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SOLITARY WAVE SOLUTIONS AND THEIR INTERACTIONS
FOR FULLY NONLINEAR WATER WAVES WITH SURFACE
TENSION IN THE GENERALIZED SERRE EQUATIONS

DENYS DUTYKH, MARK HOEFER, AND DIMITRIOS MITSOTAKIS*

ABSTRACT. Some effects of surface tension on fully-nonlinear, long, surface water waves
are studied by numerical means. The differences between various solitary waves and their
interactions in subcritical and supercritical surface tension regimes are presented. Ana-
lytical expressions for new peaked traveling wave solutions are presented in the case of
critical surface tension. The numerical experiments were performed using a high-accurate
finite element method based on smooth cubic splines and the four-stage, classical, explicit
RUNGE-KUTTA method of order four.
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1. Introduction

In this paper, we numerically study the effects of surface tension on fully-nonlinear
shallow-water waves. Surface water waves are usually described by the full EULER equa-
tions of water wave theory, [39]. Due to their complexity and the difficulties arising in their
theoretical and numerical study, simpler model equations have been derived as approxima-
tions to the EULER equations in the shallow water regime. There are two often studied
regimes within shallow water waves: (i) the weakly nonlinear — weakly dispersive and (ii)
the fully nonlinear — weakly dispersive regime. Model equations such as weakly-nonlinear
BOUSSINESQ systems modelling capillary—gravity waves in the regime (i) were derived in
[13] (see also [14]). These models extend the BOUSSINESQ systems derived for surface
waves with no surface tension in [4] and, although they incorporate surface tension effects,
they are limited to small amplitude waves. Because of this approximation, some effects
of surface tension cannot be observed due to the absence of higher-order nonlinear terms.
For this reason, the study of higher-order models should be considered. Mathematical
models appropriate for water waves with surface tension in the regime (ii) were derived in
[17]. These equations extend the SERRE equations |34, 35|, incorporating surface tension
effects, and are referred to as the generalized SERRE (gSERRE) equations, c¢f. [17]. For the
derivation, justification and generalisations of the model equations for surface water waves
in both regimes we refer to [17, 24]. In this paper, we focus on the study of solitary wave
solutions of the gSERRE equations.

We note that another higher order effect, dispersion, can play a fundamental role in
the near critical surface tension regime, as in the fifth order KAWAHARA equation |22, 23|
that describes weakly nonlinear, unidirectional shallow water waves. While higher order
dispersion without surface tension for the fully nonlinear regime (ii) was recently presented
in [29], its generalized, surface tension counterpart was only noted in [36] and has not been
studied. Although additional model equations have been derived recently that incorporate
more surface tension effects, |9, 10], we will restrict this study to the effects of surface
tension on the solitary waves of the gSERRE equations.

The gSERRE system of equations is a very accurate mathematical model of shallow water
waves derived as an approximation to the full EULER equations with surface tension and
a flat bottom, [17, 24].

Here we consider a two-dimensional coordinate system O xy with the horizontal axis
coinciding with the still water level y = 0. A layer of a perfect, incompressible fluid (of
constant density p > 0) is assumed to be bounded between a flat, impermeable bottom at
y = —d and its free surface y = n(x, t) with air. In general, the gSerre equations can be
obtained by also approximating the horizontal velocity u (z, y, t) by the depth-averaged
velocity and by approximating the pressure p jump across the interface using the small
slope approximation [p] ~ —on,,. Following the general lines of [11], the gSERRE
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Figure 1. Sketch of the fluid domain.

equations then can be derived using variational methods (first derived in [17]) in the form:

hy+[hu], =0, (1.1)

1
ut+uux+gh$:3—h [h?» (u$t+uum—ui)}x+7hxm ) (1.2)

or in non-dimensional but unscaled form (for brevity, we use the same variable names for
nondimensional quantities):

1
hus+hhy +huu, — 3 [h3 (U gt + U gy — (uw)gh — Bhhy, =0, (1.4)

where both variables h (z, t) and u (x, t) are functions of the spatial x and temporal ¢
variables. The function h (z,t) = 1 + n(z, t) denotes the total depth from the bottom
d = —1 up to the water’s free surface 7. The depth-averaged horizontal water velocity
is denoted by u. The BOND number measures the ratio of gravity to capillary forces and
can be defined as 7 = o/p, where o is the surface tension coefficient, p the constant
density of the fluid, [21]. We will utilize the dimensionless BOND number in the form
B = 7/9d* > 0. When B = 0 (i.e. no surface tension is considered) then the gSERRE
equations (1.3), (1.4) reduce to the SERRE equations.

An important, structural property of the gSERRE equations is their linear dispersion
relation w? = k*(1 + Bk?)/(1+ k*/3). For B = 0, the dispersion curvature w”(k)
is single-signed for positive wavenumbers k. The dispersion is convex (or concave). For
B > 0, the dispersion relation is non-convex, exhibiting an inflection point at k., =

\/5\/ 1+ +/(14+ B)/B. This loss of dispersion convexity can have important physical

implications, for example on solitary waves, |9, 22] and undular bores [36]. This feature
makes the gSERRE equations particularly interesting for further study. When B = 1/3,
the dispersion relation is degenerate w? = k? and the gSERRE equations are no longer
dispersive, designating B = 1/3 as a critical value of surface tension.
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Several conservation laws can also be derived for the gSERRE system in a similar way as
in the case of the SERRE equations. Here we only mention four of these conservation laws:

(h3ug), u? 22 u(hug), 1
[“ v g == 3h Th”_x_o’
(1.5)
3 2 op3y2 3 "
{hu — (A gx)m:| + {hu2 + % — h3um — h l;um — hhyuu, — TRl =0,
t Jdx
(1.6)
[hul, + [hu2 + %gh2 + %hQV — TRLC = 0,
(1.7)
2 3,9 2 2 2,2
{h%+ hé“b”f +%+%hi} + {<%+ hé“ +gh+%—rhm)hu+rhx(hu)x] =0,
t T
(1.8)
where we introduced two quantities: v = h[u? — Uy —uug], R = hhgy — $h2.

The quantity v can be considered physically as the vertical acceleration of fluid particles
computed at the free surface.

It is known that the SERRE equations admit solitary wave solutions of elevation type
(i.e. of sech®type), [2]. Capillary effects have been shown to be important for the shape of
the solitary waves, [17, 19]. Specifically, the presence of surface tension makes an elevation
solitary wave narrower than a solitary wave of the SERRE equations with the same speed.
Moreover, depending on the value of the BOND number B, the solitary waves can be
either of elevation or of depression type. Depression solitary waves have negative excursion
relative to the fluid background. The critical BOND number where the nature of the solitary
wave changes, has been found to be B = 1/3, [17]. For B < 1/3 the gSERRE equations
admit elevation solitary waves while for B > 1/3 they admit depression solitary waves.
It is noted that there are no known analytical formulas for solitary waves of the gSERRE
equations and for this reason numerical computations are required. The change in the
physical properties of the fluid that depends on the value of the BOND number near the
critical value B = 1/3 has been observed in the full water wave equations too, cf. e.g.
[5, 15, 16]. As it was also suggested in [5, 36] we may expect some interesting phenomena
around the critical BOND number B = 1/3.

The SERRE equations (without capillary effects) were first derived in [34, 35| and red-
erived various times since then, cf., e.g. [37]. Although there exist several studies, both
theoretical and numerical, for the SERRE equations without surface tension, [20, 31| the
behaviour of solitary waves under the effects of surface tension remain unknown, [17]. This
paper is focused on the properties of solitary wave solutions of the gSERRE equations with
surface tension and, in general, how surface tension influences their dynamics. Special
attention has been given to the critical value of the BOND number B = 1/3, where it is
shown that the gSERRE equations admit peaked solitary waves of elevation (peakons) and
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depression (antipeakons) type. The equations (1.3) — (1.4) are solved numerically in a peri-
odic domain using the standard GALERKIN/Finite element method of [33]. The numerical
method used has been proven very efficient with optimal convergence rates |1, 33].

The paper is organized as follows. In Section 2, we present the numerical methods used
in this paper along with their numerical validation. Section 3 contains numerical results
which analyse the various interactions between elevation and depression solitary waves for
multiple values of the BOND number B. Finally, the main conclusions are discussed in
Section 4.

2. Numerical methods

Consider the gSERRE equations (1.3) — (1.4) in their dimensionless but unscaled form
with ¢ = 1. Lacking analytical expressions for gSERRE solitary waves, we present an effi-
cient numerical method for their numerical generation. Then, the standard GALERKIN/finite
element method is presented for the numerical integration of the gSERRE equations.

2.1. Numerical computation of solitary waves

It is known that the SERRE equations possess solitary wave solutions traveling at constant
speed ¢s of the form h(z,t) = 1 + ns(x — cst), u(z, t) = wus(x — cst) with
n(€) = Asech?[A], u () = 1 — 1/(1 + n(€), A = v3A/@A(1 + A)) and
cs = V1 + A.

On the other hand, it was shown in [17] that the gSERRE equations possess classical
solitary wave solutions that satisfy the ordinary differential equation

/ Cg -1 - n

" _in\/c§/3—B(77+1)’ (2.1)
while they share the same relation between v and 7, i.e. u = 1 — 1/(1 + n) with the

SERRE equations. They also share the same speed-amplitude relation A = ¢ — 1.
Without loss of generality, we search for solitary waves that are positive and symmetric
about z = 0for 0 < B < 1/3. We consider a large enough interval z € [—L, L] so
that the solitary wave has decayed sufficiently close to the background value n = 1 within
this interval. A nonuniform grid of [0, L] isused, 0 = zy < 21 < -+ < ay = L,
where we assume that the function 7 is decreasing on this grid. Integration of (2.1) yields

77(:):1 2 _ B 1 z;
\/C /3 171 + )dn = / dz . (2.2)
-1 =N 0

Making the change of varlable n = exp(z), then (2.2) can be simplified to the equation

logn \/02/3 — B(exp(z) + 1) dz — 2 = 0 (2.3)

ogn i) -1 eXp( )
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which defines the values ;, = 7 (z;) implicitly. GAUSS-LEGENDRE numerical quadrature
is used for the approximation of the integral in (2.3) while the resulting nonlinear equations
are solved with the secant method for values 7; in the interval (0, ¢2 — 1]. Usually, the
secant method converges in several iterations for a relative error tolerance of O(10719).
For the nodes z; , we used the quadrature nodes of the GAUSS-LEGENDRE quadrature rule
in a uniform grid of the computational domain. It is noted that the discretization of the
inner products in the Finite Element method is based on GAUSS-LEGENDRE quadrature
and therefore the numerically generated solitary waves can be used directly without using
interpolation.

From Equation (2.1), we observe that the case where B = 1/3 is a singular case and no
solitary waves can be generated numerically using the present method. On the other hand,
the linear dispersion relation of the gSERRE equations are degenerate for B = 1/3, with
no linear dispersion. This implies that the asymptotic approximation of full water waves
has broken down and higher order dispersion should be taken into account, [22]. On the
other hand, one can verify that the solution

n(z,t) = Aexp(—r|f]) with k = V3 (2.4)

satisfies (2.1) with B = 1/3. Therefore, the critical gSERRE equations with B = 1/3
possess peakons of elevation and depression type since the formula is valid for any A # 0,
6, 32].

2.2. Numerical time integration of the gSerre equations

For the numerical approximation of the initial value problem of the gSERRE equations
subject to periodic boundary conditions, we implement a standard GALERKIN / finite
element method for the spatial discretization and the fourth-order, four-stage classical
RUNGE-KUTTA method for the discretization in time (cf. [33| for the SERRE equations
lacking surface tension). Consider the system (1.3) — (1.4) posed in a finite interval [a, b]
and for time ¢t € [0, T'] with some T" > 0, and with periodic boundary conditions, i.e.

) (a,t) = ¥ (b, t) and u® (a,t) = u® (b, t) for kK = 0,1,2,.... We consider a
uniform subdivision of the interval [a, b] consisting of the nodes z; = a + iAx, where
i =0,1,---, N,and N € N, such that the grid size is defined as Az = (b — a)/N . We

shall consider numerical solutions of the gSERRE equations in the space of cubic, periodic
splines

S ={¢ecCr,la,b] }¢\mmm cP, 0<i< N-1},

where

i = {f € Clad]| /P (@) = D), 0<k <2,

per

and P? is the space of cubic polynomials. .
The numerical solution will be denoted by h and u. To state the spatial GALERKIN
semi-discretization, we first multiply equations (1.3) — (1.4) with ¢ € S. Integration by
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parts leads to the weak formulation:

(he, ¢) + ((ha)s, ¢) = 0, (2.5)
B, 6 F) + (b + i), ) + 5 (B @i — @), 6.)
+ B |(Dhaw, ¢0) + (b s, ¢)} =0, (2.6)
where the bilinear form B is defined for a fixed h (and ¢, 1» € S) as
By, 6 ) = (b, 6) + 5 (P00, 00) 2.7
and the initial conditions are
h(z,0) = Pho(z), iz, 0) = Pug(z), (2.8)

where P is the L? projection onto S defined by (Pv, ¢) = (v, ¢), forall¢ € S.

Using the standard basis functions with B-splines for the space S, the equations (2.5) —
(2.6) form a system of ordinary differential equations. It has been shown that the classical,
explicit, four-stage, fourth-order RUNGE-KUTTA method performs very well for the surface
tensionless SERRE equations, [33]. Denoting by At the uniform time-step, we consider the
temporal grid t" = nAt,forn = 0,1, ---, K, with At = T/K . For more information
about the formulation and properties of this fully-discrete scheme, we refer the reader
to [1, 33]. For the numerical computation of the integrals appearing in the numerical
method, we use the GAUSS-LEGENDRE quadrature rule with five nodes. The nodes of the
quadrature rule form a nonuniform grid which we used in the numerical method presented
in Section 2.1.

2.3. Method validation

In order to validate the presented numerical methods for solitary wave computation and
time integration, we generated and numerically evolved solitary wave solutions for various
values of the BOND number B. As it was noted in [17], solitary waves for B < 1/3 are of
elevation type while for B > 1/3 are of depression type, cf. Figure 2. Solitary waves are
computed on the domain [ —40, 40]. Figure 2 presents a magnification of the numerically
generated solitary waves for various values of the BOND number B along with an exact
solitary wave of the SERRE system with ¢; = 1.5.

In order to study the accuracy of the approximation of the solitary waves, we used the
numerically generated solitary waves for B = 0.1 and B = 0.5 as initial conditions to
the fully discrete numerical time integration scheme and studied several error indicators
relevant to the propagation of traveling waves. Specifically, we monitored the amplitude,

speed, shape and phase errors for solitary wave propagation up to time 7" = 100. It is
noted that for elevation solitary waves we used the discretization parameters Az = 0.1 and
At = 0.05, while for depression solitary waves we used smaller mesh lengths Ax = 0.01

and At = 0.005 in order to produce stable and accurate computations.
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Figure 2. Numerically computed solitary waves for the gSERRE equations with
various values of BOND number B .

We define the normalized amplitude error as
_ H(z (1), t) — Ho

Epy = , 2.9
P | HO | ( )
where x* (t) is the curve along which the computed approximate solution H (z, t) achieves
its maximum and Hy = H (0) is the initial peak amplitude of the numerically generated

solitary wave. We observe that E,,,, remains very small and practically constant during
the propagation of the solitary waves, cf. Figure 3.
Additionally, we approximate the solitary wave speed cs by ¢, as
G = *(t) — " (t—71) ’ (2.10)
T
where 7 is a constant. The corresponding speed error is defined as

Espeed = 6867868
The results for 7 = 10 in Figure 3 show that the error between the numerical values ¢,
and the exact speed ¢ remained practically constant.

Two other error norms that are pertinent to solitary waves are the shape and phase
errors. We define the normalized shape error as the distance in L? between the computed
solution at time ¢ = t" and the family of translated, exact solitary waves with the same
amplitude/speed, i.e.,

. | H(x. ") — ha.7) |
Eshape IIED C(T) ) g (T) ” h (l‘, O) ||

The minimum in (2.11) is attained at some critical 7 = 7* (¢"). This, in turn, is used to
define the (signed) phase error as

(2.11)

Ephase = 7" — " (212)
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Figure 3. Error indicators for the propagation of two solitary waves.

In order to find 7*, we solve the equation ¢’ (1) = 0 using NEWTON’s method. The initial
guess for NEWTON’s method is chosen as 7° = " — At. Having computed 7* , the shape
error (2.11) is then

Eshape = C(T*) .
These error norms are closely related to the orbit of the solitary wave and measure prop-
erties of the solitary waves, which are often not well conserved using dissipative numerical
methods.

The computed numerical errors are presented on a logarithmic scale in Figure 3. It
can be observed that the errors in the propagation of both solitary waves are very small.
Especially when we use grids with small Az, the numerical speed of propagation of the
solitary wave was almost equal to the exact speed and similarly the rest of the error
indicators remained very small. This study shows that both numerical methods are very
accurate and they conserve the properties of a propagating solitary wave very well. We
note that the errors are analogous for solitary waves with different propagation speeds
since they primarily depend on the discretization Az and At. We also mention that the
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fully-discrete scheme appeared to be stable with no restrictive bounds on the ratio At/Ax
except when the solution is not very smooth. Mild restrictions, empirically found to be on
the order At/Az 5 1072, could be necessary for the numerical stability of the solution.
As the BOND number B approaches the value 1/3, solitary wave solutions become more
cusp-shaped, approaching the peakon solution (2.4), c¢f. Figure 2. For example, the solitary
waves for B = 0.33 are very close to peaked solitary waves, |6, 27]. As the solitary waves
lose smoothness, then the mesh length Ax must be reduced in order to maintain high
resolution. We discuss further the transcritical case where B ~ 1/3 in Section 3.

3. Numerical experiments

In this section, we study the effects of surface tension on various solitary wave interac-
tions. Specifically, we study the head-on and overtaking collisions of elevation and depres-
sion solitary waves. We also study the generation and interaction of solitary waves when
the BOND number B ~ 1/3.

3.1. Head-on collisions

We first study the symmetric head-on collision for the gSERRE equations with B = 0.1
for two identical elevation solitary waves that propagate in opposite directions. In these
numerical experiments with elevation solitary waves, we consider the interval [ —200, 200 |
and take Az = 0.1, At = 0.01. Here we present the solitary waves with ¢, = 1.2 and
amplitude A = 0.4472. The solitary waves are initially translated so that their maximum
values are achieved at x = —50 and z = 50, respectively, exhibiting essentially no
overlap in their exponentially small tails. The interaction begins at approximately t = 40
and the peak of the interaction occurs at about ¢ = 42. The interaction is presented
in Figure 4. We observe that after the collision, the solitary waves propagate in different
directions followed by small amplitude dispersive tails.

In addition to the generation of dispersive tails, the inelastic interaction causes a phase
change in the propagation of the solitary waves. During the collision there is a temporal
interval in which the solution has only one peak while the maximum value of the solution
during the interaction recorded was 0.9838 , which is greater than the sum of the amplitudes,
0.88, of the solitary waves. The solitary waves after the interaction are separated and
stabilized to different amplitudes A ~ 0.4377 compared with the initial amplitudes
A = 0.4472.

Figure 5 shows the amplitude (a) and the location of the maximum values of the solution
(b) recorded during the interaction. We observe that, due to nonlinear interaction, the
amplitude fluctuates before it is stabilized to its new value. The dotted lines in these
diagrams represent the solitary wave maximum if there was no interaction.

We performed several symmetric head-on collisions and recorded the maximum value at
x = 0 during the interaction. This value is also known as the maximum runup since,
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Figure 4. Symmetric head-on collision of two elevation solitary waves for the
gSERRE equations with B = 0.1.
by reflection symmetry h(z,t) = h(—=z,t), u(z,t) = —u(z,t) of the equations and

the initial data, it coincides with the maximum runup of a solitary wave on a vertical wall
located at x = 0 subject to appropriate boundary conditions [31, 38|. Figure 6 shows the
values recorded for B = 0.2 and 0.3 compared with the asymptotic solution of [31] for
B = 0. We observe that surface tension decreases the maximum runup value. This effect
is stronger for larger amplitude solitary waves for the same values of B. Moreover, the
maximum runup value is decreasing with B . Therefore, for larger values of B, we observe
smaller maximum runup values.

We also studied the unsymmetric collision of two solitary waves with amplitudes A =
0.96 and 0.44 , respectively (equivalently, speeds 1.4 and 1.2, respectively). The interaction
is very similar to the unsymmetric interaction of the Serre equations and is not presented
here. We only mention that the solitary waves after the interaction have amplitudes A =~
0.9515 and 0.4325 respectively. In conclusion, the head-on collision of elevation solitary
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Figure 5. (a) Peak amplitude of the solution as a function of time, (b) Phase
diagram of the location of the solitary waves during the interaction of Figure 4.

Maximum runup

amplitude

Figure 6. Mazimum runup of solitary waves for B = 0, 0.2 and 0.3 .
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Figure 7. Symmetric head-on collision of two depression solitary waves for the
gSERRE equations with B = 0.5.

waves with small surface tension is qualitatively the same as the collision of solitary waves
with no surface tension. It is noted that a jet formation can be observed during the head-on
collision of large amplitude solitary waves. |7, 8]. This jet formation is very difficult to be
observed by the gSERRE equations since the solution must be a function.

We continue with the head-on collision of depression solitary waves for BOND number
greater than 1/3. The interaction of depression solitary waves has never been studied
before and there are no previous results to compare with. We studied the symmetric head-
on collision of two solitary waves of speed ¢, = 0.8 and amplitude A = —0.36 (where
we keep the minus sign to emphasise that the solution is negative) for BOND number
B = 0.5. Initially, the solitary waves were translated to + = —40 and 40 respectively
and we solved the gSERRE equations in the interval [—100, 100] with Az = 0.01 and
At = 0.001. Figure 7 shows the inelastic interaction between two depression solitary
waves. It is interesting that the dispersive tails generated after the interaction propagate
faster than the solitary waves and therefore lead in the propagation while there are no
deviations of the free surface between the two new solitary pulses.
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Figure 8. (a) Peak amplitude of the solution as a function of time, (b) Phase
diagram of the location of the solitary waves during the interaction of Figure 7.

The minimum peak amplitude of the solution —0.66 was recorded at about t = 49.78.
This value is larger than the sum of the peak amplitudes of the two solitary waves. Because
of the nonlinear interaction, a phase shift can be observed in both pulses, but here the
resulting solitary waves have larger amplitude A ~ —0.3598 and therefore propagate
faster than the initial solitary waves. Also, the phase change is different than the subcritical
case B < 1/3. In the supercritical case B > 1/3, the waves travel faster during the
interaction and were separated earlier compared to the case where small or no surface
tension is considered. The minimum of the solution as a function of time and the phase
diagram with the location of the peak amplitudes of the solitary waves are presented in
Figure 8. The effect of strong surface tension B > 1/3 on the head-on collision of solitary
waves is to invert the dynamics of the collision relative to the weak surface tension case
B < 1/3, resulting in faster solitary waves and dispersive tails propagating faster than
the solitary waves.
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Figure 9. Unsymmetric head-on collision of two solitary waves for the gSERRE
equations with B = 0.5.

The collision of two solitary waves of unequal size is very similar to the one with solitary
waves of equal amplitudes. For example, we consider solitary waves with speeds ¢ = 0.6
and 0.8 corresponding to amplitudes A = —0.36 and —0.64 , respectively. The results of
the inelastic collision are presented in Figure 9. The dispersive tails are traveling faster
than the solitary pulses again but now their shape is different, having deformed to solitary
waves with different amplitudes post interaction: A ~ —0.35974 and A ~ —0.63958.
The evolution of the minimum value of the solution is very similar with the one presented
in Figure 8 and so it is omitted.

3.2. Overtaking collisions

We now consider a different type of interaction, the overtaking collision of two solitary
waves traveling in the same direction but with different speeds. In contrast to the head-on
collision case, the overtaking interaction is often referred to as the strong interaction of
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solitary waves due to the relative importance of nonlinearity [30]. For the KORTEWEG-DE
VRIES (KdV) equation, a standard weakly nonlinear, long wave model of unidirectional
waves, there are three categories of overtaking collisions classified by LAX [25]. Each
category corresponds to a distinct geometry of solitary wave interaction. These categories
have been observed in experiment and computation of fully nonlinear water wave models
(EULER and SERRE equations) [1, 12] and in experiment and a model of viscous core-
annular flows [28]. Here, we will consider the LAX categories within the context of the
gSerre equations for various BOND numbers.

We label the three categories (a), (b), and (c). LAX category (a) corresponds to soli-
tary waves of similar size whose interaction remains bimodal throughout, resulting in a
small exchange of mass from the larger to the smaller solitary wave. In LAX category (c),
the small solitary wave is absorbed completely by the large solitary wave, resulting in a
symmetric, unimodal conglomerate at the peak of interaction. Following this, the smaller
solitary wave is ejected behind the larger wave and each propagates independently. LAX
category (b) is a combination of categories (a) and (c). In this case, the two solitary waves
initially form an asymmetric, unimodal mass. At the peak of interaction, however, the
conglomerate is bimodal. This process is undone and the smaller solitary wave is emitted
behind the larger wave.

In what follows, we denote the amplitudes A;, Ay for the larger and smaller solitary
waves, respectively. The amplitude ratio is denoted r = A;/A; > 1. For the KdV
equation, interactions with » < (3 ++/5)/2 are category (a), with (3++5)/2 < r < 3
are category (b) and with » > 3 are category (c).

It is important to not that the Lax categories for the KdV equation are completely
determined by the amplitude ration r of the two solitons. This is because the KdV equation
admits GALILEAN scaling invariances that enable one to fix the leading, slower soliton to
have amplitude 1 and trailing, faster soliton to amplitude r, both on a zero background.
While the gSERRE equations admit GALILEAN and scaling symmetries, the LAX categories
for two soliton interactions functionally depend on both soliton amplitudes A; and A,
separately. This is because the scaling symmetry is used to fix the total water height, here
normalised to unity. In what follows, we fix the amplitude of the faster gSerre soliton to
unity A; = 1 and vary the slower soliton’s amplitude Ay < 1 in order to identify the Lax
categories in this restricted regime. Therefore, we consider the ration r = 1/A4,, [12, 28|.

In the first case with Bond number B = 0.2 similar types of interactions were observed.
We used 3 decimal digits in the calculation of the parameter r and we observed that
interactions with r < 3.453 are in the category (a), for 3.469 < r < 5.129 they are in
the category (b) and for » > 5.130 they are in the category (c). For values of r in the
interval [3.453, 3.468 ] we observed a transition zone between categories (a) and (b) where
the small solitary wave was absorbed and re-emitted only after the exchange of the masses
towards the end of the interaction. This phenomenon has been observed also in the case
of the overtaking collisions of the SERRE equations with 3.097 < r < 3.108, [1]. The
limits for the three LAX categories for the SERRE equations as reported in [1], along with
the limits for the gSERRE (with B = 0.2) and EULER equations, [12|, are summarised in
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LAX categories ‘ (a) (b) (c)
EULER < 2941 2941 < r < 3.536 r > 3.536

r
SERRE r < 3.096 3.109 < r < 3978 r > 3.979
gSERRE r < 3453 3469 < r < 5129 r > 5.130

Table 1. LAX categories for the EULER, SERRE and gSERRE equations with B = 0.2.

Table 1 (for A; = 1). It is noted that the values presented in Table 1 are correct to the
digits shown and are approximate values, so they can used as an indication of where the
transition is happening.

Phase diagrams of the different interactions of the solitary waves in each of the LAX
categories are presented in Figure 10. In Figure 10 (a) we observe that the two solitary
waves keep a distance while they exchange masses. It is also easy to observe the absorption
of the small solitary wave in Figure 10(b) and (c). The dotted lines represent the paths of
the solitary waves as if there were no interaction.

The interaction with 7 = 2.5 in the LAX category (a) is depicted in Figure 11 where it
is shown that during the interaction there are two peaks. In Figure 12 the interaction with
r = 4 in the LAX category (b) is presented where the small solitary wave is absorbed by
the large solitary wave initially and then is re-emitted and two peaks are present during
the interaction, while in the end is absorbed again and finally ejected and separated from
the large solitary wave. Figure 13 shows the interaction with » = 10, which belongs to
the LAX category (c) and where during the interaction only one peak can be observed as
the small solitary wave is absorbed by the large one until it is ejected and separated from
the large one at the end of the interaction.

The maximum value of the solution as a function of time for several values of r is
presented in Figure 14. We observe that the maximum of the solution during the interaction
does not behave monotonically with . So we can achieve the same maximum for different
values of r. For large values of r and in the category (c) of LAX, the amplitude as a function
of time is a smooth function. In the categories (a) and (b) the maximum appeared to have
a singularity at the time ¢t where the minimum is occurred.

Although the limits for the LAX categories of overtaking collisions are different when
surface tension is included (cf., Table 1) the interactions are very similar and no new
phenomena were observed when compared to the results reported in [1, 12, 26, 31, 33].

Like in the case of the SERRE equations, small amplitude dispersive tails were generated
during and after the interaction of two solitary waves. The dispersive tails are propagating
mainly to the right but a small N—shaped wavelet is generated and propagates to the left
as shown in Figure 15.

We draw the conclusion that the overtaking collision of two solitary waves for the gSERRE
equations with B < 1/3 retains the qualitative characteristics of the analogous interaction
for the SERRE equations. The situation for the gSERRE equations with B > 1/3 is very
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Figure 10. Phase diagrams of the three categories of LAX for the overtaking
collision of two elevation solitary waves of the gSERRE equations with B = 0.2.

different and interesting where new phenomena can be observed, as we now demonstrate.
Again we consider the gSERRE equations with B = 0.5 and we test overtaking collisions
for different solitary waves. In this case, again we were able to observe the analogous three
categories of LAX but here, the values of r are totally different and cannot be compared
with the analogous results obtained for small values of BOND number B . Specifically, we
define here r = ay/a; with a; > ay i.e. the amplitude of the small solitary wave over
the amplitude of the large solitary wave.

In order to compare numerical results with the predictions of LAX, we restrict our
attention to solitary waves of small amplitude where the unidirectional solitary waves of
the gSERRE equations can be asymptotically approximated by KdV solitary waves. All
the experiments were performed in [—200, 200] and the solitary waves were translated
initially so as to attain their maximum values at x+ = —50 and x = 50 respectively.
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Figure 11. Interaction of two solitary waves with r = 2.5 of the gSERRE
equations with B = 0.2. LAX category (a).

When B < 1/3 we took Az = 0.1 and At = 0.01 while, when B > 1/3 we took
Az = 0.02 and At = 0.01.

In these experiments the fast solitary wave has amplitude a; = —0.1. Then for a small
solitary wave of amplitude a; = —0.2 the interaction falls into the LAX category (a). As
it can be observed in Figure 16, the solitary waves exchange masses and there are always
two pulses present in the domain. On the other hand, when we took a; = —0.3, the
small solitary wave was initially absorbed by the large solitary wave, and then re-emitted,
causing the existence of two local minima during the interaction, as described by LAX
category (b). Finally, for ay = —0.4 the small solitary wave is absorbed by the large one
during the interaction and after the interaction is ejected and separated from the large one.

Again, the minimum value of the solution as a function of time behaves similarly to
the case of small BOND number but here the amplitude is the negative minimum of the
solution. Figure 19 shows the evolution of the amplitude as a function of time for different
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Figure 12. Interaction of two solitary waves with r = 4 of the gSERRE
equations with B = 0.2. LAX category (b).

values of 7. In this Figure, the amplitudes have been translated so as to be all at the
same level. Again, we observed that as the interaction changes categories, the maximum
amplitude is not a monotone function with respect to r.

The interaction again is inelastic and the generation of small amplitude dispersive tails
was observed. Figure 20 shows the dispersive tails generated by the interaction of two
solitary waves with a; = —0.1 and a3 = —0.3. Again, a small amplitude oscillatory
dispersive tail was generated in front of the two pulses that travels faster than the pulses.
On the other hand, a very fast N—shaped wavelet was also generated moving to the left.
The tails generated in the other cases where B > 1/3 were always very similar thus we
do not present them here.
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Figure 13. Interaction of two solitary waves with r = 10 of the gSERRE
equations with B = 0.2. LAX category (c).
3.3. Ciritical and transcritical cases
In this section, we study the critical case of BOND number B = 1/3 and the cases
where B is close to this critical value. As it was mentioned in Section 2, and in [17], there
are no smooth traveling wave solutions known for the critical BOND number B = 1/3

but only the peaked solitary waves given by the formula (2.4). Additionally, the solitary
waves corresponding to BOND numbers close to the critical value are very close to peaked
solitary waves. Moreover, the behaviour of the solutions for values of B = 1/3 is expected
to be affected by the absence of dispersive effects. We first study the various interactions
of solitary waves in the cases where B = 0.32, 0.33, 0.34 and 0.35.

We start with the description of the head-on collision of two equal solitary waves. For the
subcritical values of the BOND number, we considered solitary waves of amplitude A = 1,
while we took A = —0.3 for the supercritical values. Although the two waves interact in
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Figure 14. The amplitude of the solution for several values of r for the

overtaking collision of two solitary waves of the gSERRE equations with
B = 0.2.

a similar manner with the cases described in Section 3, the generated dispersive tails are
not oscillatory but they are similar to N —shaped waves. For example, when B = 0.34,
the dispersive tail is ahead of the solitary wave, while in the case B = 0.33 the tails
are behind the solitary waves. A close look at the dispersive tails shows an intermediate
state between dispersive and non-dispersive waves. Figure 21 presents the results after the
interaction of two equal solitary waves for B = 0.32 and B = 0.34.

The interactions of solitary waves in all transcritical cases we tested were very similar
to the analogous subcritical and supercritical cases. The main difference observed between
the two cases was the shape of the dispersive tails. Analogous behavior was observed for
the overtaking collision in the transcritical cases. The overtaking collisions generated small
N —shaped wavelets and dispersive tails, which again consisted of a few oscillations and
were very similar to the tails generated after the head-on collision. For this reason, we do
not present pictures of the overtaking collisions in the transcritical cases in this paper. We
proceed with the critical case B = 1/3.

Although the critical case is numerically difficult in the sense that numerical errors
might lead to false conclusions, we explored the existence of stable solitary waves when
B = 1/3. It is known that general initial conditions evolve into a series of solitary waves
and dispersive tails in generic nonlinear and dispersive wave models, [3, 17]. In order to
examine if the gSERRE equations possess stable solitary wave solutions when B = 1/3,
we tested the evolution of a general initial condition of the form 7 (z, 0) = ae " with
zero initial velocity u (z, 0) = 0. We present the results fora = 1 and b = 0.1, i.e.
when we consider the evolution of a heap of water under gravity. The initial waveform
was split into two symmetric waves that eventually evolved into series of solitary waves.
In Figures 22(a) and (b) we present the resolution of a GAUSSIAN initial condition into
series of solitary waves where we took Ax = 0.02 and At = 0.002. Although the
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Figure 15. Dispersive tails generated during the overtaking collision of two
solitary waves of the gSERRE equations with B = 0.2, r = 4.

computation was performed in the interval [ —200, 200] we present only the solution in
the interval [0, 200] because it is symmetric. In Figure 22(b), we observe that the solitary
waves coincide with peaked solitary waves when we compare the shape of the numerical
solution with the analogous analytical peakon (2.4). This example serves as an indication
of the existence of stable peaked solitary waves for the gSERRE equations in the critical

case B = 1/3.
The situation is similar when we take a negative initial condition given by the same
formula with « = —0.5, b = 0.1 for the critical value B = 1/3. It was observed

that although the initial condition is negative, it resolved into a series of depression peaked
solitary waves (also known as antipeakons) indicatiing that the gSERRE equations possess
both stable depression and elevation peaked solitary waves when B = 1/3. In this
experiment, we used Az = 1072 and At = 10~* and again the interval of integration
was [—200, 200]. Although further theoretical studies are required to ensure the accuracy
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Figure 16. Interaction of two solitary waves with r = 2 of the gSERRE

equations with B = 0.5. LAX category (a).

of our conclusions, some confidence to the numerical results can be gained by the fact
that both elevation and depression traveling waves appear to exist at the same time when
B = 1/3, contrary to what we have experienced for large and small values of BOND
number B # 1/3 where we were able to compute either elevation or depression solitary
waves in each case.

In order to study the solitary waves generated by the evolution of the Gaussian and
ensure that they are traveling waves and also that they are peakons in this critical case,
we isolated the solitary waves using the cleaning procedure suggested in [3, 18]. After one
cleaning iteration, the solitary wave propagated without change in shape, amplitude or
speed. Specifically, the elevation solitary wave of Figure 22(a) propagated with constant
speed ¢ ~ 1.32 and amplitude A ~ 0.7337. The amplitude of the emerging depression
wave was approximately A ~ —0.3368. The interaction of the cleaned solutions were
studied and found to be very similar to the transcritical cases. The symmetric head-
on collision of two elevation peakons is presented in Figure 23 where we observe great
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Figure 17. Interaction of two solitary waves with r = 3 of the gSERRE
equations with B = 0.5. LAX category (b).
similarities with the head-on collision of two solitary waves in the case with B = 0.32.

Similarly, the head-on collision of two depression peakons leads to very similar results.

We also explored the head-on collision between a peakon of elevation and a peakon
of depression with amplitudes A = 0.5 and A = —0.3, respectively. This collision
appeared to be a combination of the two previous collisions. After the interaction, the
depression peakon sheds a small wavelet in front of the pulse, leading its propagation
while the elevation peakon sheds an analogous wavelet behind, following the propagation
of the main pulse. Figure 24 shows the head-on collision between elevation and depression
peakons.

The last and also interesting overtaking collision between an elevation and depression
peakon is presented in Figure 25. In this experiment, we used the same peakons as in the
previous experiment but in this case both of them propagate to the right. The interaction
was strong especially for the depression peakon which evolved into a much smaller peakon
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Figure 18. Interaction of two solitary waves with r = 10 of the gSERRE
equations with B = 0.5. LAX category (c).

while two more peakons were generated after the interaction. Also, other oscillatory struc-
tures appeared. The initial elevation peakon evolved into a new elevation peakon of smaller
amplitude.

4. Conclusions

Some effects of surface tension on gravity—capillary solitary waves of the gSERRE equa-
tions were presented. Head-on and overtaking collisions were studied for subcritical and
supercritical values of the BOND number. The qualitative dynamical picture of the interac-
tions for values of the BOND number B < 1/3 appeared to be very similar to the analogous
interactions of solitary waves of the SERRE equations that neglect surface tension. The
maximum runup was smaller when surface tension was taken into account, and the effect
of surface tension was stronger for larger amplitude solitary waves. On the other hand, the
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Figure 19. The mazimum negative amplitude of the solution for several values
of r for the overtaking collision of two solitary waves of the gSERRE equations
with B = 0.5.

interaction for large values of BOND number B > 1/3 were different since the dispersive
tails propagate faster than the solitary waves. Finally, we numerically studied the existence
of solitary waves in the critical case B = 1/3 where the numerical experiments indicated
the existence of solitary waves of elevation and depression that are reminiscent of peaked
solitary waves of the CAMASSA-HOLM equation. Analytical formulas for these peakons
were presented. Finally, we presented the dynamics of solitary waves and their interactions
for transcritical and values of the BOND number near B ~ 1/3.
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