Since u H 2 1,0 (Ω) = O(1) and ν → 0 as → 0, so for > 0 small enough,

η w D 1,2 (R n -) ≤ C η ,
where C η is a constant depending on the function η. The claim then follows from the reflexivity of D 1,2 (R n -).

Step 1.2: Via a diagonal argument, we get that there exists w

∈ D 1,2 (R n -) such that for any η ∈ C ∞ c (R n ), then η w η w weakly in D 1,2 (R n -) as → 0 η w (x) → η w(x) a.e x in R n -as → 0 We claim that w ∈ C 1 (R n -)
and it satisfies weakly the equation

(15) ∆ w = w2 * -1 in R n - w = 0 on {x 1 = 0}
We prove the claim. For i, j = 1, . . . , n, we let g ij = (∂ i T , ∂ j T ), the metric induced by the chart T on the domain U ∩ {x 1 < 0} and let ∆ g denote the Laplace-Beltrami operator with respect to the metric g. We let g = g (ν x)

From (2) it follows that for any > 0 and R > 0, w satisfies weakly the equation

∆ w + ν 2 (a • T (ν x)) w = w2 (s )-1 T (ν x) ν s in B 0 (R) ∩ {x 1 < 0} w = 0 on B 0 (R) ∩ {x 1 = 0} (16)
From [START_REF]Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF] and the properties of the boundary chart T it follows that there exists C 1 > 0 such that for > 0 small 0 ≤ w (x) ≤ C 1 for all x ∈ B 0 (R) ∩ {x 1 ≤ 0}, for R > 0 large. Then for any p > 1 there exists a constant C p > 0 such that

B0(R)∩{x1<0}   ( w ) 2 * (s )-1 T (ν x) ν s   p dx ≤ C p B0(R)∩{x1<0} 1 |x| s p dx
So the right hand side of equation ( 16) is uniformly bounded in L p for some p > n.

From standard elliptic estimates it follows that the sequence

(η R w ) >0 is bounded in C 1,α0 (B 0 (R) ∩ {x 1 ≤ 0})
for some α 0 ∈ (0, 1). So by Arzela-Ascoli's theorem and a diagonal argument, we get that w ∈ C 1,α loc (R n ∩ {x 1 ≤ 0}) for 0 < α < α 0 , and that, up to a subsequence

lim →0 w = w in C 1,α loc (R n ∩ {x 1 ≤ 0})
for 0 < α < α 0 . Passing to the limit in ( 16), we get [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. This proves our claim.

Step 1.3: Let ỹ ∈ U be such that T (ỹ ) = y . From the properties (8) of the boundary chart T , we get that

|ỹ | ν = O |y | ν . Then there exists ỹ ∈ R n -such that ỹ ν → ỹ as → 0. Therefore w(ỹ) = lim →0 w (ν -1 ỹ ) = 1. Therefore ỹ ∈ R n -, and then w ∈ C 1 (R n -) is a nontrivial weak solution of the equation ∆ w = w2 * -1 in R n - w = 0 on {x 1 = 0}
which is impossible, see Struwe [START_REF] Struwe | Variational methods[END_REF] (Chapter III, Theorem 1.3) and the Liouville theorem on half space. Hence [START_REF] Hebey | Asymptotic analysis for fourth order Paneitz equations with critical growth[END_REF] holds. This completes the proof of Step 1.

Step 2: Next, arguing similarly as in Step 1 and using (13), we get that lim →0 d(y , ∂Ω) β = +∞ [START_REF] Mazumdar | GJMS-type operators on a compact Riemannian manifold: best constants and Coron-type solutions[END_REF] We define w as in [START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF]. We fix η ∈ C ∞ c (R n ). Then ηw ∈ D 1,2 (R n ) for > 0 small. Arguing as in Step 1, for any θ > 0, there exists C(θ) > 0 such that

R n |∇ (ηw )| 2 dx ≤ ν β n-2 C(θ) ∇η 2 L n   R n u 2 * dx   n-2 n + (1 + θ) ν β n-2 R n η x -y β 2 |∇u | 2 dx. ( 18 
)
Arguing as in Step 1, (ηw ) is uniformly bounded in D 1,2 (R n ), and there exists

w ∈ D 1,2 (R n ) such that upto a subsequence ηw ηw weakly in D 1,2 (R n ) as → 0 ηw (x) → ηw(x) a.e x in R n as → 0 (19) Further w ∈ C ∞ (R n ) ∩ D 1,2 (R n ), w ≥ 0 and it satisfies weakly the equation ∆w = w 2 * -1 in R n . Moreover lim →0 w = w in C 1 loc (R n
), w(0) = 1 and w > 0. This ends Step 2 and proves Lemma 1.

We let (u ) be as in Theorem 1. We will say that blowup occurs whenever u 0 weakly in H 2 1,0 (Ω) as → 0. We describe the behaviour of such a sequence of solutions (u ). By regularity, for all , u ∈ C 0 (Ω). We let x ∈ Ω and µ > 0 be such that :

u (x ) = max Ω u (x)
and µ

-n-2 2 = u (x ) (20)
The main result of this section is the following theorem:

Theorem 4.
Let Ω be a bounded smooth oriented domain of R n , n ≥ 3 , such that 0 ∈ ∂Ω, and let a ∈ C 1 (Ω) be such that the operator ∆ + a is coercive in Ω. Let (s ) >0 ∈ (0, 2) be a sequence such that lim →0 s = 0. Suppose that the sequence

(u ) >0 ∈ H 2 1,0 (Ω)
, where for each > 0, u satisfies (2) and (3), is a blowup sequence, i.e u 0 weakly in H 2 1,0 (Ω) as → 0

We let (x ) , (µ ) be as in [START_REF] Struwe | Variational methods[END_REF]. Let k be such that

k := |x | s /2 µ 2-s 2 for > 0 (21) Then lim →0 µ = lim →0 k = 0 and lim →0 d(x , ∂Ω) µ = lim →0 d(x , ∂Ω) k = +∞.
We rescale and define

v (x) := u (x + k x) u (x ) for x ∈ Ω -x k Then there exists v ∈ C ∞ (R n ) such that v = 0 and for any η ∈ C ∞ c (R n ) ηv ηv weakly in D 1,2 (R n ) as → 0 and lim →0 v = v in C 1 loc (R n ) where for x ∈ R n , v(x) = 1 + |x| 2 n(n -2) -n-2 2 and R n |∇v| 2 dx = 1 K(n, 0) 2 * 2 * -2 (22)
Moreover upto a subsequence, as → 0

µ |x | s → 1 and k µ → 1. (23)
Proof. The proof goes through following steps.

Step 1: We claim that: µ = o(1) as → 0.

We prove our claim. Suppose lim →0 µ = 0. Then (u ) is uniformly bounded in L ∞ , and then (|x| -s u 2 (s )-1 ) is uniformly bounded in L p (Ω) for some p > n. Then from (2), the weak convergence to 0 and standard elliptic theory, we get that u → 0 in C 1 (Ω), as → 0. From ( 2) and (3), we then get that lim →0 µ s ,a (Ω) = 0 and therefore, µ a (Ω) = 0, contradicting the coercivity. This ends Step 1.

Step 2: From Lemma 1 it follows that lim

→0 |x | µ = +∞ , lim →0 d(x , ∂Ω) k = +∞. (24) and, there exist v ∈ C 1 (R n ), v > 0, such that lim →0 v = v in C 1 loc (R n ) and it satisfies ∆v = v 2 * -1 in R n . Further we have that max x∈R n v(x) = v(0) = 1. By
Caffarelli, Gidas and Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we then have the first assertion of (22).

Step 3: Arguing as in the proof of [START_REF] Rey | The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent[END_REF], for any θ > 0, there exists C(θ) > 0 such that for any R > 0

R n |∇(η R v )| 2 dx ≤ C(θ) B0(2R)\B0(R) (η 2R v ) 2 * dx n-2 n + (1 + θ) µ k n-2 Ω |∇u | 2 dx (25)
Now u 0 weakly in H 2 1,0 (Ω) as → 0, where for each > 0, u satisfies ( 2) and (3). So we have

Ω |∇u | 2 dx = Ω |u (x)| 2 * (s ) |x| s dx + o(1) ≤ µ s ,a (Ω) 2 * (s ) 2 * ( )-2 + o(1) as → 0.
Using Proposition 2.1, letting → 0, then R → +∞, and the θ → 0, we obtain

R n |∇v| 2 dx ≤ lim sup →0 µ |x | s n-2 2 µ a (Ω) 2 * 2 * -2 (26) 
From (24) we get lim sup Proof. We obtain by change of variables

→0 µ |x | s ≤ 1. Since µ a (Ω) ≤ 1 K(n,0) (see Aubin [2]), we get R n |∇v| 2 dx ≤ µ a (Ω) 2 * 2 * -2 ≤ 1 K(n, 0) 2 * 2 * -2 Since v ∈ D 1,2 (R n ) satisfies ∆v = v 2 * -1 ,
Ω\Bx (Rk ) |u (x)| 2 * (s ) |x| s dx = Ω |u (x)| 2 * (s ) |x| s dx - Bx (Rk ) |u (x)| 2 * (s ) |x| s dx = Ω |u (x)| 2 * (s ) |x| s dx - k n µ n-s B0(R) |v (x)| 2 * (s ) |x + k x| s dx = Ω |u (x)| 2 * (s ) |x| s dx - |x | s µ s n-2 2 B0(R) |v (x)| 2 * (s ) x |x | + k |x | x s dx
Letting → 0 and then R → +∞ one obtains the proposition using Theorem 4.

Refined Blowup Analysis I

In this section we obtain pointwise bounds on the blowup sequence (u ) >0 that will be used in next section to get the optimal bound.

Theorem 5. With the same hypothesis as in Theorem 4, we have that there exists a constant C > 0 such that for > 0

|x -x | n-2 2 u (x) + |x -x | n 2 d(x, ∂Ω) u (x) ≤ C for all x ∈ Ω.
Moreover,

lim R→+∞ lim →0 sup x∈Ω\Bx (Rk ) |x -x | n-2 2 u (x) = 0
The proof of Theorem 5 comprises the three propositions proved below.

Proposition 4.1. With the same hypothesis as in Theorem 4, we have that there exists a constant C > 0 such that for > 0

|x -x | n-2 2 u (x) ≤ C for all x ∈ Ω
Proof. We argue by contradiction and let y ∈ Ω be such that Step 3: It follows from (32) and the definitions ( 27) and (28) that for any R > 0 one has for > 0 sufficiently small u (x) ≤ 2u (y ) for all x ∈ B y (Rl ). Therefore hypothesis [START_REF] Ghoussoub | Hardy-Sobolev critical elliptic equations with boundary singularities[END_REF] of Lemma 1 is satisfied and one has lim

|y -x | n-2 2 u (y ) = sup x∈Ω |x -x | n-2 2 u (x) → +∞ as → 0. ( 27 
→0 d (y , ∂Ω) l = +∞. ( 35 
)
We let for > 0

w (x) = u (y + l x) u (y ) for x ∈ Ω -y l .
From Lemma 1 it follows that lim

→0 w = w in C 1 loc (R n ) where w ∈ C ∞ (R n ) ∩ D 1,2 (R n
) is such that ∆w = w 2 * -1 in R n w ≥ 0 and w(0) = 1. We obtain by a change of variable for R > 0 and > 0

B0(R) |w (x)| 2 * (s ) y |y | + l |y | x s dx = λ s |y | s n-2 2 
By (Rl )

|u (x)| 2 * (s )
|x| s dx

Passing to the limit as → 0, we have for R > 0

B0(R) w 2 * dx ≤ lim sup →0 By (Rl ) |u (x)| 2 * (s )
|x| s dx and so

R n w 2 * dx = lim R→+∞ B0(R) w 2 * dx ≤ lim R→+∞ lim sup →0 By (Rl ) |u (x)| 2 * (s ) |x| s dx
Now for any R > 0, we claim that B x (Rk ) ∩ B y (Rl ) = ∅ for > 0 sufficiently small. We argue by contardiction and we assume that the intersection is nonempty, which yields y -x = O(k + l ) as → 0, up to extraction. It then follows from (32) that y -x = O(k ) as → 0, and then |y - 1) with ( 20) and (23). This contradicts (28) and proves the claim. Then by Proposition 3.1

x | n-2 2 u (y ) = O(k n-2 2 u (y )) = O(µ n-2 2 u (x )) = O(
R n w 2 * dx ≤ lim R→+∞ lim sup →0 Ω\By (Rl ) |u (x)| 2 * (s ) |x| s dx = 0
A contradiction since w(0) = 1. Hence (28) does not hold. This completes the proof of Proposition 4.1.

Having obtained the strong bound in Proposition 4.1 we show that Proposition 4.2. With the same hypothesis as in Theorem 4 we have that there exists a constant C > 0 such that for > 0

|x -x | n/2 |∇u (x)| ≤ C and |x -x | n/2 u (x) ≤ Cd(x, ∂Ω) for all x ∈ Ω
Proof. We proceed by contradiction and assume that there exists a sequence of points (y ) >0 in Ω such that

|y -x | n/2 |∇u (y )| + |y -x | n/2 u (y ) d(y , ∂Ω) -→ +∞ as → 0 (36)
We define lim →0 x = x 0 ∈ Ω and lim →0 y = y 0 ∈ Ω.

Case 1: we assume that x 0 = y 0 . We choose δ > 0 such that 0 < 4δ < |x 0 -y 0 |. Then one has that δ < |x -x | for all x ∈ B y0 (2δ) ∩ Ω and Lemma 4.1 then gives us that there exists a constant C(δ) > 0 such that 0 ≤ u ≤ C(δ) in B y0 (2δ). Then from equation ( 2) and standard elliptic theory, u is bounded in C 1 B y0 (δ) ∩ Ω . So there exists a constant C > 0 such that |∇u (x)| ≤ C and u (x) ≤ Cd(x, ∂Ω) for all x ∈ B y0 (δ) ∩ Ω. This contradictis (36). The proposition is proved in Case 1. coming back to the definition of ũ , this contradicts (36). This ends Case 2.1.

Case 2.2:

We assume that upto a subsequence

d(x , ∂Ω) ≤ 2 |y -x |
Let T : U → V be a parametrisation of the boundary ∂Ω as in [START_REF] Druet | The Lin-Ni's problem for mean convex domains[END_REF] around the point p = x 0 . Let z ∈ ∂Ω be such that |z -x | = d(x , ∂Ω) for > 0. We let x , z ∈ U be such that T (x ) = x and T (z ) = z . Then it follows from the properties of the boundary chart T , that lim →0 x = 0 = lim →0 z , (x ) 1 < 0 and (z ) 1 = 0. For all > 0, we let

ũ (x) = α n-2 2 u • T (z + α x) for x ∈ U -z α ∩ {x 1 ≤ 0}
For any R > 0, ũ is defined in B 0 (R) ∩ {x 1 ≤ 0} for > 0 small enough. Using lemma Lemma 4.1 and the properties of the chart T , one obtains that there exists a constant C > 0 such that

|ρ -x| n-2 2 ũ (x) ≤ C for x ∈ B 0 (R) ∩ {x 1 ≤ 0}
where ρ = x -z α and there exists ρ 0 ∈ R -such that ρ → ρ 0 as → 0. Arguing again as in Step 1.3 of the proof of Lemma 1, standard elliptic theory yields

ũ C 1 (B0(R/2)\Bρ 0 (2δ)∩{x1≤0}) = O(1)
as → 0 and ũ vanishes on the boundary B 0 (R/2) \ B ρ0 (2δ) ∩ {x 1 = 0}. Let ỹ ∈ U be such that T (ỹ ) = y . It then follows that, as → 0

∇ũ ỹ -z α = O(1), ũ ỹ -z α = O(1)
and since ũ vanishes on the boundary A contradiction to (38), proving our claim. We note that then there exists c 2 > 0 such that for > 0 small

B 0 (R/2) \ B ρ0 (2δ) ∩ {x 1 = 0}, it follows that 0 ≤ ũ ỹ -z α = O (ỹ -z ) 1 α = O (ỹ ) 1 α = O d(y ,
|y -x | l = |y -x | λ λ s /2 |y | s /2 ≥ c 2 (41)
Arguing as in case 2.2 of Lemma 4.1 we see that we cannot have lim Let ρ 0 > 0 be such that upto a subsequence d(y , ∂Ω) l ≥ 2ρ 0 . Without loss of generality we can take 2ρ 0 < c 2 . Then proceeding as in step 3 of Lemma 4.1 we arrive at a contradiction. These steps complete the proof of Proposition 4.3.

Refined Blowup Analysis II

This section is devoted to the proof of Theorem 1.

Proof.

Step 1: We claim that for any α ∈ (0, n -2), there exists

C α > 0 such that for all > 0 |x -x | α µ n-2 2 -α u (x) ≤ C α for all x ∈ Ω (42)
Proof. Since the operator ∆ + a is coercive on Ω and a ∈ C(Ω), there exists U 0 ⊂ R n an open set such that Ω ⊂⊂ U 0 , and there exists

a 1 > 0, A 1 > 0 such that U0 |∇ϕ| 2 dx + U0 (a -a 1 ) ϕ 2 dx ≥ A 1 U0 ϕ 2 dx for all ϕ ∈ C ∞ c (U 0 ),
where we have continuously extended a to U 0 . In other words the operator ∆+(a-a 1 ) is coercive on U 0 . Let G : U 0 × U 0 \ {(x, x) : x ∈ U 0 } -→ R be the Green's function of the operator ∆ + (a -a 1 ) with Dirichlet boundary conditions. The G satisfies

∆ G(x, •) + (a -a 1 ) G(x, •) = δ x (43)
Since the operator ∆ + (a -a 1 ) is coercive on U 0 , G exists. See Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (personal notes[END_REF]. We set G (x) = G(x , x) for all x ∈ U 0 \{x } and > 0. Then there exists C > 0 such that

0 < G (x) < C |x -x | n-2 for x ∈ U 0 \{x }.
Moreover there exists δ 0 > 0 and C 0 > 0 such that for all > 0

G (x) ≥ C 0 |x -x | n-2 and |∇ G (x)| | G (x)| ≥ C 0 |x -x | for x ∈ B x (δ 0 )\{x } ⊂⊂ U 0 (44)
We define the operator

L = ∆ + a - u 2 * (s )-2 |x| s
Step 1.1: We claim that there exists ν 0 ∈ (0, 1) such that given any ν ∈ (0, ν 0 ) there exists R 1 > 0 such that for R > R 1 and > 0 sufficiently small we have

L G1-ν > 0 in Ω\B x (Rk ) (45)
We prove the claim. We choose ν 0 ∈ (0, 1) such that for any ν ∈ (0, ν 0 ) one has ν (a -a 1 ) ≥ -a1 2 in Ω. Fix ν ∈ (0, ν 0 ). Using (43) we obtain for > 0 sufficiently small 

L G1-ν G1-ν =a 1 + ν(a -a 1 ) + ν(1 -ν) |∇ G | 2 | G | 2 - u 2 * (s )-2 |x| s in Ω\{x } ≥ a 1 2 + ν(1 -ν) |∇ G | 2 | G | 2 - u 2 * (s )-2 |x| s in Ω\{x } Let |x -x | ≥ δ 0 ,
|x| s = 0 in C(Ω\B x (δ 0 ))
Hence for > 0 sufficiently small we have for ν ∈ (0, ν 0 )

L G1-ν G1-ν > 0 for x ∈ Ω\B x (δ 0 )
By strong pointwise estimates, Proposition 4.3 we have that, given any ν ∈ (0, ν 0 ), there exists

R 1 > 0 such that for any R > R 1 sup Ω\Bx (Rk ) |x -x | n-2 2 u (x) ≤ ν(1 -ν) 4 C 2 0 n-2 4 
Here C 0 is as in (44). And then using Lemma 4.2 we obtain for > 0 small

u 2 * (s )-2 |x| s = u 2 * (s )-2-s u |x| s ≤ ν(1 -ν) 2 C 2 0 |x -x | 2 for all x ∈ Ω\B x (Rk ). Therefore if x ∈ B x (δ 0 )\B x (Rk ) then with (44) we get L G1-ν G1-ν ≥ a 1 2 + ν(1 -ν) 2 C 2 0 |x -x | 2 > 0
for > 0 small. This proves the claim and ends Step 1.1.

Step 1.2: Let ν ∈ (0, ν 0 ) and R > R 1 . We claim that there exists C(R) > 0 such that for > 0 small

L C(R)µ n-2 2 -ν(n-2) G1-ν > L u in Ω\B x (Rk ) C(R)µ n-2 2 -ν(n-2) G1-ν > u on ∂ (Ω\B x (Rk )) (46)
We prove the claim. Since L u = 0 in Ω, so it follows from (45 44) and ( 23), we obtain for > 0 small

) that L C(R)µ n-2 2 -ν(n-2) G1-ν > L u in Ω\B x (Rk ) for R > R 1 and > 0 sufficiently small. With (
u (x) µ n-2 2 -ν(n-2) G1-ν (x) ≤ µ -n-2 2 µ n-2 2 -ν(n-2) (Rk ) (n-2)(1-ν) C 1-ν 0 ≤ (2R) (n-2)(1-ν) C 1-ν 0 for x ∈ Ω ∩ ∂B x (Rk ). So for x ∈ ∂ (Ω\B x (Rk )) one has for > 0 small u (x) µ n-2 2 -ν(n-2) G1-γ (x) ≤ C(R) for x ∈ Ω ∩ ∂B x (Rk )
This proves the claim and ends Step 1.2.

Step 1.3: Let ν ∈ (0, ν 0 ) and R > R 1 . Since G1-ν > 0 in Ω\B x (Rk ) and L G1-ν > 0 in Ω\B x (Rk ), it follows from [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] that the operator L satisfies the comparison principle. Then from (46) we have that for > 0 small

u (x) ≤ C(R)µ n-2 2 -ν(n-2) G1-ν (x) for x ∈ Ω\B x (Rk )
Then with (44) we get that

|x -x | (n-2)(1-ν) u (x) ≤ C(R)µ n-2 2 -ν(n-2) for x ∈ Ω\B x (Rk ) Taking α = (n -2)(1 -ν), we have for α close to n -2 |x -x | α µ n-2 2 -α u (x) ≤ C α for x ∈ Ω\B x (Rk ).
As easily checked, this implies (42) for all α ∈ (0, n -2). This ends Step 1.3 and also Step 1.

Next we show that one can infact take α = n -2 in (42).

Step 2: We claim that there exists C > 0 such that for all > 0

|x -x | n-2 u (x ) u (x) ≤ C for all x ∈ Ω (47)
Proof. The claim is equivalent to proving that for any (y ) ∈ Ω, we have that

|y -x | n-2 u (x ) u (y ) = O(1)
as → 0

We have the following two cases.

Step 2.1:

Suppose that |x -y | = O(µ ) as → 0. By definition (20) it follows that |y -x | n-2 u (x ) u (y ) ≤ |y -x | n-2 µ 2-n
. This proves (47) in this case and ends Step 2.1.

Step 2.2: Suppose that

lim →0 |x -y | µ = +∞ as → 0 (48) We let for > 0 v (x) = µ n-2 2 u (µ x + x ) for x ∈ Ω -x µ
Then from (42), it follows that for any α ∈ (0, n -2), there exists

C α > 0 such that for all > 0 v (x) ≤ C α 1 + |x| α for x ∈ Ω -x µ
Let G be the Green's function of ∆ + a with Dirichlet boundary conditions. Green's representation formula and standard estimates on the Green's function yield

u (y ) = Ω G(x, y ) u 2 * (s )-1 (x) |x| s dx ≤ C Ω 1 |x -y | n-2 u 2 * (s )-1 (x) |x| s dx for all > 0
where C > 0 is a constant. We write the above integral as follows

u (y ) ≤ C Ω u (x) |x| s 1 |x -y | n-2 u (x) 2 * (s )-1-s dx for all > 0
Using Hölder inequality and then by Hardy inequality [START_REF] Druet | Elliptic equations with critical Sobolev exponents in dimension 3[END_REF] we get that for > 0

u (y ) ≤C   Ω |u (x)| 2 |x| 2 dx   s /2   Ω 1 |x -y | n-2 2 2-s u (x) (2 * (s )-1-s ) 2 2-s dx   2-s 2 ≤C   2 n -2 2 Ω |∇u | 2 dx   s /2   Ω 1 |x -y | n-2 2 2-s u (x) (2 * (s )-1-s ) 2 2-s dx   2-s 2
Since (u ) >0 is bounded in H 2 1,0 (Ω),there exists C > 0 such that for > 0 small u (y )

2 2-s ≤ C Ω 1 |x -y | 2(n-2) 2-s u (x) (2 * (s )-1-s ) 2 2-s dx
With a change of variables the above integral becomes

u (y ) 2 2-s ≤ C µ n µ n-2 2-s (2 * (s )-1-s ) Ω-x µ 1 |y -x -µ x| 2(n-2) 2-s v (x) (2 * (s )-1-s ) 2 2-s dx
And so we get that for > 0 small

µ -n-2 2 u (y ) 2 2-s ≤ C Ω-x µ ∩{|y -x -µ x|≥ |y -x | 2 } 1 |y -x -µ x| 2(n-2) 2-s v (x) (2 * (s )-1-s ) 2 2-s dx + C Ω-x µ ∩{|y -x -µ x|≤ |y -x | 2 } 1 |y -x -µ x| 2(n-2) 2-s v (x) (2 * (s )-1-s ) 2 2-s dx (49) 
We estimate the above two integrals separately. First we have for > 0 small and α close to n -2

Ω-x µ ∩{|y -x -µ x|≥ |y -x | 2 } 1 |y -x -µ x| 2(n-2) 2-s v (x) (2 * (s )-1-s ) 2 2-s dx (50) ≤ 2 2(n-2) 2-s |y -x | 2(n-2) 2-s Ω-x µ v (x) (2 * (s )-1-s ) 2 2-s dx = O 1 |y -x | 2(n-2) 2-s
as → 0. On the other hand for > 0 small

Ω-x µ ∩{|y -x -µ x|≤ |y -x | 2 } 1 |y -x -µ x| 2(n-2) 2-s v (x) (2 * (s )-1-s ) 2 2-s dx ≤ C α Ω-x µ ∩{|y -x -µ x|≤ |y -x | 2 } 1 |y -x -µ x| 2(n-2) 2-s 1 |x| (2 * (s )-1-s ) 2α 2-s dx ≤ C α 2µ |y -x | (2 * (s )-1-s ) 2α 2-s {|y -x -µ x|≤ |y -x | 2 } 1 |y -x -µ x| 2(n-2) 2-s dx ≤ C α µ |y -x | (2 * (s )-1-s ) 2α 2-s -n 1 |y -x | n-2 2 2-s
Taking α close to (n -2), and using (48), we obtain for sufficiently small (51)

Ω-x µ ∩{|y -x -µ x|≤ |y -x | 2 } v2 * (s )-1 (x) |y -x -µ x| n-2 dx = o 1 |y -x | n-2 2 2-s
as → 0. Combining (49), ( 50) and (51) we obtain that

µ -n-2 2 u (y ) 2 2-s ≤ O 1 |y -x | 2(n-2) 2-s as → 0
This proves (47) and ends Step 2.2 and then Step 2.

Step 3: The estimate (47) and the definition (20) of µ yield Theorem 1.

Localizing the Singularity: The Interior Blow-up Case

In this section we prove Theorem 2. We assume that

x 0 ∈ Ω.

The proof goes through four steps. We first recall the Pohozaev identity. Let U be a bounded smooth domain in R n , let p 0 ∈ R n be a point and let u ∈ C 2 (U ). We have

U (x -p 0 , ∇u) + n -2 2 u ∆u dx = ∂U (x -p 0 , ν) |∇u| 2 2 -(x -p 0 , ∇u) + n -2 2 u ∂ ν u dσ ( 52 
)
here ν is the outer normal to the boundary ∂U . Using the above Pohozaev Identity we obtain the following identity for the Hardy Sobolev equation: Let U be a family of smooth domains such that x ∈ U ⊂ Ω for all > 0. One has for all > 0

U a + (x -x , ∇a) 2 u 2 dx - s (n -2) 2(n -s ) U u 2 * (s ) |x| s (x, x ) |x| 2 dx = ∂U (x -x , ν) |∇u | 2 2 + au 2 2 - 1 2 * (s ) u 2 * (s ) |x| s dσ - ∂U (x -x , ∇u ) + n -2 2 u ∂ ν u dσ (53) 
Since x 0 ∈ Ω, let δ > 0 be such that B x0 (3δ) ⊂ Ω. Note that then lim

→0 |x | s = 1,
and it follows from (23) that lim →0 µ s = 1. We will estimate each of the terms in the above Pohozaev identity and calculate the limit as → and δ → 0. It will depend on the dimension n.

Step 1: We prove the following convergence outside x 0 : Proposition 6.1. We have that µ

-n-2
This proves the claim. From (2), we get that ∆(µ

-n-2 2 u ) + a(x)(µ -n-2 2 u ) =µ 2-s (µ -n-2 2 u ) 2 * (s )-1 |x| s in Ω µ -n-2 2 u =0 on ∂Ω.
It follows from the pointwise estimate of Theorem 1 that µ

-n-2
2 u is uniformly bounded in L ∞ loc (Ω \ {x 0 }). It then follows from standard elliptic theory that the limit (54) holds in C 1 loc (Ω \ {x 0 }). This completes the proof of Proposition 6.1.

Step 2: Next we show that lim

→0 Bx (δ) u 2 * (s ) |x| s (x, x ) |x| 2 dx = 1 K(n, 0) 2 * 2 * -2 . ( 55 
)
Proof. Recall our definition of v in Theorem 4. With a change of variable we have

Bx (δ) u 2 * (s ) |x| s (x, x ) |x| 2 dx = |x | s µ s n-2 2 B0(δ/k ) (x + k x, x ) |x + k x| 2 v (x) 2 * (s ) x |x | + k |x | x s dx
Passing to limits, and using Theorems 4 and 1 we obtain by Lebesgue dominated convergence theorem lim

→0 Bx (δ) u 2 * (s ) |x| s (x, x ) |x| 2 dx = R n v 2 * dx = 1 K(n, 0) 2 * 2 * -2 .
This proves (55) and ends Step 2.

Step 3: We define a (x) := a(x) + 1 2 (x -x , ∇a) for x ∈ Ω. We claim that

Bx (δ) a u 2 dx =      O(δµ ) for n = 3 or a ≡ 0, µ 2 log 1 k [64ω 3 a(x 0 ) + o(1)] for n = 4, µ 2 [d n a(x 0 ) + o(1)]
for n ≥ 5.

(56) as → 0, where d n is as in (4).

Proof. We divide the proof in three steps. Case 3.1: We assume that n ≥ 5. Recall our definition of v in Theorem 4. With a change of variable we obtain Case 3.3: we assume that n = 3. It follows from Theorem 1 that there exists C > 0 such that µ -1/2 u (x) ≤ C|x -x | -1 for all > 0 and x ∈ Ω. Therefore

µ -2 Bx (δ) a u 2 dx = k µ 4 B0(δ/k ) a (x + k x)v 2 dx.
Bx (δ) a u 2 dx = O(µ ) Bx (δ)
|x| -2 dx = O(δµ ) as → 0.

Step 3: We prove Theorem 2 for n ≥ 4. From the Pohozaev identity (53) we have

µ -2 Bx (δ) a + (x -x , ∇a) 2 u 2 dx -µ -2 s (n -2) 2(n -s ) Bx (δ) u 2 * (s ) |x| s (x, x ) |x| 2 dx =µ n-4 ∂Bx (δ) (x -x , ν) |∇(µ -n-2 2 u )| 2 2 + a 2 (µ -n-2 2 u ) 2 - µ 2-s 2 * (s ) (µ -n-2 2 u ) 2 * (s ) |x| s dσ -µ n-4 ∂Bx (δ) (x -x , ∇(µ -n-2 2 u )) + n -2 2 (µ -n-2 2 u ) ∂ ν (µ -n-2 2 u ) dσ (57) 
Passing to the limits as → 0 in (57), using (55), (56) and Theorem 6.1, we get Theorem 2 when n ≥ 4.

Step 4: We now deal with the case of dimension n = 3. Recall from the introduction that we write the Green's function G as G x (y) = 1 4π|x-y| + g x (y) for all x, y ∈ Ω, x = y, with g x ∈ C 2 (Ω \ {x}) ∩ C 0,θ (Ω) for some 0 < θ < 1. In particular, when n = 3 or a ≡ 0, g x (x) is defined for all x ∈ Ω. For any x ∈ Ω, g x satifies the equation ∆g x + ag x = -a/(4π|x -y|) in Ω \ {x} and g x (y) = -1 ω 2 |x -y| on ∂Ω.

Note that any

x ∈ Ω lim r→0 sup y∈∂Bx(r) |y -x||∇g x (y)| = 0 (58)
The proof goes as in Hebey-Robert [START_REF] Hebey | Asymptotic analysis for fourth order Paneitz equations with critical growth[END_REF]. We omit it here. From the Pohozaev identity (53), multiplying both the sides by µ -1 we obtain

Bx (δ) a + (x -x , ∇a) 2 (µ -1/2 u ) 2 dx - s 2µ (3 -s ) Bx (δ) u 2 * (s ) |x| s (x, x ) |x| 2 dx = ∂Bx (δ) (x -x , ν) |∇(µ -1/2 u )| 2 2 + a (µ -1/2 u ) 2 2 - µ 2-s 2 * (s ) (µ -1/2 u ) 2 * (s ) |x| s dσ - ∂Bx (δ) (x -x , ∇(µ -1/2 u )) + n -2 2 (µ -1/2 u ) ∂ ν (µ -1/2 u ) dσ (59) 
It follows from Proposition 6.1 that lim

→0 ∂Bx (δ) (x -x , ν) |∇(µ -1/2 u )| 2 2 + a (µ -1/2 u ) 2 2 - µ 2-s 2 * (s ) (µ -1/2 u ) 2 * (s ) |x| s dσ -lim →0 ∂Bx (δ) (x -x , ∇(µ -1/2 u )) + n -2 2 (µ -1/2 u ) ∂ ν (µ -1/2 u ) dσ = b 2 3 ∂Bx 0 (δ) δ |∇G x0 | 2 2 + δa 2 (G x0 ) 2 - (x -x 0 , ∇G x0 ) 2 δ - n -2 2 (x -x 0 , ∇G x0 ) δ G x0 dσ
Using (58), we get that the right-hand-side goes to b 2 3 2 g x0 (x 0 ) as δ → 0. Putting this identity, (56) when n = 3, and (55) in (59) , we get Theorem 2 in the case n = 3. The proof is similar when a ≡ 0.

Localizing the Singularity: The Boundary Blow-up Case

This section is devoted to the proof of Theorem 3.

7.1. Convergence to Singular Harmonic Functions. Here, G is still the Green's function of the coercive operator ∆ + a in Ω with Dirichlet boundary conditions. The following result for the asymptotic analysis of the Green's function is in the spirit of Proposition 5 of [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (personal notes[END_REF] and Proposition 12 of [START_REF] Druet | The Lin-Ni's problem for mean convex domains[END_REF].

Theorem 6 ( [START_REF] Druet | The Lin-Ni's problem for mean convex domains[END_REF][START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (personal notes[END_REF]). Let (x ) >0 ∈ Ω and let (r ) >0 ∈ (0, +∞) be such that lim →0 r = 0.

(1) Assume that lim →0 d(x ,∂Ω) r = +∞. Then for all x, y ∈ R n , x = y, we have that

lim →0 r n-2 G(x + r x, x + r y) = 1 (n -2)ω n-1 |x -y| n-2
where ω n-1 is the area of the (n -1)-sphere. Moreover for a fixed x ∈ R n , this convergence holds uniformly in C 2 loc (R n \{x}).

( 

(x ) = ((x ) 1 , x ). Then for all x, y ∈ R n ∩ {x 1 ≤ 0}, x = y, we have that lim →0 r n-2 G (T ((0, x ) + r x), T ((0, x ) + r y)) = 1 (n -2)ω n-1 |x -y| n-2 - 1 (n -2)ω n-1 |π(x) -y| n-2
where π : R n → R n defined by π((x 1 , x )) → (-x 1 , x ) is the reflection across the plane {x : x 1 = 0}. Moreover for a fixed x ∈ R n -, this convergence holds uniformly in C 2 loc (R n -\{x}).

The next proposition shows that the pointwise behaviour of the blowup sequence (u ) >0 is well approximated by bubbles. Note that the following proposition holds Proof. Since D 0 T = I R n we have: d(x , ∂Ω) = (1 + o(1)) |(x ) 1 |. Let θ be as in (60). Then we have that θ 0 = lim →0 θ = (-1, 0) ∈ R n -and π(θ 0 ) = (1, 0) ∈ R n + . We fix R > 0. ṽ is defined in B 0 (R) ∩ {x 1 ≤ 0} for > 0 small. It follows from the strong upper bounds obtained in Theorem 1 that there exists a constant C > 0 such that for > 0 small we have

0 ≤ ṽ (x) ≤ C r 2 |T ((0, x ) + r x) -x | 2 n-2 2 for x ∈ B 0 (R) ∩ {x 1 < 0} For any x ∈ B 0 (R) ∩ {x 1 ≤ 0} we get from Proposition 7.1 that as → 0 ṽ (x) = (1 + o(1)) k µ n-2 2        1 k r 2 + |T ((0,x )+r x)-x | 2 n(n-2)r 2    n-2 2 -    1 k r 2 + |T ((0,x )+r x)-π -1 T (x )| 2 n(n-2)r 2    n-2 2     (61) 
Fom the properties of the boundary map T , one then gets

lim →0 ṽ (x) = (n(n -2)) n-2 2 |x -(1, 0)| n-2 - (n(n -2)) n-2 2 |x + (1, 0)| n-2 for x ∈ (B 0 (R) \ {(1, 0)}) ∩ {x 1 ≤ 0} (62) 
For i, j = 1, . . . , n, we let (g ) ij (x) = (∂ i T ((0, x ) + r x) , ∂ j T ((0, x ) + r x)), the induced metric on the domain B 0 (R) ∩ {x 1 < 0}, and let ∆ g denote the Laplace-Beltrami operator with respect to the metric g. From eqn (2) it follows that given any R > 0, ṽ weakly satisfies the following equation for > 0 sufficiently small Since A is constant, this latest limit and (72) yield (69). This completes Step 1.

       ∆ g ṽ + r 2 (a • T ((0, x ) + r x)) ṽ = µ
Step 2: Proceeding similarly as in (55) we obtain

Bx (r /2) u 2 * (s ) |x| s (x, x ) |x| 2 dx = 1 K(n, 0) 2 * 2 * -2 + o(1)
as → 0

Step 3: Arguing as in the proof of (56), we get that 

ν j |∇v| 2 2 -∂ j v ∂ ν v dσ + o(1)
where v and v are as in Step 1 above. Arguing as in Step 1 above , we get that

∂B0(1/2) ν j |∇v| 2 2 -∂ j v ∂ ν v dσ = ω n-1 (n -2)(n(n -2)) n-2 2 ∂ j h(0), ( 76 
)
where h is as in (73). For j = 1, taking the explicit expression of h yields Step 4. 

|∇u| 2 + au 2 dx Ω |u| 2 * (s) |x| s dx 2 / 2 *
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1 :

 1 We claim. Suppose on the contrary that |y | ν = O(1) as → 0. Then lim →+∞ |y | = 0. Let T : U → V be a parametrisation of the boundary as in (8) at the point p = 0. For all > 0, we let w

  Sobolev's inequality[START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF] then yields the seocnd assertion of (22). Then (26) implies lim sup →0 µ |x | s ≥ 1, which yields (23). This completes the proof of Theorem 4. As a consequence of Theorem 4, we get the following concentration of energy: Proposition 3.1. Under the hypothesis of Theorem 4 one further has that lim R→+∞ lim →0 Ω\Bx (Rk ) |u (x)| 2 * (s ) |x| s dx = 0

2 :Step 1 :Step 2 :

 212 = u (y ). Then µ ≤ λ , and (28It follows from the definition (27) and (29) that given any R > 0 one has for > 0 sufficiently small u (x) ≤ 2u (y ) for all x ∈ B y (Rλ ). Therefore hypothesis[START_REF]Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF] of Lemma 1 is satisfied and one has lim We claim that (32) lim →0 |y -x | l = +∞. We prove the claim. Due to (31), the claim is clear when y = O(|y -x |) as → 0. We assume that y -x = o(|y |) as → 0. We then have that |x | |y | as → 0. Therefore, there exists c 0 > 0 such that shown in (23), it follows that there exists c 1 > 0 such that λ |y | s ≥ c 1 for > 0 small enough. Therefore,

Case 2 :Case 2 . 1 : 2 2- 2 2

 22122 we assume that x 0 = y 0 . Define α = |y -x |, so that lim →0 α = 0. We assume that upto a subsequence d(x , ∂Ω) ≥ 2 |y -x | For > 0 we let ũ (x) = α nu (x + α x) for x ∈ B 0 (3/2) This is well defined since B x (2α ) ⊂ Ω. Using Lemma 4.1 one obtains that there exists a constant C > 0 such that |x| nũ (x) ≤ C for x ∈ B 0 (3/2). Arguing as in Step 1.3 of the proof of Lemma 4.1, standard elliptic theory yields ũ C 1 (B0(5/4)\B0(1/2)) = O(1) as → 0 Then one then obtains as → 0 ∇ũ y -x |y -x | = O(1) and ũ y -x |y -x | = O(1).

  ∂Ω) α comig back to the definition of ũ this implies that as → 0 |y -x | n/2 |∇u (y )| = O(1), and |y -x | n/2 u (y ) = O(d(x , ∂Ω)), contradicting (36). This ends Case 2.2. All these cases prove Proposition 4.2. As a consequence of Proposition 4.1 and Proposition 4.2 we get the following: Corollary 4.1. Let (u ) >0 be as in Theorem 4, and let lim →0 x → x 0 ∈ Ω, then upto a subsequence lim →0 u = 0 in C 1 loc (Ω\{x 0 }). We slightly improve our estimate in Proposition 4.1 to obtain Proposition 4.3. With the same hypothesis as in Theorem 4 we have lim Suppose on the contrary there exists 0 > 0 and a sequence of points (y ) >0 ∈ Ω such that upto a subsequence |y -contradiction and we assume that lim →0 λ s |y | s = 0. Now, using (33) and (23), we get that lim →0 |x | s |y | s = 0. And in particular one has that lim

Theorem 1 5 . 3 . 2 :

 1532 reads v (x) ≤ C(1 + |x| 2 ) 1-n/2. Therefore, Lebesgue's theorem and Theorem 4 yield (56) when n ≥ Case We assume that n = 4 and we argue as in Case 3.1. With the pointwise control of Theorem 1, we get that B0(δ/k ) a (x + k x)v 2 dx. = log (δ/k ) (64ω 3 a(x 0 ) + o(1)) as → 0.

)

  Assume that lim →0 d(x ,∂Ω) r = ρ ∈ [0, +∞). Then lim →0 x = x 0 ∈ ∂Ω. Let T be a parametrisation of the boundary ∂Ω as in (8) around the point p = x 0 . We write T -1

1 T 7 . 2 . 2 * 2 *-2 2 |x| n- 2 +

 1722222 ((0,x )+r x) r s in B 0 (R) ∩ {x 1 < 0} ṽ = 0 on B 0 (R) ∩ {x 1 = 0} (63)Arguing as in Step 1.2 of the proof of Lemma 1, we get that the convergence of ṽ holds in C 1 loc (R n -\ {θ 0 }). This completes the proof of Proposition 7.2. Estimates on the blow up rates: The Boundary Case. Suppose that the sequence of blow up points (x ) >0 converges to a point on the boundary, i.e suppose lim→0 x = x 0 ∈ ∂Ω. We let r = d(x , ∂Ω) (64)Then lim →0 r = 0 and from[START_REF] Mazumdar | GJMS-type operators on a compact Riemannian manifold: best constants and Coron-type solutions[END_REF], we have as → 0: µ = o(r ) and k = o(r ). We apply the Pohozaev identity for the Hardy Sobolev equation (53) to the domain B x (r /2). Note that since d(x ,∂Ω) r = 1 for all > 0, so B x (r /2) ⊂⊂ Ω for > 0 small. The Pohozaev identity (53) gives usBx (r /2) a + (x -x , ∇a) 2 u 2 dx -s (n -2) 2(n -s ) Bx (r /2) u (s ) |x| s (x, x ) |x| 2 dx = ∂Bx (r /2) (x -x , ν) (s ) |x| s -(x -x , ∇u ) + n -2 2 u ∂ ν u dσ (65)With the change of variable x → x + r z we obtain v dσPassing to limit as → 0 in (72) and using (71), we get(72) µ r 2-n ∂Bx (r /2) F dσ = A(1/2) + o(1) as → v dσ.Let 0 < δ < 1/2. Since ∆v = 0 in B 0 (1/2) \ B 0 (δ), applying the Pohozaev identity (52), we see that A(δ) = A(1/2) for all 0 < δ < 1/2. We write= (n(n -2)) nh(x) for x ∈ B 0 (1) \ {0}(73) where h(x) = -(n(n-2)) n-2 2 |x+(2,0)| n-2 . With the explicit expression of v we obtain lim δ→0 A(δ) = -n n-2 (n -2) n ω n-1 2 n-1

Bx (r / 2

 2 a(x 0 ) + o(1)] for n = 4, µ 2 [d n a(x 0 ) + o(1)] for n ≥ 5.where d n is as in[START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF]. Combining Steps 1 to 3 in the Pohozaev identity (65) yields (66), (67) and (68).

Step 5 : 4 (x ) 1 |x | 2 K( 4 ,

 54124 Arguing as in Step 2 we have Bx (r /2) in Step 3, for every 1 ≤ j ≤ n we have as → 0 Bx (r /2) ∂ j a(x) u 2 (x) dx = identity (74), (68) and these estimates, noting that r = d(x , ∂Ω) = (1 + o(1))|x ,1 |, we then obtain that d(x , ∂Ω) = (1 + o(1))|x | as → 0 when n = 3 or a ≡ 0. When n = 4, then as → 0s 0) -2 + o(1) + µ 2 r 3 (32ω 3 + o(1)) = O µ 2 log r µ .Finally, when n ≥ 5, we get as → 0s (n -2) 2n (x ) 1 |x | 2 K(n, 0) -n/2 + o(1) + r -1 µ r n-2 n n-2 (n -2) n ω n-1 2 n-1 + o(1)= O µ 2

  To get extra informations, we differentiate the Pohozaev identity (53) with respect to the j th variable (x ) j and get Proof. As Step 1 above, using Proposition 7.2 we have as → 0

		Bx (r /2)	∂ j a 2	u 2 dx +	s (n -2) 2(n -s ) Bx (r /2)	u 2 * (s ) |x| s	x j |x| 2 dx =
	(74)	∂Bx (r /2)	ν j	|∇u | 2 2	+	au 2 2	-	1 2 * (s )	2 * (s ) u |x| s	-∂ j u ∂ ν u	dσ
	Step 4: We claim that							
	µ 2-n r 1-n	∂Bx (r /2)	ν 1	|∇u | 2 2	+	au 2 2	-	1 2 * (s )	2 * (s ) u |x| s	-∂ 1 u ∂ ν u	dσ
	(75)										= -	n n-2 (n -2) n ω n-1 2 n-1	+ o(1)
	µ 2-n r 1-n	∂Bx (r /2)	ν j	|∇u | 2 2	+	au 2 2	-	1 2 * (s )	2 * (s ) u |x| s	-∂ j u ∂ ν u	dσ
	=										
	∂B0(1/2)									

u -→ b n G x0 in C 1 loc (Ω \ {x 0 }) as → 0,where b n is as in (4) and G is the Green's function for ∆+a with Dirichlet condition.
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Proof. We fix y 0 ∈ Ω such that y 0 = x 0 . We first claim that lim →0 µ -n-2 2 u (y 0 ) -→ b n G x0 (y 0 ).

We prove the claim. We choose δ ∈ (0, δ) such that |x 0 -y 0 | ≥ 3δ and |x 0 | ≥ 3δ . From Green's representation formula we have

Using the bounds on u obtained in Theorem 1 and the estimates on the Green's function G we get as → 0

Recall our definition of v in Theorem 4. With a change of variable, Theorem 4 yields

Lebesgue dominated convergence theorem, Theorems 4 and 1 then yield

with x 0 ∈ Ω, in the interior or on the boundary. We omit the proof as it goes exactly like the proof of Proposition 13 in [START_REF] Druet | The Lin-Ni's problem for mean convex domains[END_REF] .

Proposition 7.1. We set for all > 0

Suppose that the sequence (u ) >0 ∈ H 2 1,0 (Ω), where for each > 0, u satisfies (2) and (3), is a blowup sequence. We let x 0 := lim →0 x . Let (y ) >0 be a sequence of points in Ω. We have

where π T = T • π • T -1 . Here, T and π are as in Theorem 6.

Using Proposition 7.1, we derive the following when the sequence of blowup points converge to a point on the boundary Proposition 7.2. Let (u ) >0 ∈ H 2 1,0 (Ω) be such that for each > 0, u satisfies (2) and (3). We assume that u 0 weakly in H 2 1,0 (Ω) as → 0. We let x 0 := lim →0 x . Let r = d(x , ∂Ω). We assume that lim →0 r = 0. Therefore, lim →0 x = x 0 ∈ ∂Ω. Let T be a parametrisation of the boundary ∂Ω as in (8) around the point p = x 0 . We write

where

and π : R n → R n defined by π((x 1 , x )) → (-x 1 , x ) is the reflection across the plane {x :

for all > 0 small. We now estimate each of the terms in the integral above. Theorem 3 will be a consequence of the following theorem:

Let Ω, a, (s ) >0 , (u ) >0 ∈ H 2 1,0 (Ω) as in Theorem 3. Assume that (64) holds and lim

and

and

where d n is as in (4) for n ≥ 5 and d 4 = 64ω 3 .

Proof. For convenience we define

as → 0 (69) Proof. We define Plugging together these estimates and (67) and (68), we get Theorem 7.