
HAL Id: hal-01465340
https://hal.science/hal-01465340

Submitted on 11 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Efficient interpretable variants of online SOM for large
dissimilarity data

Jérôme J. Mariette, Madalina Olteanu, Nathalie Vialaneix

To cite this version:
Jérôme J. Mariette, Madalina Olteanu, Nathalie Vialaneix. Efficient interpretable vari-
ants of online SOM for large dissimilarity data. Neurocomputing, 2017, 225, pp.31-48.
�10.1016/j.neucom.2016.11.014�. �hal-01465340�

https://hal.science/hal-01465340
https://hal.archives-ouvertes.fr


Efficient interpretable variants of online SOM for large

dissimilarity data

Jérôme Mariettea, Madalina Olteanub, Nathalie Villa-Vialaneixa

aMIAT, Université de Toulouse, INRA, 31326 Castanet-Tolosan, France
bSAMM, EA 4543, Université Paris 1, F-75634 Paris, France

Abstract

Self-organizing maps (SOM) are a useful tool for exploring data. In
its original version, the SOM algorithm was designed for numerical vectors.
Since then, several extensions have been proposed to handle complex datasets
described by (dis)similarities. Most of these extensions represent prototypes
by a list of (dis)similarities with the entire dataset and suffer from several
drawbacks: their complexity is increased - it becomes quadratic instead of
linear -, the stability is reduced and the interpretability of the prototypes is
lost.

In the present article, we propose and compare two extensions of the
stochastic SOM for (dis)similarity data: the first one takes advantage of
the online setting in order to maintain a sparse representation of the proto-
types at each step of the algorithm, while the second one uses a dimension
reduction in a feature space defined by the (dis)similarity. Our contribu-
tions to the analysis of (dis)similarity data with topographic maps are thus
twofolds: first, we present a new version of the SOM algorithm which ensures
a sparse representation of the prototypes through online updates. Second,
this approach is compared on several benchmarks to a standard dimension
reduction technique (K-PCA), which is itself adapted to large datasets with
the Nyström approximation.

Results demonstrate that both approaches lead to reduce the prototypes
dimensionality while providing accurate results in a reasonable computa-
tional time. Selecting one of these two strategies depends on the dataset
size, the need to easily interpret the results and the computational facilities
available. The conclusion tries to provide some recommendations to help the
user making this choice.

Keywords:

Preprint submitted to Neurocomputing February 11, 2017



SOM, Sparse methods, Kernel, dissimilarity, K-PCA, Nyström

1. Introduction

1.1. State-of-the art on SOM for (dis)similarity data
Over the years, the self-organizing map (SOM) algorithm [1] was proved

to be a powerful and convenient tool for clustering and visualizing data [2, 3,
4, 5, 6]. While the original algorithm had been designed for numerical vectors,
the available data in the applications became more and more complex, being
frequently too rich to be described by a fixed set of numerical attributes
only. This is the case, for example, when data are described by relations
between objects (individuals involved in a social network) or by measures of
resemblance/dissemblance which are context specific (see [7, 8] for similarities
between categorical sequences, [9] for similarities between microbial diversity
distributions, [10] for similarities in gene expression data).

During the past twenty years, the SOM algorithm was extended to han-
dle non numerical data. For example, SOM was adapted to categorical data
analysis, by using a method similar to Multiple Correspondence Analysis
in [11]. Another solution, called median SOM [12], addressed the issue of
data described by pairwise relations (similarities or dissimilarities): in this
solution, the standard computation of the prototypes is replaced by an ap-
proximation within the original dataset. However, as prototypes are chosen
among the data, their representation is very restrictive. In order to increase
the flexibility of the prototypes, [13] proposed to represent a class by several
prototypes, all chosen among the original dataset. But, this method seriously
increases the computational time, while prototypes remain restricted to the
original dataset and may generate possible sampling or sparsity issues.

A very different approach to handle relational data consists in relying
on a (pseudo-)Euclidean framework, following the results of [14] (for data
described by a kernel) or of [15] (for dissimilarity data). This approach was
developed in the framework of kernel SOM (see [16] for the online version
and [17] for the batch version), and in the framework of relational SOM (see
[18] for the online version and [19] for the batch version). Kernel SOM and
relational SOM are equivalent if the dissimilarity in relational SOM is the
squared distance induced by the kernel. The key idea of this approach is
to express prototypes as convex combinations of the images of the original
data (xi)i=1,...,n in a (pseudo-)Euclidean space in which the data are (implic-
itly) embedded by the kernel (or the dissimilarity): as stated in [20, 21],

2



this solution yields several drawbacks due to the large dimensionality of the
embedding space (which is equal to the number of observations, n). Firstly,
the complexity (in n) is strongly increased and becomes at least quadratic.
As stressed in [19], algorithms will be slow for datasets with 10,000 observa-
tions and impossible to run on a normal computer for 100,000 input data.
Secondly, the results are highly unstable: especially in the online (also called
stochastic) version of the algorithm, two different runs of the method can
provide very different results. Thirdly, one of the most important features
of the SOM algorithm is lost: in standard numerical SOM, clusters are rep-
resented by a single prototype valued in the data space. These prototypes
help to interpret the obtained clusters and thus the overall map organiza-
tion. In kernel/relational SOM, prototypes are given as n coefficients that
correspond to a resemblance with each of the n observations: they do not
correspond themselves to an observation in the original data space and as
such, prototypes are not much more informative than the clustering itself.

In conclusion, kernel and relational extensions of the standard SOM algo-
rithm are hardly practicable when the dataset is large. This is due partly to
the number of observations, but also to the dimensionality of the (embedded)
data which is directly related to this number. To address this issue, strategies
usually used to handle large datasets or datasets with a high dimensionality
are useful and they can even be combined.

1.2. Review of methods for large datasets and high dimensional datasets

Different strategies were developed and are available in the literature
to handle large datasets (when the number of observations is large) and
high-dimensional datasets (when the dimension of the dataset is large). For
large datasets, standard approaches include i) divide and conquer approaches
[22, 23, 24] in which data are split into several bits of data which are processed
separately. The results are aggregated afterwards to obtain a final solution
which is supposed to well approximate the solution that would have been
obtained if the entire dataset had been processed at once; ii) subsampling
methods [25, 26, 27, 28, 29], which consist in using a restricted subset (usually
carefully designed) of the original data, in order to approximate the solution
that could have been obtained with the entire dataset and iii) online updates
[30, 31], in which the results are updated with sequential steps, each having
a low computational cost.

A particular case of the subsampling strategy is the Nyström approxi-
mation [32], which consists in sampling a small number of rows/columns in

3



square matrices and in obtaining an approximation of its eigendecomposition
at a very reduced computational cost. The eigendecomposition is even exact
when the matrix is of low rank (when the size of the subsample is larger
than the rank of the matrix). This method is frequently used for kernel and
dissimilarity-based algorithms.

For high-dimensional data, the strategies are a bit different and include
i) sparse approaches [33, 34], in which a subset of the variables is selected to
build the final predictive model. This subset can be obtained from sequential
exploration (stepwise strategies), from approximation heuristics or by using a
sparse penalty term within the model (LASSO); ii) dimension reduction (DR)
techniques, that can be linear (PCA for instance or random projections as in
[35]) or nonlinear [36]. DR methods embed the data in a small dimensional
space and are usually mainly used for visualization and exploratory analysis.
However, if the embedding can be obtained at a low cost, it can be used
as an approximation of the high-dimensional dataset on which more costly
algorithms may be applied. SOM itself is a dimension reduction method but,
as stressed before, the computational complexity of its kernel and relational
versions is high. Finally, a particular case of DR techniques is model-based
clustering methods, which use mixture distributions and embed the data in
a low-dimensional subspace that is the best suited for clustering (see [37] for
a review).

1.3. Kernel/relational extensions for large datasets

Several extensions for kernel and relational data of the standard SOM
algorithm, or of related kernel/relational algorithms (such as, e.g., k-means,
LVQ, topographic maps...) have already been proposed in the literature.
They use ideas coming from the strategies handling large and/or high-
dimensional datasets cited above. Most of them seek a simplified/sparse
representation of the prototypes and/or a reduced computational time.

In the relational k-means framework, [38] proposed a sparse extension of
the batch algorithm: every prototype is represented by at most K (K fixed)
observations by cluster, that are selected at each step of the algorithm. In the
supervised framework, [21] used a similar strategy for batch LVQ, by selecting
the most representative observations (with different methods to obtain them,
including approximation heuristics and L1 penalty) in every cluster and at
each step of the algorithm. A similar method was used in [39], combined with
the Nyström approximation of the LVQ algorithm, in order to obtain sparse
prototypes at very low computational cost. The Nyström approximation

4



was also used for obtaining faster versions of topographic mapping methods
[40, 41] and for reducing the computational cost of the clustering. Another
subsampling strategy was used in a nonlinear (kernel) DR framework to allow
processing large datasets, in [42].

However, these approaches do not lead to a simplified (and thus inter-
pretable) representation of the prototypes. Furthermore, all of them are re-
stricted to the batch framework and most of them are performed after each
iteration of a batch algorithm, i.e., after all observations have been processed
at least once. An alternative to these methods consists in splitting the data
into several subsets on which independent algorithms are trained: in [19], the
complexity is reduced using iterative “patch clustering” that mixes “divide
and conquer” and “online updates” methods. First, the data are split into B
patches of size nB (� n, B fixed). A prototype-based clustering algorithm in
batch version (neural gas or SOM) is then run on a patch Pt. The resulting
prototypes, which may be viewed as compressed representations of the data
already seen, are then added as new data points to the next patch, Pt+1.
Moreover, the full vector of coefficients is replaced by the Q closest input
data (Q fixed). With this method, linear time and constant space represen-
tation are obtained but the sequential training may influence the final result
since all observations are not processed evenly.

In the same line of thoughts, [43] propose a bagging approach for kernel
SOM. Data are split into B subsamples of size nB (� n, B fixed), the online
kernel SOM is trained on each subsample and, after training, the most repre-
sentative Q observations are chosen for each prototype (Q fixed). Eventually,
a final map is trained on the resulting most representative observations. In
this method, parallel computing techniques can be used for reducing the
computational time. However, the results of the B trained SOMs are not
used as such but only to select the most representative observations in the
dataset.

1.4. Contributions of the article

In the present article, we propose and compare two methods to obtain
sparse prototypes and a reduced computational cost in the online SOM al-
gorithm. The first one uses a reduction dimension in the embedding space,
which can be efficiently performed with Nyström technique. This method
combines ideas coming from the high dimension and the large data prob-
lems. However, it is not specific to the online setting. We thus compared
it with another approach which takes advantage of the online framework to

5



provide sparse prototypes at all iteration steps of the algorithm: the coeffi-
cients are interpreted similarly to an amount of mass and the most important
observations are selected by using a fixed global probability mass, ν, such
that only the largest coefficients summing to at most ν are kept. This second
proposal also takes ideas from large data problems (online updates) and from
high dimension (variable selection with sparsity).

For the sake of simplicity, most of the paper is written in the framework
of kernel SOM but its extension to relational SOM is straightforward and
briefly explained in Section 5. The rest of the paper is organized as follows:
Section 2 recalls the online kernel SOM (online K-SOM). Section 3 describes
the dimension reduction approach for online K-SOM while Section 4 presents
the direct sparse version of online K-SOM. Comparisons and numerical ex-
periments are reported in Section 6.

2. Kernel SOM (K-SOM)

This section describes the theoretical background of the online version of
the SOM algorithm and its extension to data described by a kernel. In the
following, we consider a set of observations (xi)i=1,...,n which take values in
an arbitrary space X . X is equipped with a kernel K : X × X → R that
provides pairwise similarity between the observations, Kij := K(xi, xj). K
is assumed symmetric (Kij = Kji) and positive (∀N ∈ N, ∀ (αi)i=1,...,N ⊂
R, ∀ (xi)i=1,...,N ⊂ X ,

∑
i,i′ αiαi′Kii′ ≥ 0). According to [14], K is the dot

product in a uniquely defined Hilbert space (H, 〈., .〉) of the images of xi and
xj by a uniquely defined feature map φ : X → H:

Kij = 〈φ(xi), φ(xj)〉.

The SOM algorithm aims at mapping the input data onto a low dimen-
sional grid (usually a two-dimensional rectangle), composed of U units, each
of them described by a prototype pu, u = 1, . . . , U . The units are related
together by a neighborhood relationship H, expressed as a function of the
distance between the units on the grid, d(u, u′), H : R → R. Classically, H
is chosen such that H(0) = 1, limx→+∞H(x) = 0 and is decreased during
the training. Also, the distance on the grid, d, may be chosen as the length
of the shortest path between the units or as the Euclidean distance between
the coordinates of the units positioned at (1, 1), (1, 2), . . . , (m,m′) (where
m×m′ = U).

6



In standard (numerical) SOM, the data take values in X = Rd and the
kernel is the standard dot product in this space Kij = x>i xj. In this case,
the prototypes are also valued in Rd. In kernel SOM, X is arbitrary and
prototypes are not easily defined in this space, which may not be Euclidean
or equipped with standard operations such as the sum. To allow for a more
flexible representation of the prototypes (i.e., a representation which is not
restricted to the data already observed, (xi)i), the implicit feature space
(H, 〈., .〉) is used and the algorithm is re-defined in this space. The prototypes
are expressed as convex combinations of the images by φ of the original data:
pu =

∑n
i=1 βuiφ(xi), βui ≥ 0 and

∑
i βui = 1. As said before, the feature map

is uniquely defined from the kernel K. However, it is usually not explicitly
given and thus, all calculations are based on the values of the coefficients
βu = (βu1, . . . , βun) ∈ Rn only.

The kernel version of online SOM [16, 38] is thus directly derived from the
computations of the standard numerical SOM performed in the feature space
H: the norm and the dot product in H can be obtained using the kernel,
without the need of explicitly knowing H or φ (this is the so-called “kernel
trick”). Online K-SOM is provided in Algorithm 1. In this algorithm, µ(t)
usually vanishes at the rate 1

t
and the final clustering is defined as (Cu)u=1,...,U ,

where Cu = {xi : f(xi) = u} with f := fT .
The issue with kernel SOM is that, when n is large, the total number of

coefficients βui to learn is equal to n×U , which yields a complexity of O(n2U)
(for one iteration) instead of O(dU) + O(ndU) for the standard numerical
SOM in Rd. Hence, this algorithm cannot be used to analyze datasets with
more than a few thousands observations. Also, the representation of the
prototypes is so flexible that the results are highly unstable with different final
clusterings and different prototypes for each run of the algorithm. Finally,
as stated in [20], one of the main challenges of this kind of algorithm is
that the easiness in interpreting the resulting map is lost: in standard SOM,
prototypes are easily interpreted because they are described by values of well
known variables which are the variables also describing the observations in
the input dataset. In kernel SOM, the prototypes are characterized by their
proximity to all individuals in the dataset. Hence, interpreting the clustering
requires to be able to understand the relationships of the prototypes with all
individuals, which is probably as difficult as analyzing the entire dataset
directly.

7



Algorithm 1 Online kernel SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize (β0
ui)u,i such that β0

ui ≥ 0
and

∑n
i β

0
ui = 1.

2: for t = 1, . . . , T do
3: Randomly choose an input xi
4: Assignment step: find the unit of the prototype closest to φ(xi) ∈ H

f t(xi)← arg min
u=1,...,U

‖pt−1u − φ(xi)‖2

which is equivalent to minimize, over u,
∑

j,j′ β
t−1
uj β

t−1
uj′ Kjj′ −

2
∑

j β
t−1
uj Kij;

5: Representation step: ∀u = 1, . . . , U ,

βtu ← βt−1u + µ(t)H t(d(f t(xi), u))
(
1i − βt−1u

)
where 1i is a vector with a single non null coefficient at the ith position,
equal to one.

6: end for

3. A dimension reduction technique for K-SOM

This section describes a first approach to reduce the dimensionality of
the prototypes, thus improving the computational complexity as well as the
interpretability of the prototypes. Our proposal is to rely on a preprocessing
of the data based on PCA in the feature space (Kernel PCA, denoted by K-
PCA and described in Section 3.1) and then to express the SOM algorithm in
the subspace of the feature spaceH which is spanned by the first eigenvectors
of the K-PCA (Section 3.2). Finally, the computational complexity of the
approach can be further reduced by performing the K-PCA thanks to the
Nyström approximation (Section 3.3).

3.1. Kernel PCA (K-PCA)

K-PCA, introduced in [44], is a PCA analysis performed in the feature
space (H, 〈., .〉) induced by the kernel. A centered data matrix is first com-

8



puted using:

K̃ij :=

〈
φ(xi)−

1

n

n∑
l=1

φ(xl), φ(xj)−
1

n

n∑
l=1

φ(xl)

〉

= Kij −
1

n

n∑
l=1

(Kil +Kjl) +
1

n2

n∑
l,l′=1

Kll′ , (1)

which yields to the modified centered kernel K̃ = K − 1
n
ITnK − 1

n
KIn +

1
n2 I

T
nKIn, in which In is the vector with n entries equal to 1. The eigenvectors

(αk)k=1,...,n ∈ Rn and the corresponding eigenvalues (λk)k=1,...,n are obtained
from this centered matrix by solving the following eigenvalue problem:

K̃α = λα. (2)

This problem is equivalent to finding eigenvectors, in the feature space H,
of the covariance matrix of the (centered) images of the original data by

φ (the feature map associated to the centered kernel K̃). These vectors,
(ak)k=1,...,n ∈ H lie in the span of {φ(xi)}i=1,...,n and can be expressed as:

ak =
n∑
i=1

αkiφ(xi)

where αk = (αki)i=1,...,n. ak = (aki)i=1,...,n are orthonormal in H:

∀ k, k′, 〈ak, ak′〉 = α>k K̃αk′ = δkk′ with δkk′ =

{
0 if k 6= k′

1 otherwise
.

The principal components are the coordinates of the projections of the
images of the original data, (φ(xi))i onto the eigenvectors (ak)k≥1 which can
be expressed as:

〈ak, φ(xi)〉 =
n∑
j=1

αkjK̃ji = K̃i.αk,

where K̃i. is the i-th row of the kernel K̃. According to Equation (2), we
thus obtain that 〈ak, φ(xi)〉 = λkαki. The original data are projected on these
axes with:

Pak(φ(xi)) = 〈ak, φ(xi)〉ak = (λkαki)ak.

The result of K-PCA can be used to approximate the data in a reduced
space by selecting p axes (ak)k=1,...,p in the feature space H (with p� n), on
which the data can be projected.

9



3.2. K-PCA SOM

We suppose in this section that the kernel K is centered. Otherwise,
without loss of generality, the centering procedure described in Equation (1)
can be applied.

The main idea developed in this section is to define the U prototypes
of the SOM in A = Span{a1, . . . , ap} instead of the entire feature space. A
prototype can thus be written as:

pu =

p∑
k=1

βukak

with βuk ≥ 0 and
∑

k βuk = 1 and the two steps of the SOM algorithm can
thus be rewritten as:

• assignment step: when the observation xi is picked at random, it is
affected to:

f(xi) := arg min
u
‖pu − φ(xi)‖2

in which:

‖pu − φ(xi)‖2 =

p∑
k,k′=1

βukβuk′〈ak, ak′〉 − 2

p∑
k=1

βuk〈ak, φ(xi)〉+ ‖φ(xi)‖2

=

p∑
k,k′=1

βukβuk′〈ak, ak′〉 − 2

p∑
k=1

βukλkαki + ‖φ(xi)‖2

= β>uβu − 2β>uΛα.i + ‖φ(xi)‖2, (3)

where βu = (βuk)k=1,...,p, Λ = Diag (λ1, . . . , λp) and α.i is the i-

th column of α = [α1, . . . , αp]
>. This step is thus equivalent to

minimize β>uβu − 2β>uΛα.i over u ∈ {1, . . . , U} and is also equiva-
lent to minimize ‖pu − PA(φ(xi))‖2 over u. This result was expected
since, by the definition of PA(φ(xi)), we have that ‖pu − φ(xi)‖2 =
‖pu − PA(φ(xi))‖2 + ‖PA(φ(xi)) − φ(xi)‖2, in which the second term
does not depend on u;

• representation step: the gradient descent like step is given by

pu = pu + µH(d(f(xi), u)) (PA(φ(xi))− pu)

=
∑
k

βukak + µH(d(f(xi), u))

(∑
k

(λkαki)ak −
∑
k

βukak

)
,

10



which is equivalent to update the coefficients as:

βu = βu + µH(d(f(xi), u)) (Λα.i − βu) .

This approach is simply the standard (numerical) SOM with entries the n×p
matrix α>Λ. The computational complexity of this approach is thus reduced
from O(n2UT ) (online K-SOM, T iterations) to O(pUT ) + O(npU) (online
numeric SOM in Rp, cost of the T iterations and cost of the final clustering
computation), once the K-PCA is given. Hence, since T is generally of the
order of n, this gives a linear complexity for the algorithm. However, K-PCA
itself can have a large complexity. This issue is addressed in the next section.

The interpretation of the prototypes is done similarly as for a standard
PCA: the axes a1, ..., ap of the prototypes are interpreted with respect to the
observations (xi)i which contribute most to their definition. Then, prototypes
are interpreted by means of their coefficients on these axis.

3.3. K-PCA from Nyström approximation

Kernel-based methods, and especially K-PCA, do not scale well when
the number of observations, n, is large. For instance, the computational
complexity of the eigendecomposition of K is O(n3). An effective approach
for improving the scalability of kernel methods is the Nyström approximation
[32] and a similar technique is used in [41] for improving the computational
cost of topographic maps for dissimilarity data. In the latter reference, the
authors use the Nyström approximation to reduce the computational cost of
‖pu−φ(xi)‖2 from O(n2) to O(m2n), in which m is a number of observations
taken at random within the original dataset. m is supposed to be small
compared to n and close to the kernel rank.

In the approach introduced in Section 3.2 and unlike article [41], it is the
pre-processing step which is addressed by the Nyström approximation, while
the computational cost of calculating the clustering of the map is handled
by the use of the numerical version of the algorithm based on the K-PCA
pre-processing. More precisely, the eigendecomposition of a kernel matrix K
(which is supposed to be centered) is approximated by selecting m obser-
vations, Tm among (xi)i=1,...,n, and by using the eigendecomposition of the
reduced matrix K(m) = (K(xi, xj))i,j∈Tm . In practice, the selected observa-
tions Tm are chosen at random, although more efficient sampling techniques
such as the ones described and evaluated in [45] could also be used.

11



If the eigenvalues and the (orthonormal) eigenvectors of K(m) are denoted

by (λ
(m)
k )k and (v

(m)
k )k respectively, then the eigenvalues and (orthonormal)

eigenvectors of K are given by

λk '
n

m
λ
(m)
k and vki '

√
m

n

1

λ
(m)
k

K
(n,m)
i. v

(m)
k ,

with K
(n,m)
i. the i-th row of the matrix K(n,m) = (K(xj, xj′))j=1,...,n, j′∈Tm .

If the rank of K(m) is equal to the rank of the original matrix K, the ap-
proximation even becomes an equality. Then, assuming that the kernel K
(which is supposed to be centered) is known or at least that any of the pairs
K(xi, xj) (i, j = 1, . . . , n) can be computed at low cost, the K-PCA requires
to obtain the entries (λkαki)k=1,...,p ∈ Rp for all i = 1, . . . , n, where (αk)k are
the eigenvectors of K which are orthogonal with respect to the norm induced
by the kernel. We can easily show that

αk =
vk√
λk

(4)

because, by definition, as vk are eigenvectors of K, so are αk and, in addition,
using the equality of Equation (4), we have that:

α>kKαk′ =
1√

λk
√
λk′

vTkKvk′ =
1√

λk
√
λk′

vTk λk′vk′ = δkk′ .

Therefore, K-PCA can be computed with entries the rows of the n×p matrix
α>Λ with ∀ i = 1, . . . , n and ∀ k = 1, . . . , p,

λkαki =
√
λkvki =

1√
λ
(m)
k

K
(n,m)
i. v

(m)
k = K

(n,m)
i. α

(m)
k (5)

with α
(m)
k =

v
(m)
k√
λ
(m)
k

. This simplified K-PCA is a good approximation of the

K-PCA with kernel K. The complexity of the preprocessing is reduced from
O(n3) (standard K-PCA) to O(m3)+O(nm2) (respectively, K-PCA based on
the reduced kernel and approximation). The complete algorithm is provided
in Algorithm 2.

12



Algorithm 2 Online K-PCA SOM

1: Nyström approximation of K-PCA
2: Select at random m observations Tm = {xi(1), . . . , xi(m)} from the original

dataset
3: Compute the first p eigenvalues and orthonormal eigenvectors of K(m),

(λ
(m)
k )k=1,...,p, (v

(m)
k )k=1,...,p and obtain, for k = 1, . . . , p, α

(m)
k = vk√

λk

4: Compute
(
K(n,m)α

(m)
k

)
k=1,...,p

, which is an n × p matrix B =

(bik)i=1,...,n, k=1,...,p

5: K-PCA SOM
6: Initialize prototypes randomly: ∀u = 1, . . . , U , β0

u ∈ [0, 1]p and∑p
k=1 β

0
uk = 1

7: for t = 1, . . . , T do
8: Randomly choose an input i ∈ {1, . . . , n}
9: Assignment step: find the unit of the prototype closest to i-th row

of B, bi:
f t(xi)← arg min

u=1,...,U
‖βt−1u − bi‖2Rp

10: Representation step: ∀u = 1, . . . , U ,

βtu ← βt−1u + µ(t)H t(d(f t(xi), u))
(
bi − βt−1u

)
11: end for

13



4. Direct sparse K-SOM

In this section, we present an alternative approach to obtain sparse proto-
types while taking advantage of the online updates of the stochastic version
of the K-SOM algorithm. Here, unlike in K-PCA SOM, the prototypes are
directly written as convex combinations of the observations, but, in this
case, they are restricted to the input data already fed to the algorithm and,
more particularly, to the most important of them. This algorithm has al-
ready been described in the framework of dissimilarity data and tested on
restricted datasets in [46].

4.1. Description of the approach

To ensure sparsity through the algorithm, the prototypes are initialized
at random among the input data. Thus, the method first selects at random U
observations that are used as initial values for the U prototypes. Then, at a
given step t of the algorithm, a prototype is written as a convex combination
of the most important past observations: if Iu(t − 1) denotes the set of the
most important observations selected for prototype pu before step t, pu writes
pu =

∑
j∈Iu(t) βujφ(xi). Finally, the distance in the feature space H between

a new input, xi selected at random, and pu is given by:

‖φ(xi)−pu‖2 =
∑

j,j′∈Iu(t−1)

βujβuj′K(xj, xj′)−2
∑

j∈Iu(t−1)

βujK(xj, xi)+K(xi, xi).

(6)
In order to maintain prototypes as sparse combinations of the input data,

they are periodically updated and the most important coefficients only are
kept. The update instants may be performed throughout the iterations using
various strategies: for instance, they can be uniformly distributed during
the learning process or distributed according to some geometric distribution.
The parameter of the geometric distribution may be fixed, during the whole
training, or varying (in ascending or descending fashion) with the iterations.
We ran several simulations on various data sets, using these four scenarios
(results not shown). The results were globally similar, with a slight advantage
for the “ascending random” strategy. In this case, the parameter of the
geometric distribution was γt = 1−µ(t)

κ
, where κ is a constant to be set.

As suggested by [21] for a batch sparse LVQ method, sparsity could be
achieved by selecting the first Q most important coefficients, where Q is a
fixed integer. However, in order to allow for more flexibility in the expression

14



of the prototypes, the most important coefficients are selected according to
their value, by fixing a threshold: let 0 < ν ≤ 1 be the selected threshold.
At time step t at which an update occurs and for every u = 1, ..., U , the
coefficients of the prototype pu are first ordered in descending order, βu,(1) ≥
... ≥ βu,(]Iu(t)). Then, the integer Nu such that

Nu = arg min
k=1,...,]Iu(t)

{
k∑
i=1

βu,(i) ≥ ν

}

is introduced. The most important coefficients are finally updated as follows

βu,(i) =

{
βu,(i)∑Nu

j=1 βu,(j)
if (i) ≤ Nu

0 if (i) > Nu

,

and Iu(t) is updated accordingly afterwards by keeping the observations that
correspond to non zero coefficients only.

The sparse relational SOM algorithm is entirely described in Algorithm 3.

Contrary to K-PCA SOM, in this version, the prototypes might directly
be interpreted through the observations that are used in their representation.
Also, the sparsity is updated during the training and the induced dimension
reduction is thus not constrained to the efficiency of a given dimension re-
duction technique such as K-PCA. However, due to the sparse representa-
tion step, the algorithm can be computationally more expensive than K-PCA
SOM and the amount of information preserved in the sparse representation
is not as well controlled as in K-PCA projection. Finally, the complexity of
the method, for T iterations, is not easily obtained: if a total mass equal
to ν results in no more than Q(ν) observations for every prototype at each
step, then the global complexity of the method has an upper bound of order
O ((Q(ν))2UT ) + O (n(Q(ν)2) (respectively for the iterations and the final
clustering computation). However, the relation between ν and Q(ν) is hard
to know in advance and can depend on the dataset distribution and on the
training itself.

4.2. Variants of the sparse updates

In the line of [21], variants of the update step (step 15 in Algorithm 3)
can be introduced. More precisely, some of the approaches introduced in [21]
can be used almost directly in the online framework. The main difference is

15



Algorithm 3 Sparse online K-SOM

1: For all u = 1, . . . , U , initialize p0u among U randomly selected observa-
tions in (xi)i. Initialize Iu(0) = {i(u)}, with i(u) ∈ {1, . . . , n} for all u
and β0

u = 1.
2: for t = 1, . . . , T do
3: Randomly choose an input xi, i ∈ {1, ..., n}.
4: Assignment step: find the unit with the prototype closest to φ(xi):

f t (xi)← arg min
u=1,...,U

(βt−1u )>KIu(t−1)β
t−1
u − 2

∑
j∈Iu(t−1)

βt−1uj K(xj, xi)


where KIu(t−1) = (K(xj, xj′)))j,j′∈Iu(t−1).

5: Representation step: ∀u = 1, . . . , U
6: if i ∈ Iu(t− 1), then
7: βtu ← βt−1u + µ(t)H t(d(f t(xi), u))

(
1i − βt−1u

)
8: Iu(t) = Iu(t− 1)
9: else if i /∈ Iu(t− 1), then

10:

βtu ←
[
1− µ(t)H t(d(f t(xi), u))

] (
βt−1u , 0

)
+µ(t)H t(d(f t(xi), u))(0, ..., 0︸ ︷︷ ︸

]Iu(t−1)

, 1)

11: Iu(t) = Iu(t− 1) ∪ {i}.
12: end if
13: Sparse representation
14: if t is an update instant then
15: Sparsely update the prototypes: ∀u = 1, . . . , U and with βtu,(1) ≥

... ≥ βtu,(]Iu(t)), set

Nt,u = arg min
k=1,...,]Iu(t)

{
k∑
i=1

βtu,(i) ≥ ν

}

and ∀ (i), st i ∈ Iu(t),

βtu,(i) ←


βt
u,(i)∑Nt,u

j=1 βt
u,(j)

if (i) ≤ Nt,u

0 if (i) > Nt,u

and Iu(t)← {i : (i) ≤ Nt,u}.
16: end if
17: end for

16



that the number of iterations in the online version is much larger than in the
batch version. In practice, this implies that the sparse approximation must
have a low computational complexity because it is performed several times
during the training. We thus restrict ourselves to the following two proposals
which are the less computationally costly and can be used instead of step 15
in Algorithm 3:

• simple numerical heuristic approximation (N-num): instead of select-
ing the first coefficients which sum to a given amount of total mass, one
can simply select the first N coefficients for a given N . This changes
step 15 into

βtu,(i) =

{
βt
u,(i)∑N

j=1 β
t
u,(j)

if (i) ≤ N

0 if (i) > N
,

• simple geometric heuristic approximation (N-geom): as an alternative,
one can search through the observations in Iu the first N observations
closest to prototype pu. Additionally to what is described in [21], we set
the coefficients βu,i afterwards, in accordance to the new observations
used to represent the prototype pu. Again, we used the previous values
of the coefficients as a priori for the new ones. Step 15 re-writes:

1. Ĩu(t) is the set of the first N observations, xi, in Iu(t) which min-
imize ‖pu − φ(xi)‖2

2. βtu,i ←

{
βt
u,i∑

j∈Ĩu(t) β
t
u,j

if (i) ∈ Ĩu(t)
0 if i /∈ Ĩu(t)

,

3. Iu(t)← Ĩu(t)

Both approaches described above lead to a fixed number of observations
for representing all the prototypes, contrary to what is proposed in Sec-
tion 4.1. The advantage of our proposal is that prototypes may be repre-
sented by a number of observations which varies with the density of the data
on the map: when a given cluster is isolated from its neighbors, this should
yield to a more accurate way to represent the cluster. Also, for all three
methods, the sparse approximation is maintained during all the training, as
long as the sparse updates are performed frequently enough. This yields to a
reduced computational cost of the assignment step (Step 4 in Algorithm 3)
and, to a lesser extent, of the representation step (Step 10 in Algorithm 3).

17



As already stated in the previous section, the computational gain is not eas-
ily obtained and is a trade-off between the sparsity constraint imposed on
the data (which itself depends on the total mass ν or on the number of ob-
servations N and on the number of update instants) and the complexity of
the sparse representation step itself (Step 15 in Algorithm 3). Further dis-
cussions about computational time and efficiency of the different alternatives
are provided in the experiments (Section 6).

5. The case of dissimilarity data

For the sake of clarity, the entire paper has been written in the frame-
work of kernel data. However, its extension to dissimilarity data is almost
straightforward, even in the case where the dissimilarity is not Euclidean.
The present section briefly describes the modifications that must be made in
this setting.

In the sequel, ∆ will denote a dissimilarity matrix with entries δ(xi, xj),
the dissimilarity between the observations xi and xj. ∆ is supposed to have
some very basic properties, such as the positiveness of all entries (δ(xi, xj) ≥
0), symmetry (δ(xi, xj) = δ(xj, xi)) and a null diagonal δ(xi, xi) = 0. How-
ever, it may not necessarily be Euclidean (see, for instance [18] for a discus-
sion on the additional requirements which make this dissimilarity Euclidean).
The extension of SOM to this case is called “relational SOM” and was de-
scribed in [19, 18]. It is very similar to the kernel case, except that the
assignment step of Algorithm 1 is replaced by

f t(xi)← arg min
u=1,...,U

[(
βt−1u

)>
∆i −

1

2

(
βt−1u

)>
∆βt−1u

]
, (7)

where ∆i is the i-th row in matrix ∆. This equation is justified by the
pseudo-Euclidean framework described in [15]: ∆ can be expressed as the
difference between dot products of images of the original data by two mapping
functions, ψ1 and ψ2 into two Euclidean spaces, E1 and E2:

δ(xi, xj) = ‖ψ1(xi)− ψ1(xj)‖E1 − ‖ψ2(xi)− ψ2(xj)‖E2 .

In this framework, Equation (7) is the exact distance calculation in the space
E1 ⊗ E2 equipped with the pseudo dot product 〈., .〉E1 − 〈., .〉E2 . Moreover, if

18



∆ is Euclidean, then the similarity defined by

K(xi, xj) = −1

2

(
δ(xi, xj)−

1

n

n∑
k=1

(δ(xi, xk) + δ(xk, xj)) +
1

n2

n∑
k, k′=1

δ(xk, xk′)

)
,

(8)
as suggested in [36], is a kernel and the distances between observations in
the feature space induced by this kernel are given by ∆. Thus, Equation (7)
is exactly equivalent to the assignment step in standard SOM for the kernel
K defined by Equation (8).

Hence, sparse K-SOM can straightforwardly be extended to dissimilar-
ity data using the assignment step restricted to selected observations in the
sparse representation as given in Equation (7). For SOM based on dimension
reduction, the extension is also easy to obtain. For a non-Euclidean dissimi-
larity, ∆, the eigendecomposition of the similarity K defined by Equation (8)
leads to positive and negative eigenvalues (because, in this case, K is not a
kernel anymore). If n+ ≤ n denotes the number of positive eigenvalues, the
projection of the original data by K-PCA should be restricted to the first p
components associated with the p largest eigenvalues such that p ≤ n+. This
restriction is equivalent to performing K-PCA on a kernel pre-processed with
the standard “clip” approach as suggested in [47].

6. Experimental results

6.1. Methodology

The present section is devoted to the evaluation of the proposed methods
on several datasets and from several points of view. First, in Section 6.2,
the methods presented in this article are assessed on both small and large
datasets. This allowed us to compare the performances and computational
efficiency of these methods with those of the standard K-SOM algorithm, in
an extensive way. In the same section, the sparse approach is also compared,
on the two small datasets, to the simple numerical and geometric heuristic
approximation methods described in Section 4.2. Finally, in Section 6.3, the
two new methods are used to produce a map on a very large dataset. In
Section 6.3, computational times are reported and compared, the influence
of the size of the prototypes is assessed and the Nyström approximation is
tested. This example also serves as a use case to show how the results can
be interpreted.

19



The datasets were chosen in the framework of this article, i.e., most of
them are not standard numeric datasets. They include graphs, genomic
sequences and categorical time series to illustrate the approach on a wide
range of application and type of (dis)similarities. For every method and
every set of parameters that we tested, the experiments were performed with
100 maps, so as to evaluate the variability of our conclusions.

Finally, performances are reported in terms of:

• standard quality measures used to evaluate SOM (see [48] for a de-
scription of quality measures in SOM): i) the quantization error (QE),∑U

u=1

∑
i:xi∈Cu ‖φ(xi)− pu‖2 with ‖φ(xi)− pu‖2 given by the kernel as

in Equation (3) (K-PCA SOM) or as in Equation (6) (sparse K-SOM).
This measure is a clustering quality measure, disregarding the map
topology; ii) the topographic error (TE) which is the simplest of the
topographic preservation measures: it computes the ratio over (xi)i of
the second best matching units that are in the direct neighborhood of
the best matching units on the map.
Since for the K-PCA SOM version, the distances ‖φ(xi) − pu‖2 de-
pend on the number of selected axes (the smaller the number of axes,
the smaller the distances between observations in the corresponding
projected subspace), we have normalized all QE by the average of
the squared distances between all pairs of observations in the fea-
ture space, ‖φ(xi) − φ(xj)‖2 (for i 6= j) to leverage the impact of the
feature space metric itself. However, the performances remain diffi-
cult to compare directly even with such a normalization, as shown in
the results of the simulations. Thus, the average intra-cluster inertia
(ICI) is also provided. This measure is equal to the average over the
units u of

∑
i:xi∈Cu ‖φ(xi) − GCu‖2 in which GCu = 1

]Cu

∑
i:xi∈Cu φ(xi)

is the center of gravity of Cu. We can easily show that it is equal to
1
]Cu

∑
i:xi∈Cu K(xi, xi)− 1

(]Cu)2
∑

i,i′:xi,xi′∈Cu
K(xi, xi′), for kernel data and

to 1
2(]Cu)2

∑
i,i′:xi,xi′∈Cu

δ(xi, xj) for dissimilarity data (see Appendix Ap-

pendix A for a proof);

• quality measures which take advantage of a prior external information:
i) if an a priori classification of the observations is given, we use the
normalized mutual information (NMI, [49]) between this a priori clas-
sification and the clustering induced by the SOM map. A perfect match
between the two would correspond to an NMI equal to 1 whereas inde-

20



pendent classifications would provide an NMI equal to 0; ii) when the
studied dataset is a graph and no a priori classification is given, the
quality of the clustering of the SOM map can nevertheless be evaluated
by computing its modularity [50]. A high modularity indicates a good
clustering with respect to the graph structure;

• quality measures which aim at providing an indication of how much
the results are stable between two runs of the algorithm. To do so,
we provide the average NMI between any pair of clustering results
obtained from the 100 runs, for a given method and with a given set of
parameters. In the sequel, this measure is called stability.

6.2. Evaluation of the different sparse approaches on various datasets

6.2.1. Description of the datasets

This section aims at evaluating and comparing the two approaches de-
scribed in Sections 3 and 4 on various datasets: two small datasets, for an
intensive analysis, and three larger datasets, for a better evaluation of the
gain in computational time.

More precisely, the two small datasets used for the experiments presented
in this section are:

• a graph that gives the frequencies of co-appearance in a same chap-
ter between characters in the novel “Les Misérables” from the French
author Victor Hugo. The 77 vertices of the graph are the characters
and the 254 edges are weighted by the number of co-appearances in
a same chapter. For this graph, a kernel obtained from the shortest-
path lengths is computed1. The similarity described in Section 5 is
used to perform K-PCA SOM: in this case, the similarity K defined in
Equation (8) is not positive (only the first 67 components are positive);

• a dataset that contains 465 input data issued from ten unbalanced
sampled species of Amazonian butterflies. This dataset was previously
used by [52] to demonstrate the synergy between DNA barcoding and
morphological-diversity studies. The notion of DNA barcoding com-
prises a wide family of molecular and bioinformatics methods aimed

1The graph as well as the shortest path-lengths are included in the R package SOMbrero
[51].

21



at identifying biological specimens and assigning them to a species.
DNA barcoding data are composed of sequences of nucleotides, i.e.,
sequences of “A”, “C”, “G”, “T” letters in high dimension (hundreds
or thousands of sites). Specific distances and dissimilarities such as the
Kimura-2P [53] are usually computed and used in the experiments. A
similarity was obtained from the Kimura-2P dissimilarity as described
in Equation (8) to perform K-PCA. Again, this similarity is not pos-
itive. Only 246 eigenvalues are positive in the eigendecomposition of
K.

These two datasets will be denoted, respectively, by “lesmis” and “astraptes”
in the sequel.

Additionally, three larger datasets are also used for comparison:

• a graph whose edges model hyper-links between blogs on US politics,
recorded in 2005 by [54]2. The 1,222 vertices of the graph represent the
political blogs and are labeled by the political leaning (liberal or con-
servative). The graph contains 19,089 edges. The similarity used for
this graph is again obtained from Equation (8), using the shortest-path
lengths as the original dissimilarity measure. The undirected version
of the shortest-path length was used to provide a symmetric dissimi-
larity, even though the original graph is directed. Only the first 779
eigenvalues of this similarity are positive;

• a DNA dataset similar to the “astraptes” data, except with a larger
size. This dataset contains 614 sites of the CoI locus for 2,036 samples
issued from the cowries family. The data were introduced in the DNA
barcoding context in [55]. In order to assess the ability for cluster-
ing of the proposed algorithms, the species with very few observations
were removed. The final dataset used for simulations contained 1,414
samples and 47 species, the number of observations per species varying
from 11 to 140 observations. The species were used as a priori classes
for computing the NMI. Here also, the Kimura-2P dissimilarity [53]
was used for deriving the similarity matrix, for which only the first 476
eigenvalues were positive.

2The graph is available at http://www-personal.umich.edu/~mejn/netdata/

polblogs.zip.

22



• a (standard) numerical dataset related to red variants of the Portuguese
“Vinho Verde” wine [56]3. The dataset contains 4 898 observations of
12 numeric variables based on physicochemical tests, such as the pH,
the sulphates or the residual sugar. Additionally, the quality (a score
between 0 and 10) of the wines is provided, which is used as an a priori
class to compute the quality measure (NMI) described in Section 6.1
(and thus it is not used to compute the similarity). To stuck to the
framework of the article, the Gaussian kernel was used to obtain a
measure of similarity between wines: Kij = e−σ‖xi−xj‖

2
with σ equal to

the median of
{

1
‖xi−xj‖2

}
i<j

.

In the sequel, these datasets will be refered as “polblogs”, “cowrie” and
“wines”, respectively.

6.2.2. Evaluation of K-PCA SOM and direct sparse K-SOM

More precisely, the following methods are compared on these five datasets:

• a standard kernel SOM, K-SOM (or relational SOM if the dissimilarity
is not Euclidean);

• K-PCA SOM, as described in Section 3. The datasets used in this
section are not large enough to allow a relevant use of the Nyström
approximation of the K-PCA;

• direct sparse K-SOM (or relational SOM) as described in Section 4,
and denoted by sparse K-SOM in the sequel.

All methods were trained for a 5×5 grid (“lesmis”), a 8×8 grid (“astraptes”)
and a 10 × 10 grid (“polblogs”, “cowrie” and “wines”) with respectively
500 (“lesmis”), 2500 (“astraptes”), 6000 (“polblogs”), 7000 (“cowrie”) and
8000 (“wines”) iterations. These choices approximately correspond to default
parameters in SOMbrero. All grids were equipped with a piecewise linear
neighborhood with the distance between units calculated as the Euclidean
distance between the unit coordinates in N∗2.

Furthermore, different sets of parameters, corresponding to different levels
of sparsity, were tested:

3The dataset is available at https://archive.ics.uci.edu/ml/datasets/Wine+

Quality.

23



• for K-PCA SOM, the only parameter to set was the dimension of the
projection, p. This parameter was chosen with respect to a minimal
ratio of entropy preserved in the projection and this ratio itself was
varied in {20%, 40%, 60%, 80%};

• for the direct sparse K-SOM, two parameters had to be set: the first
one is the mass parameter ν which was varied in {90%, 99%} for the
two smallest datasets (“lesmis” and “astraptes”) and in {95%, 99%} for
the three largest datasets (“polblogs”, “cowrie” and “wines”) to ensure
sparse results. The second parameter calibrated the update instants:
random ascending updates were performed with κ ∈ {1, 50} for both
datasets.

Tables 1-5 provide the results obtained over 100 maps (mean and standard
deviation) for different quality criteria. For the smallest datasets, we focused
on providing many different measures of the quality of the resulting map,
as compared to the one obtained by the standard K-SOM: normalized QE,
ICI, TE and modularity (“lesmis”) or NMI (“astraptes”), as described in
Section 6.1, are given and the last column of the results provides the final
dimension of the prototypes (either the exact dimension for K-PCA SOM or
the average over all prototypes for the sparse K-SOM). The computational
time is not reported because, for these small datasets, it is not relevant.

For the three largest datasets, the computational time is reported but the
results are less exhaustive on quality criteria (only the most important ones
are reported: ICI, TE, modularity/NMI and stability). Also, for K-PCA
SOM, only the clustering time is given. The computational time for the K-
PCA itself is ∼2.59 seconds for “polblogs”, ∼3.73 seconds for “cowrie” and
∼5.65 seconds for “wines”, which is less than the computational time needed
to train the map in all cases.

6.2.3. Discussion on the comparison

Results demonstrate a high efficiency of both the DR method and the
sparse approach to decrease data dimensionality while producing accurate
results in a reasonable computational time. For almost all quality crite-
ria, both approaches introduced in the manuscript are in the range of or
outperform the results obtained with the direct K-SOM at a very reduced
computational time and a limited dimensionality of the resulting prototypes.

More specifically, QE is always better for K-PCA SOM with the smallest
dimensionality. However, this is merely an effect of the dimensionality of

24



Table 1: Performance results of K-PCA SOM and sparse K-SOM (average over 100 maps
and standard deviation between parenthesis) for the “lesmis” dataset. Parameters for the
methods are given between parenthesis after the method name (% of entropy preserved
in the projection for K-PCA SOM and maximum mass, ν, and update parameter, κ, for
random ascending updates in sparse K-SOM).

Methods QE (×100) ICI (×100) TE (%) Modularity (×100) Stability (%) Dimension

K-SOM 23.40 (0.44) 47.57 (2.53) 3.01 (2.52) 31.76 (2.80) 85.04 (2.13) 77

K-PCA (80%) 18.30 (0.46) 47.31 (2.51) 3.30 (3.01) 32.02 (3.27) 86.20 (2.21) 27

K-PCA (60%) 10.32 (0.55) 48.09 (2.41) 3.36 (3.65) 32.17 (2.63) 89.56 (2.17) 11

K-PCA (40%) 2.55 (0.25) 52.62 (2.42) 2.64 (3.30) 25.96 (1.77) 91.85 (2.08) 4

K-PCA (20%) 0.92 (0.18) 52.35 (2.21) 2.83 (3.32) 24.53 (1.92) 92.68 (2.02) 2

sparse (90%, 1) 29.34 (1.20) 48.80 (2.88) 9.64 (7.00) 31.44 (4.09) 77.72 (2.94) 4

sparse (90%, 50) 23.25 (5.61) 46.63 (2.70) 4.45 (3.62) 30.96 (3.03) 83.64 (2.34) 8

sparse (99%, 1) 23.36 (4.06) 46.63 (2.71) 3.25 (2.85) 31.40 (3.03) 84.64 (2.18) 13

sparse (99%, 50) 23.40 (4.49) 47.07 (2.57) 3.31 (2.72) 31.74 (3.41) 84.99 (2.35) 15

Table 2: Performance results of K-PCA SOM and sparse K-SOM (average over 100 maps
and standard deviation between parenthesis) for the “astraptes” dataset. Parameters for
the methods are given between parenthesis after the method name (% of entropy preserved
in the projection for K-PCA SOM and maximum mass, ν, and update parameter, κ, for
random ascending updates in sparse K-SOM).

Methods QE (×100) ICI (×104) TE (%) NMI (%) Stability (%) Dimension

K-SOM 1.02 (0.06) 3.37 (0.43) 1.39 (1.99) 82.19 (0.59) 94.57 (0.88) 459

K-PCA (80%) 0.21 (0.02) 4.34 (0.70) 1.79 (2.20) 90.73 (2.86) 95.20 (1.05) 5

K-PCA (60%) 0.10 (0.01) 6.40 (1.42) 2.71 (2.64) 80.99 (0.67) 94.73 (0.96) 3

K-PCA (40%) 0.06 (0.01) 9.33 (1.52) 2.64 (2.27) 79.14 (0.59) 94.49 (0.95) 2

K-PCA (20%) 0.01 (0.00) 23.15 (2.06) 24.55 (8.84) 73.02 (0.61) 94.70 (0.85) 1

sparse (90%, 1) 2.08 (1.46) 3.59 (8.97) 2.94 (3.09) 86.34 (1.24) 91.87 (1.40) 5

sparse (90%, 50) 0.99 (0.10) 3.08 (5.70) 3.72 (4.16) 82.60 (0.66) 93.62 (0.86) 8

sparse (99%, 1) 0.98 (0.05) 3.30 (4.90) 1.51 (2.54) 82.22 (0.58) 94.66 (0.84) 25

sparse (99%, 50) 20.99 (0.06) 3.38 (4.55) 1.39 (1.63) 82.16 (0.59) 94.73 (0.77) 25

the input data and is not a reliable criterion to compare results. ICI is a
better way to measure the cluster homogeneity and shows that in almost
all cases, K-PCA SOM and sparse K-SOM have comparable or even better

25



Table 3: Performance results of K-PCA SOM and sparse K-SOM (average over 100 maps
and standard deviation between parenthesis) for the “polblogs” dataset. Parameters for
the methods are given between parenthesis after the method name (% of entropy preserved
in the projection for K-PCA SOM and maximum mass, ν, and update parameter, κ, for
random ascending updates in sparse K-SOM).

Methods ICI (×100) TE (%) NMI (%) Stability (%) CPU time Dimension

K-SOM 84.01 (0.85) 21.93 (1.51) 20.56 (0.30) 64.81 (0.73) 18269 (2378) 1599

K-PCA (80%) 86.39 (0.84) 14.01 (1.42) 20.93 (0.27) 69.68 (0.79) 27.60 (4.45) 257

K-PCA (60%) 86.61 (0.77) 14.87 (1.35) 20.96 (0.26) 70.62 (0.82) 18.88 (2.12) 121

K-PCA (40%) 89.35 (2.28) 13.56 (2.12) 21.14 (0.32) 60.27 (1.73) 16.55 (2.45) 50

K-PCA (20%) 91.46 (0.87) 12.06 (1.51) 21.30 (0.25) 77.19 (0.77) 13.35 (2.35) 13

sparse (95%, 1) 85.20 (1.40) 34.03 (2.80) 20.64 (0.41) 55.14 (0.41) 60.13 (2.50) 8

sparse (95%, 50) 84.00 (0.89) 32.61 (2.31) 20.66 (0.32) 60.39 (0.32) 67.89 (7.86) 12

sparse (99%, 1) 84.18 (0.75) 23.95 (1.66) 20.46 (0.30) 63.98 (0.30) 88.19 (5.30) 34

sparse (99%, 50) 84.06 (0.76) 24.15 (1.62) 20.51 (0.30) 64.30 (0.30) 96.73 (6.75) 34

Table 4: Performance results of K-PCA SOM and sparse K-SOM (average over 100 maps
and standard deviation between parenthesis) for the “cowrie” dataset. Parameters for the
methods are given between parenthesis after the method name (% of entropy preserved
in the projection for K-PCA SOM and maximum mass, ν, and update parameter, κ, for
random ascending updates in sparse K-SOM).

Methods ICI (×100) TE (%) NMI (%) Stability (%) CPU time Dimension

K-SOM 2.07 (0.24) 1.57 (1.29) 90.45 (0.86) 94.79 (1.04) 3771 (1534) 1414

K-PCA (80%) 2.05 (0.19) 1.92 (1.39) 90.26 (0.73) 94.55 (0.89) 16.68 (1.45) 23

K-PCA (60%) 1.94 (0.21) 2.33 (1.33) 89.11 (0.81) 94.04 (0.80) 15.19 (1.31) 10

K-PCA (40%) 3.15 (0.30) 3.85 (1.96) 85.72 (0.80) 90.49 (0.93) 15.35 (2.41) 4

K-PCA (20%) 6.26 (0.28) 5.11 (2.18) 74.47 (0.48) 87.99 (1.17) 15.04 (2.27) 2

sparse (95%, 1) 2.09 (0.26) 2.04 (1.31) 89.64 (0.97) 91.78 (1.18) 70.03 (1.23) 8

sparse (95%, 50) 1.84 (0.20) 2.38 (1.82) 90.37 (0.70) 93.78 (0.92) 62.66 (3.27) 13

sparse (99%, 1) 20.36 (0.22) 1.55 (1.36) 90.34 (0.79) 94.45 (0.91) 90.73 (4.16) 37

sparse (99%, 50) 20.00 (0.22) 1.54 (1.24) 90.37 (0.79) 94.50 (0.93) 81.14 (2.89) 37

ICI than the original approach (standard K-SOM) with a slight advantage
for sparse K-SOM. Only, sparse K-SOM with the “wines” dataset exhibits a
poor performance for this criterion.

26



Table 5: Performance results of K-PCA SOM and sparse K-SOM (average over 100 maps
and standard deviation between parenthesis) for the “wines” dataset. Parameters for the
methods are given between parenthesis after the method name (% of entropy preserved
in the projection for K-PCA SOM and maximum mass, ν, and update parameter, κ, for
random ascending updates in sparse K-SOM).

Methods ICI (×100) TE (%) NMI (%) Stability (%) CPU time Dimension

K-SOM 22.10 (0.50) 10.37 (1.34) 11.86 (0.31) 74.23 (0.81) 13480 (10575) 1222

K-PCA (80%) 21.94 (0.51) 10.15 (1.31) 11.78 (0.30) 74.96 (0.77) 20.00 (3.29) 28

K-PCA (60%) 22.43 (0.61) 8.80 (1.30) 11.72 (0.34) 75.37 (0.88) 17.95 (1.74) 9

K-PCA (40%) 25.44 (0.74) 7.08 (1.33) 11.86 (0.26) 77.65 (0.88) 17.32 (2.33) 4

K-PCA (20%) 34.99 (0.36) 0.13 (0.72) 11.01 (0.23) 85.75 (1.68) 15.99 (1.88) 2

sparse (95%, 1) 47.62 (1.46) 14.29 (1.35) 11.75 (0.36) 66.21 (0.79) 81.48 (5.02) 8

sparse (95%, 50) 45.90 (1.08) 11.95 (1.39) 11.76 (0.38) 70.72 (0.77) 97.60 (14.28) 13

sparse (99%, 1) 44.14 (0.95) 11.26 (1.36) 11.80 (0.30) 74.00 (0.73) 141.17 (12.28) 40

sparse (99%, 50) 44.17 (0.93) 11.58 (1.24) 11.83 (0.32) 74.13 (0.77) 146.93 (14.98) 39

The quality of the organization of the map is measured with TE, which
is often very comparable in both approaches to the direct K-SOM. However,
it is again poor for the sparse K-SOM applied to the “wines” dataset and
frequently tends to increase when ICI decreases. A good compromise between
ICI and TE is reached for K-PCA SOM with an preserved entropy rate of
60% and for sparse K-SOM with ν equal to 90%/95% and κ equal to 50 for
all datasets.

When comparing the different results with the a priori external infor-
mation (through modularity or NMI), again the proposed approaches are
comparable to or even better than the direct sparse K-SOM. However, in
some cases (“lesmis”, “astraptes”, “cowrie”), it tends to highly deteriorate
when the dimensionality is decreasing. This shows that a good tradeoff has
to be found between interpretability (small dimensionality) and preservation
of most of the information from the original dataset.

Finally, the stability of the results is often increased by K-PCA SOM
(except for the “cowrie” dataset). This is an expected behavior: since the
dimensionality of the input dataset is reduced, the prototypes lies in a re-
duced dimensionality space with less degrees of freedom. On the contrary,
sparse K-SOM is not as appealing for this criterion because, even if the proto-
type representation is constrained, it is expressed in the original data space,

27



which has a high dimension.
These good performance of our approaches come along with a high compu-

tational efficiency: K-PCA SOM and sparse K-SOM allows to highly reduce
the computational times. Even if the K-PCA itself is a problem with a high
complexity, it does not affect much the efficiency of K-PCA SOM on large
datasets with a few thousands observations. The reason is that relational
SOM is itself a time consuming algorithm, as explained in the introduction
of this article. For a more challenging dataset (with more than ten thousands
observations), a comparison and discussion is provided in Section 6.3.

In conclusion, both approaches introduced in this article are valid alter-
native to the direct K-SOM for large relational datasets. They both provide
simplified prototype representation at a very reduced computational time.
The dimensionality of the final prototypes is in all our examples 10 times or
even 100 times smaller than in the direct sparse SOM version with no loss in
accuracy of the resulting map. However, it should be noted that the easiness
to interpret the prototypes is not exactly equivalent in K-PCA SOM and in
sparse K-SOM: in the first approach, prototypes are expressed on the axes of
the K-PCA which have to be interpreted in a previous step of the analysis,
whereas, in sparse K-SOM, they are directly related to (a few number of)
original observations. A detailed study is then presented in Sections 6.3.2
and 6.3.3.

6.2.4. Comparison with other approaches

In this section, the datasets “lesmis” and “astraptes” presented in Sec-
tion 6.2.1 are used to compare the sparse approach to the simple numerical
heuristic approximation (denoted N -num) and the simple geometric heuristic
approximation (denoted N -geom) described in Section 4.2. Both strategies
lead to a fixed number of observations for representing all the prototypes.
Thus, for a fair comparison, this number was chosen considering the average
final dimensionality of the prototypes obtained with the sparse method (last
column in Tables 1 and 2). The random ascending updates are performed
using the same setting than in the original sparse version (i.e., random as-
cending updates κ ∈ {1, 50}).

Results obtained with N -num and N -geom over 100 maps are provided
in Table 6 for “lesmis” and in Table 7 for “astraptes”. In average, for both
datasets, N -num gives better results than N -geom. As observed with the
sparse method, both N -num and N -geom obtain best results with a final
dimension equal to 8 for “lesmis”. For all quality criteria except for the ICI,

28



Table 6: Comparison between the different variants for the sparse updates (average over
100 maps and standard deviation between parenthesis) for the “lesmis” dataset. Param-
eters for the methods are given between parenthesis after the method name (maximum
mass, ν, and update parameter, κ, for random ascending updates).

Methods QE (×100) ICI (×100) TE (%) Modularity (×100) Stability (%)

N -num (4, 1) 31.36 (1.66) 50.12 (3.16) 20.72 (9.37) 31.13 (4.23) 75.31 (3.49)

N -num (8, 50) 23.35 (0.53) 46.89 (2.60) 4.71 (3.36) 31.39 (3.14) 83.62 (2.20)

N -num (13, 1) 23.45 (0.45) 46.99 (2.55) 3.38 (2.99) 31.85 (3.07) 84.85 (2.32)

N -num (15, 50) 23.40 (0.44) 47.04 (2.28) 3.21 (2.44) 31.92 (3.20) 84.41 (2.41)

N -geom (4, 1) 35.09 (3.31) 51.56 (4.95) 22.31 (12.91) 25.90 (3.45) 72.14 (4.93)

N -geom (8, 50) 23.76 (0.81) 45.00 (2.66) 7.49 (4.90) 24.40 (3.06) 81.06 (2.47)

N -geom (13, 1) 25.32 (1.37) 46.26 (2.39) 5.48 (4.08) 27.27 (2.54) 82.10 (2.40)

N -geom (15, 50) 23.28 (0.53) 46.45 (2.56) 4.77 (3.60) 29.12 (2.89) 83.43 (2.14)

Table 7: Comparison between the different variants for the sparse updates (average over
100 maps and standard deviation between parenthesis) for the “astraptes” dataset. Pa-
rameters for the methods are given between parenthesis after the method name (maximum
mass, ν, and update parameter, κ, for random ascending updates).

Methods QE (×100) ICI (×104) TE (%) NMI (%) Stability (%)

N -num (5, 1) 3.27 (0.82) 3.80 (0.90) 6.56 (5.47) 88.08 (1.56) 90.88 (1.98)

N -num (8, 50) 1.25 (0.13) 3.28 (0.62) 2.88 (3.33) 83.51 (0.79) 93.14 (0.98)

N -num (25, 1) 1.01 (0.72) 3.36 (0.49) 1.99 (2.80) 82.20 (0.65) 94.42 (0.90)

N -num (25, 50) 1.00 (0.07) 3.34 (0.48) 1.71 (2.37) 82.10 (0.59) 94.44 (0.82)

N -geom (5, 1) 28.44 (12.16) 27.08 (11.37) 35.95 (14.65) 77.44 (6.99) 75.30 (6.72)

N -geom (8, 50) 2.23 (1.36) 5.82 (1.13) 11.45 (6.99) 83.77 (1.22) 92.71 (1.21)

N -geom (25, 1) 29.86 (7.45) 20.12 (7.96) 22.00 (9.73) 81.47 (2.51) 88.51 (2.90)

N -geom (25, 50) 1.74 (0.96) 5.01 (0.79) 8.72 (5.93) 83.19 (0.79) 93.84 (1.08)

our variant of the sparse updates slightly improves the heuristic approxima-
tion approaches. This conclusion is supported by the results on “astraptes”,
except that N -num gives a better classification than our variant of the sparse
updates.

For the same level of sparsity, the results obtained with both N -num
and N -geom slightly deteriorate the map quality compared to what can be
observed with our version of the sparse updates.

29



6.3. Using K-PCA SOM and sparse K-SOM for mining job trajectories

This section presents the experiments performed on a more realistic
dataset, with a larger sample size, obtained from the survey “Generation 98”
[11, 57]. The dataset contains information on career paths of 16,040 young
people monitored during 94 months after having graduated in 1998. Nine
categories are used to describe labor market statuses: permanent-labor con-
tract, fixed-term contract, apprenticeship contract, public temporary-labor
contract, on-call contract, unemployed, inactive, military service, education.
Dissimilarities between career trajectories were computed using the optimal
matching [58, 7] on the 12,560 unique career paths. This resulted in a non
positive dissimilarity (6,651 eigenvalues out of 12 500 were found positive).

To assess the accuracy and the computational cost of both K-PCA SOM
and sparse SOM, 100 maps were trained, using an R implementation of
the methods, on the same 40-nodes computer without concurrent access.
All maps were trained for a 10 × 10 grid, equipped with a piecewise linear
neighborhood, with 60,000 iterations. The entropy ratio preserved by K-
PCA SOM was varied in {20%, 40%, 60%, 80%}. For sparse K-SOM, the
mass parameter ν was varied in {95%, 99%} and the update parameter κ
was varied in {1, 50}. Only 10 maps were trained using the standard K-
SOM due to its very high computational cost (more than ten days for each
map).

Table 8 presents the results obtained in terms of QE, ICI, TE and CPU
time (only the clustering time is reported, the K-PCA computational time
is ∼8, 000 seconds. A detailed study to address this issue is made in Sec-
tion 6.3.4). The last column provides the final dimension or number of coef-
ficients of the prototypes.

As observed in Section 6.2.3, results demonstrate a high efficiency, in
term of computational cost, of both K-PCA SOM and sparse K-SOM, while
producing accurate results. Direct K-SOM takes more than ten days to train
one map, whereas the slowest alternative strategy only requires sixteen min-
utes (i.e., the sparse K-SOM with ν = 99% and κ = 1). The results also
confirm what was found with the toy datasets: K-PCA SOM provides a good
trade-off between a good map quality and low dimensional prototypes and
outperforms sparse K-SOM. The best results for K-PCA SOM are obtained
with 20% entropy-rate preserved. However, this strategy selects only two
dimensions, which increases the redundancy in the data and tends to pro-
duce clusters with few observations. Thus, the K-PCA SOM preserving 40%

30



Table 8: Performance results of K-PCA SOM and sparse K-SOM (average over 100 maps
and standard deviation between parenthesis) for the “trajectories” dataset. Parameters for
the methods are given between parenthesis after the method name (% of entropy preserved
in the projection for K-PCA SOM and maximum mass, ν, and update parameter, κ, for
random ascending updates in sparse K-SOM).

Methods QE (×100) ICI TE (%) CPU time Stability (%) Dimension

K-SOM 20.99 (0.12) 23.94 (0.24) 7.91 (0.66) 949582 (1 373) 77.65 (3.66) 12 500

K-PCA (80%) 23.49 (0.10) 24.07 (0.31) 8.27 (0.92) 251 (78) 75.81 (1.82) 392

K-PCA (60%) 15.36 (0.12) 24.32 (0.32) 8.57 (0.77) 136 (44) 75.72 (1.95) 44

K-PCA (40%) 5.61 (0.09) 26.26 (0.37) 6.98 (0.75) 114 (40) 77.13 (3.24) 8

K-PCA (20%) 0.37 (0.00) 31.92 (0.95) 0.82 (0.86) 112 (33) 86.31 (5.69) 2

sparse (95%, 1) 32.40 (0.74) 28.66 (1.36) 30.86 (6.88) 378 (3) 55.79 (1.37) 14

sparse (95%, 50) 25.36 (0.35) 26.57 (0.59) 11.15 (1.86) 655 (32) 63.64 (0.88) 14

sparse (99%, 1) 25.11 (0.17) 27.09 (0.46) 5.26 (0.72) 1025 (194) 68.08 (1.25) 50

sparse (99%, 50) 26.76 (0.36) 27.36 (0.71) 31.59 (4.53) 381 (28) 59.81 (0.90) 8

entropy should be preferred. The best results for the sparse K-SOM are
obtained with a mass equal to 95%.

Both K-PCA SOM and sparse K-SOM provide accurate results in a rea-
sonable computational time. For sparse K-SOM, prototypes can be inter-
preted by inspecting the properties of the few observations used to represent
them. For K-PCA SOM, the projection of the data on a subspace requires
to interpret the axes of the K-PCA as an extra step in order to understand
the meaning of the prototypes. A detailed study showing how the results of
both approaches can be interpreted is performed in Sections 6.3.2 and 6.3.3.

6.3.1. Analysis of the influence of the prototype size

The job trajectory dataset was further used to assess the influence of the
size of the prototypes on different characteristics. More precisely, we con-
ducted an experiment to analyze the relation between the dimension of the
projection (in K-PCA SOM) or the average number of coefficients per proto-
type (in sparse K-SOM) and some numerical characteristics of the algorithm:
ICI, TE, CPU time and stability. A larger set of parameters, corresponding
to varying dimensions of the prototypes, were tested by training 20 maps
with each value of the parameters:

• for K-PCA SOM, the number of dimensions used for the projection

31



Figure 1: K-PCA SOM. Average performances over 20 maps (ICI, TE, computational
time in seconds and stability as measured by NMI) versus the dimensionality. Error bars

correspond to the standard error standard deviation√
20

.

was varied in {5, 10, 15, 20, 25, 50, 75, 100, 250, 500, 1000, 5000}. Fig-
ure 1 displays the evolution of different numerical characteristics of
the maps versus the projection dimension;

• for sparse K-SOM, following the results given in Table 8, we set the
random ascending update parameter κ to 1 and varied the maximum
mass, ν in {0.9, 0.95, 0.975, 0.99, 0.995}. Figure 2 provides the evolu-
tion of different numerical characteristics of the maps versus the average
number of coefficients per prototype.

For K-PCA SOM, up to approximately 50 (over a maximum of 12, 500),
the dimension seems to have only a very limited effect on the quality of the
map. All quality criteria stabilize after this value, with a slight tendency to
improve and then to deteriorate again for very high dimensions. A strong
computational time benefit can be observed when decreasing the dimension-
ality below 1, 000: this is a direct consequence of the quadratic complexity
of K-SOM.

For sparse K-SOM, all characteristics, except for CPU time, tend to im-
prove when the number of coefficients increases. However, TE seems to sta-

32



Figure 2: Sparse K-SOM. Average performances over 20 maps (ICI, TE, computational
time in seconds and stability as measured by NMI) versus the average sparsity (average
number of coefficients per prototypes) for different values of ν. Error bars correspond to

the standard error standard deviation√
20

.

bilize for approximately 50 coefficients per prototypes (ν = 0.99). However,
since the computational time is not reduced from the same amount than
in K-PCA SOM, testing the value of ν is not a good strategy. Moreover,
ν = 0.995 gives prototypes with approximately 80 coefficients, which must
not be increased to preserve interpretability.

6.3.2. Interpretability of K-PCA SOM

In this section, the map with the lowest ICI, among the 100 generated by
the K-PCA SOM with 40% preserved entropy rate, is used to show how
the results of K-PCA SOM can be interpreted, despite the K-PCA pre-
processing. Its performances are equal to 5.74 (QE), 25.42 (ICI) and 7.66
(TE). The projection of the data on a subspace requires to interpret the K-
PCA axes first. Figure 3 (left) presents the entropy supported by the first
15 axes and shows that the first two axes are enough to provide relevant
information on the data. Figure 3 (right) displays the projections of the ob-
servations on the first two principal axes. The first axis represents 16.90%
of the total entropy and opposes permanent-labor and fixed term contracts.
This is supported by Figure 4 which shows the distribution of the 25 career

33



paths with the smallest and the highest coordinates on the first two axes
of the K-PCA. Stable job trajectories have the smallest coordinates on the
first axis when fixed-term contract or unemployed have the highest. Fig-
ure 3 (right) also demonstrates that the second axis separates two kinds of
precarious situations. Fixed-term contracts are opposed to highly precari-
ous contracts such as unemployment, inactivity, on-call contract and public
temporary-labor contract. The same observations can be made regarding the
first 25 career paths with the smallest and highest coordinates on the second
K-PCA axis, as shown in Figure 4.

The distribution of the job trajectories within each neuron of the map is
represented in Figure 5. First note that the presented map is comparable
in term of topology to the one described in [18]. Different typologies can
be highlighted: a fast access to permanent contracts (clear blue) on the
bottom-left corner of the map, a transition through fixed-term contracts
before obtaining stable ones (dark and then clear blue) on the map top-left
corner, temporary jobs (dark blue) on the top-middle neurons, a long period
of inactivity (yellow) or unemployment (red) on the map bottom-right corner.

The map organization is in accordance with the axis interpretation. Fig-
ure 6 (top) displays the average coordinates on the first and second axes in
every cluster of the map. Results show a gradient of the observation coordi-
nates on the first K-PCA axis between the bottom-left and the right side of
the map. This gradient can also be seen on the map shown in Figure 5 and
on the heatmaps presented on Figure 6 (bottom) which represent the cluster
average of the career path modes4. This confirms that the first principal
component (and corresponding diagonal on the map) separates permanent
contracts from instable career paths. In Figure 6 (top), a gradient can also be
observed for the second K-PCA axis between the top-left, where trajectories
correspond to a fast access to permanent-labor contracts and the bottom-
left corner of the map, where trajectories pertaining to precarious jobs are
gathered.

6.3.3. Interpretability of sparse K-SOM

Similarly to the previous section, the present section provides a short
discussion about one of the final results obtained from sparse K-SOM. The

4To compute mode averages, job market contracts have been converted to numerical
labels from 1, for the permanent-labor contract, to 9 for education.

34



Figure 3: Entropy preserved by the 15 first axes on the left and projection of the obser-
vations on the first two principal components on the right. Colors represent the contract
that appears the most often (mode) in the trajectory.

smallest coordinates (PC1) highest coordinates (PC1)

smallest coordinates (PC2) highest coordinates (PC2)

Figure 4: Distribution of the 25 career paths with smallest and highest coordinates on the
first two axes of the K-PCA.

selected map is again the one with the smallest ICI among all maps obtained
with ν = 95% and κ = 50. It gives better performances in term of ICI (24.87)
than K-PCA SOM but QE (25.27) and TE (10.8) are increased.

The resulting distribution of the job trajectories within the clusters of
the map is provided in Figure 7. This distribution is fairly similar to the one
obtained in Section 6.3.2: the left hand side of the map corresponds to a fast
access to permanent contracts whereas the right hand side corresponds to

35



Figure 5: K-PCA SOM. For each neuron of the map, job trajectories distribution is
represented using the observations classified in the corresponding unit. Colors represent
the type of contract.

different types of precarious situations. Two main differences can be high-
lighted: first, the class are more homogeneous in sparse K-SOM, especially
at the border of the map. This is a direct effect of the dimension reduction
in K-PCA SOM: since the dimension reduction increases redundancy in the
dataset, some clusters (mostly located at the borders of the map) contain
more observations and are thus less homogeneous. Second, the precarious
situations (on the right hand side of the map) are organized a bit differently
(with on-call contracts in the middle or the bottom of the map). However,
both representations are realistic, with most of the clusters in the map being
homogeneous.

A similar representation is provided in Figure 8 (left) but restricted to the
observations which are involved in the prototype definition. The right part
of this figure displays the number of such observations. Two conclusions can
be derived from these graphics: the first one is that the observations involved
in the prototype definition have a distribution very similar to the distribu-
tion of the entire set of observations included in the corresponding cluster.
They are thus a selected subset of observations representative of their cluster.
Moreover, as their number is very restricted compared to the total number
of observations included in a cluster (approximately 14/15 observations as

36



Figure 6: K-PCA SOM. Representation of the SOM map with neurons filled using colors
according to the average coordinate of the observations for the first (on the top-left) and
the second (on the top-right) principal component. On the bottom, the map neurons are
filled using colors according to the average of the career path modes.

shown in the left part of Figure 8), they are a convenient way for the user
to make sense of the prototypes and thus, of the corresponding cluster, since
an exhaustive inspection of these observations becomes possible.

6.3.4. Nyström approximation

To evaluate the relevance of using a Nyström approximation of the K-
PCA, the K-PCA SOM with 40% preserved entropy rate is used as a ref-
erence. Table 9 presents K-PCA SOM results using a Nyström approxima-
tion with different rates of observations sampled to perform the approxi-
mation. This rate was varied in {100%, 25%, 10%, 5%, 1%}, in which the
100%-results are reported from Table 8. The coefficients given to the K-PCA
SOM are restricted to the first eight K-PCA axes everywhere, to avoid any
bias related to data dimensionality. The computational time is reported in
Table 9 and gives the time needed to perform the K-PCA only, excluding the
training and clustering times.

37



Figure 7: Sparse K-SOM. For each neuron of the map, job trajectories distribution is
represented using the observations classified in the corresponding unit. Colors represent
the type of contract.

Figure 8: Sparse K-SOM. For each neuron of the map, job trajectories distribution
for the observations with a positive coefficients for the corresponding neuron (left) and
number of such observations (right).

Results demonstrate a high efficiency in terms of computational time of
the Nyström approximation while producing accurate results. In fact, none
of the tested values lead to deteriorate the map quality in term of QE, ICI
and TE, while the K-PCA is ∼ 1000 times faster when using 10% of obser-
vations. The best ICI is even obtained using only 1% of the observations.
The clustering stability decreases with the number of observations used by

38



the Nyström approximation, even if the stability is still high when using at
least 10% of the observations.

The maps with the smallest ICI among the 100 maps generated from a
Nyström approximation using 1% and 5% of the observations are displayed in
Figure 9. Results show the ability of the Nyström approximation to preserve
a realistic representation of the dataset while reducing the computational
time.

The map obtained with 5% of the observations shows an organization
similar to the one presented in Section 6.3.2, except for one fact: precarious
situations, located on the right side of the map, are organized differently.
Unemployment and public temporary-labor contracts are inverted between
the top and the bottom of the map. With a Nyström approximation using
1% of the observations, trajectories mostly containing fixed-term contracts
are located on the right hand side of the map, what is not observed on
the map obtained with 5% of the observations and on maps presented in
Section 6.3.2 and in Section 6.3.3. As expected, clusters obtained using 1%
of the observations are less homogeneous than those obtained with 5%. The
differences between these two maps might have different causes. Firstly, the
instability of the SOM algorithm can explain the differences in terms of map
organization: different runs of the algorithm give different results. This is
particularly critical when the dataset to be analyzed is high dimensional as
can be the “Generation 98” survey (even with a subsampling rate of 1%,
the dimensionality of the problem is still larger than 100). This issue could
be addressed by aggregating strategies, as described in [59]. Secondly, the
differences between the two maps in Figure 9 might be explained by the high
redundancy of trajectories with fixed-term contracts in the dataset: a very
small subsampling might enforce the over-representation of these trajectories
and affect the result. Such a problem could be addressed by using more
efficient sampling techniques such as the ones described in [45].

The choice of the ratio m/n of observations to select in order to obtain
accurate results highly depends on the quality of the kernel approximation
provided by the Nyström technique. This quality is strongly influenced by
the rank of the kernel, which can not easily be obtained when n is very
large. Adaptative sampling technique for the Nyström algorithm, such as
the one described in [60, 61] are based on an unequal probability sampling,
which is performed iteratively and depends on the reconstruction error. [45]
proposes an improved version in which the full kernel is not even needed to
estimate the reconstruction error. Such methods could be relevant to assess

39



Figure 9: K-PCA SOM performed through a Nyström approximation using 1% (left) and
5% (right) of the observations: For each neuron of the map, job trajectories distribution
is represented using the observations classified in the corresponding unit. Colors represent
the type of contract.

Table 9: Performance results of the K-PCA SOM with K-PCA performed through a
Nyström approximation (average over 100 maps and standard deviations between paren-
thesis) for the “trajectories” dataset. After the method name and between parenthesis,
the percentage of observations used to perform the approximation is given.

Methods QE (×100) ICI TE (%) CPU time Stability (%)

K-PCA (100%) 5.61 (0.09) 26.26 (0.37) 6.98 (0.75) 8 153 (205) 77.13 (3.24)

K-PCA (25%) 5.62 (0.09) 26.11 (0.40) 7.12 (0.77) 101.38 (18.96) 75.84 (2.38)

K-PCA (10%) 5.62 (0.13) 26.13 (0.40) 7.00 (0.76) 7.39 (1.23) 74.68 (2.25)

K-PCA (5%) 5.64 (0.15) 26.05 (0.45) 7.11 (0.92) 0.86 (0.38) 73.10 (1.72)

K-PCA (1%) 5.65 (0.18) 25.99 (0.47) 7.02 (1.02) 0.02 (0.01) 69.32 (1.26)

the evolution of the quality reconstruction in a growing sample and to stop
the Nyström sampling when this quality is considered good enough.

7. Conclusion

The contributions of the present manuscript to the analysis of
(dis)similarity data with topographic maps are twofolds: firstly, we have
proposed a new version of the kernel and relational SOM algorithms, called
sparse K-SOM, which ensures a sparse representation of the prototypes. Sec-
ondly, this approach has been compared to a preprocessing of the data by a
dimension-reduction technique (K-PCA). We have also investigating the use

40



of a Nyström approximation technique to ensure a better scalability of the
method.

The experiments performed on several real datasets showed that both
presented methods allow to strongly decrease the overall computational time
on large datasets. The interpretability of the results is also improved since
the prototypes have a much lower dimensionality. Moreover, the accuracy of
the final map, in terms of cluster homogeneity, quality of the organization or
adequacy to external a priori information is not deteriorated.

In average, K-PCA SOM gives better results in term of map and clustering
quality than the sparse approach. However, prototypes returned by sparse
K-SOM can be directly interpreted by inspecting the properties of the few
observations used to represent them. In K-PCA SOM, the axes of the K-
PCA have to be interpreted as an extra step to understand the prototypes
meaning: this step is fairly standard in K-PCA. In conclusion, when selecting
one or the other method, the user should also consider his/her need to easily
interpret the result.

With the introduction of these methods, a further step is taken in allowing
relational SOM to deal with massive data sets. Future works should investi-
gate the multiple relational SOM, presented in [18], with a view to integrate
several sources of data of different types, while preserving the interpretability
of the results.

8. Acknowledgements

We thank the two anonymous reviewers and the editor for valuable com-
ments and suggestions which helped to improve the quality of the paper. Part
of this work was carried out using the resources from the INRA GENOTOUL
bioinformatic platform http://bioinfo.genotoul.fr. We are grateful to
the platform staff and especially to Marie-Stéphane Trotard and Didier La-
borie.

References

[1] T. Kohonen, Self-Organizing Maps, 3rd Edition, Vol. 30, Springer,
Berlin, Heidelberg, New York, 2001.

[2] B. Penn, Using self-organizing maps to visualize high-dimensional data,
Computers & Geosciences 31 (5) (2005) 531–544.

41



[3] M. Pölzlbauer, M. Dittenbach, A. Rauber, Advanced visualization of
self-organizing maps with vector fields, Neural Networks 19 (6-7) (2006)
911–922, advances in Self Organising Maps - WSOM’05.

[4] P. Sarlin, S. Rönnqvist, Cluster coloring of the self-organizing map: an
information visualization perspective, in: 18th International Conference
on Information Visualisation, IEEE, London, UK, 2013, pp. 532–538.

[5] A. Neme, J. Pulido, M. noz A., S. Hernández, T. Dey, Stylistics analysis
and authorship attribution algorithms based on self-organizing maps,
Neurocomputing 147 (2015) 147–159, advances in Self-Organizing Maps
Subtitle of the special issue: Selected Papers from the Workshop on
Self-Organizing Maps 2012 (WSOM 2012).

[6] Z. Yu, H. Wong, J. You, G. Han, Visual query processing for efficient
image retrieval using a SOM-based filter-refinement scheme, Information
Science 203 (2012) 83–101.

[7] A. Abbott, J. Forrest, Optimal matching methods for historical se-
quences, Journal of Interdisciplinary History 16 (1986) 471–494.

[8] C. Elzinga, Sequence similarity: a nonaligning technique, Sociological
Methods and Research 32 (3-29).

[9] C. Lozupone, M. Hamady, S. Kelley, R. Knight, Quantitative and qual-
itative β eiversity measures lead to different insights into factors that
structure microbial communities, Applied and Environmental Microbi-
ology (2007) 1576–1585.

[10] Z. Yu, J. You, L. Li, H. Wong, G. Han, Representative distance: a new
similarity measure for class discovery from gene expression data, IEEE
Transactions on NanoBioscience 11 (4) (2012) 341–351.

[11] M. Cottrell, P. Letrémy, How to use the Kohonen algorithm to simul-
taneously analyse individuals in a survey, Neurocomputing 63 (2005)
193–207.

[12] T. Kohohen, P. Somervuo, Self-organizing maps of symbol strings, Neu-
rocomputing 21 (1998) 19–30.

42



[13] B. Conan-Guez, F. Rossi, A. El Golli, Fast algorithm and implemen-
tation of dissimilarity self-organizing maps, Neural Networks 19 (6-7)
(2006) 855–863.

[14] N. Aronszajn, Theory of reproducing kernels, Transactions of the Amer-
ican Mathematical Society 68 (3) (1950) 337–404.

[15] L. Goldfarb, A unified approach to pattern recognition, Pattern Recog-
nition 17 (5) (1984) 575–582.

[16] D. Mac Donald, C. Fyfe, The kernel self organising map., in: Proceed-
ings of 4th International Conference on knowledge-based Intelligence
Engineering Systems and Applied Technologies, 2000, pp. 317–320.

[17] R. Boulet, B. Jouve, F. Rossi, N. Villa, Batch kernel SOM and related
Laplacian methods for social network analysis, Neurocomputing 71 (7-9)
(2008) 1257–1273.

[18] M. Olteanu, N. Villa-Vialaneix, On-line relational and multiple rela-
tional SOM, Neurocomputing 147 (2015) 15–30.

[19] B. Hammer, A. Hasenfuss, Topographic mapping of large dissimilarity
data sets, Neural Computation 22 (9) (2010) 2229–2284.

[20] F. Rossi, How many dissimilarity/kernel self organizing map variants
do we need?, in: T. Villmann, F. Schleif, M. Kaden, M. Lange (Eds.),
Advances in Self-Organizing Maps and Learning Vector Quantization
(Proceedings of WSOM 2014), Vol. 295 of Advances in Intelligent Sys-
tems and Computing, Springer Verlag, Berlin, Heidelberg, Mittweida,
Germany, 2014, pp. 3–23.

[21] D. Hofmann, F. Schleif, B. Paaß en, B. Hammer, Learning interpretable
kernelized prototype-based models, Neurocomputing 141 (2014) 84–96.

[22] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, K. Olukotun, Map-
Reduce for machine learning on multicore, in: J. Lafferty, C. Williams,
J. Shawe-Taylor, R. Zemel, A. Culotta (Eds.), Advances in Neural In-
formation Processing Systems (NIPS 2010), Vol. 23, Hyatt Regency,
Vancouver, Canada, 2010, pp. 281–288.

43



[23] X. Chen, M. Xie, A split-and-conquer approach for analysis of extraor-
dinarily large data, Statistica Sinica 24 (2014) 1655–1684.

[24] S. del Rio, V. López, J. Beníıtez, F. Herrera, On the use of MapReduce
for imbalanced big data using random forest, Information Sciences 285
(2014) 112–137.

[25] M. Bǎdoiu, S. Har-Peled, P. Indyk, Approximate clustering via core-
sets, in: J. Reif (Ed.), Proceedings of the 34th annual ACM Symposium
on Theory of Computing, no. 250-257, ACM New York, NY, USA, Mon-
treal, QC, Canada, 2002.

[26] D. Yan, L. Huang, M. Jordan, Fast approximate spectral clustering, in:
J. Elder, F. Soulié-Fogelman, P. Flach, M. Zaki (Eds.), Proceedings of
the 15th ACM SIGKDD international Conference on Knowledge Discov-
ery and Data Mining, ACM New York, NY, USA, 2009, pp. 907–916.

[27] A. Kleiner, A. Talwalkar, P. Sarkar, M. Jordan, A scalable bootstrap for
massive data, Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 76 (4) (2014) 795–816.

[28] N. Laptev, K. Zeng, C. Zaniolo, Early accurate results for advanced
analytics on mapreduce, in: Proceedings of the 28th International Con-
ference on Very Large Data Bases, Vol. 5 of Proceedings of the VLDB
Endowment, Istanbul, Turkey, 2012.

[29] X. Meng, Scalable simple random sampling and stratified sampling, in:
Proceedings of the 30th International Conference on Machine Learning
(ICML 2013), Vol. 28 of JMLR: W&CP, Georgia, USA, 2013.

[30] A. Saffari, C. Leistner, J. Santner, M. Godec, H. Bischof, On-line ran-
dom forests, in: Proceedings of IEEE 12th International Conference
on Computer Vision Workshops (ICCV Workshops), IEEE, 2009, pp.
1393–1400.

[31] M. Denil, D. Matheson, N. de Freitas, Consistency of online random
forests, in: Proceedings of the 30th International Conference on Machine
Learning (ICML 2013), 2013, pp. 1256–1264.

[32] C. Williams, M. Seeger, Using the Nyström method to speed up kernel
machines, in: T. Leen, T. Dietterich, V. Tresp (Eds.), Advances in

44



Neural Information Processing Systems (Proceedings of NIPS 2000),
Vol. 13, Neural Information Processing Systems Foundation, Denver,
CO, USA, 2000.

[33] R. Hochking, The analysis and selection of variables in linear regression,
Biometrics.

[34] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal
of the Royal Statistical Society, series B 58 (1) (1996) 267–288.

[35] Z. Yu, P. Luo, J. You, H. S. Wong, H. Leung, S. Wu, J. Zhang, G. Han,
Incremental semi-supervised clustering ensemble for high dimensional
data clustering, IEEE Transactions on Knowledge and Data Engineering
28 (3) (2016) 701–714.

[36] J. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, Information
Science and Statistics, Springer, New York; London, 2007.

[37] C. Bouveyron, C. Brunet-Saumard, Model-based clustering of high-
dimensional data: a review, Computational Statistics & Data Analysis
71 (2014) 52–78.

[38] F. Rossi, A. Hasenfuss, B. Hammer, Accelerating relational clustering
algorithms with sparse prototype representation, in: Proceedings of the
6th Workshop on Self-Organizing Maps (WSOM 07), Neuroinformatics
Group, Bielefield University, Bielefield, Germany, 2007.

[39] D. Hofmann, A. Gisbrecht, B. Hammer, Efficient approximations of ro-
bust soft learning vector quantization for non-vectorial data, Neurocom-
puting 147 (2015) 96–106.

[40] A. Gisbrecht, B. Mokbel, B. Hammer, The Nyström approximation for
relational generative topographic mappings, in: NIPS workshop on chal-
lenges of Data Visualization, Whistler BC, Canada, 2010.

[41] X. Zhu, A. Gisbrecht, F. Schleif, B. Hammer, Approximation techniques
for clustering dissimilarity data, Neurocomputing 90 (2012) 72–84.

[42] A. Gisbrecht, A. Shultz, B. Hammer, Parametric nonlinear dimension-
nality reduction using kernel t-SNE, Neurocomputing 147 (2015) 71–82.

45



[43] J. Mariette, M. Olteanu, J. Boelaert, N. Villa-Vialaneix, Bagged kernel
SOM, in: T. Villmann, F. Schleif, M. Kaden, M. Lange (Eds.), Advances
in Self-Organizing Maps and Learning Vector Quantization (Proceedings
of WSOM 2014), Vol. 295 of Advances in Intelligent Systems and Com-
puting, Springer Verlag, Berlin, Heidelberg, Mittweida, Germany, 2014,
pp. 45–54.

[44] B. Schölkopf, A. Smola, K. Müller, Nonlinear component analysis as
a kernel eigenvalue problem, Neural Computation 10 (5) (1998) 1299–
1319.

[45] S. Kumar, M. Mohri, A. Talwalkar, Sampling techniques for the Nyström
method, Journal of Machine Learning Research 13 (2012) 981–1006.

[46] M. Olteanu, N. Villa-Vialaneix, Sparse online self-organizing maps for
large relational data, in: E. Merényi, M. Mendenhall, O. P. (Eds.),
Advances in Self-Organizing Maps and Learning Vector Quantization
(Proceedings of WSOM 2016), Vol. 428 of Advances in Intelligent Sys-
tems and Computing, Springer International Publishing Switzerland,
Houston, TX, USA, 2016, pp. 27–37.

[47] Y. Chen, E. Garcia, M. Gupta, A. Rahimi, L. Cazzanti, Similarity-based
classification: concepts and algorithm, Journal of Machine Learning Re-
search 10 (2009) 747–776.

[48] G. Pölzlbauer, Survey and comparison of quality measures for self-
organizing maps, in: J. Paralic, G. Polzlbauer, A. Rauber (Eds.), Pro-
ceedings of the Fifth Workshop on Data Analysis (WDA’04), Elfa Aca-
demic Press, Sliezsky dom, Vysoke Tatry, Slovakia, 2004, pp. 67–82.

[49] L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Comparing community
structure identification, Journal of Statistical Mechanics (2005) P09008.

[50] M. Newman, M. Girvan, Finding and evaluating community structure
in networks, Physical Review, E 69 (2004) 026113.

[51] J. Boelaert, L. Bendhäıba, M. Olteanu, N. Villa-Vialaneix, SOMbrero:
an r package for numeric and non-numeric self-organizing maps, in:
T. Villmann, F. Schleif, M. Kaden, M. Lange (Eds.), Advances in Self-
Organizing Maps and Learning Vector Quantization (Proceedings of

46



WSOM 2014), Vol. 295 of Advances in Intelligent Systems and Com-
puting, Springer Verlag, Berlin, Heidelberg, Mittweida, Germany, 2014,
pp. 219–228.

[52] P. Hebert, E. Penton, J. Burns, D. Janzen, W. Hallwachs, Ten species in
one: DNA barcoding reveals cryptic species in the neotropical skipper
butterfly astraptes fulgerator, Genetic Analysis 101 (41) (2004) 14812–
14817.

[53] M. Kimura, A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences, Jour-
nal of Molecular Evolution 16 (1980) 111–120.

[54] L. Adamic, N. Glance, The political blogosphere and the 2004 us elec-
tion: divided they blog, in: Proceedings of the 3rd LINKDD Workshop,
ACM Press, New York, NY, USA, 2005, pp. 36–43.

[55] C. Meyer, G. Paulay, DNA barcoding: error rates based on comprehen-
sive sampling, PLoS Biology 3 (12).

[56] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Modeling wine
preferences by data mining from physicochemical properties, Decision
Support Systems 47 (4) (2009) 547–553.

[57] E. Côme, M. Cottrell, P. Gaubert, Analysis of professional trajectories
using disconnected self-organizing maps, Neurocomputing 147 (2015)
185–196, advances in Self-Organizing Maps Subtitle of the special is-
sue: Selected Papers from the Workshop on Self-Organizing Maps 2012
(WSOM 2012).

[58] S. Needleman, C. Wunsch, A general method applicable to the search
for similarities in the amino acid sequence of two proteins, Journal of
Molecular Biology 48 (3) (1970) 443–453.

[59] J. Mariette, N. Villa-Vialaneix, Aggregating self-organizing maps with
topology preservation, in: E. Merényi, M. Mendenhall, O. P. (Eds.),
Advances in Self-Organizing Maps and Learning Vector Quantization
(Proceedings of WSOM 2016), Vol. 428 of Advances in Intelligent Sys-
tems and Computing, Springer International Publishing Switzerland,
Houston, TX, USA, 2016, pp. 27–37.

47



[60] P. Drineas, M. Mahoney, S. Muthukrishnan, Relative-error CUR matrix
decompositions, SIAM Journal on Matrix Analysis and Applications
30 (2) (2008) 844–881.

[61] A. Gittens, M. Mahoney, Revisiting the nystrom method for improved
large-scale machine learning, Journal of Machine Learning Research
28 (3) (2013) 567–575.

Appendix A. Formula for the average intra-cluster intertia

The intra cluster inertia is the average over u ∈ {1, . . . , U} of the quan-
tities

I(u) =
1

]Cu

∑
i:xi∈Cu

‖φ(xi)−GCu‖2

in which GCu = 1
]Cu

∑
i:xi∈Cu φ(xi) is the center of gravity of Cu.

Expansion for kernel data

For kernel data, this quantity equals

I(u) =
1

]Cu

∑
i:xi∈Cu

∥∥∥∥∥∥φ(xi)−
1

]Cu

∑
i′:xi′∈Cu

φ(xi′)

∥∥∥∥∥∥
2

=
1

]Cu

∑
i:xi∈Cu

‖φ(xi)‖2 − 2
1

]Cu

∑
i′:xi′∈Cu

〈φ(xi), φ(xi′)〉+

∥∥∥∥∥∥ 1

]Cu

∑
i′:xi′∈Cu

φ(xi′)

∥∥∥∥∥∥
2

=
1

]Cu

∑
i:xi∈Cu

K(xi, xi)− 2
1

(]Cu)2
∑

i,i′:xi,xi′∈Cu

K(xi, xi′) +
1

(]Cu)2
∑

i,i′:xi,xi′∈Cu

K(xi, xi′)

=
1

]Cu

∑
i:xi∈Cu

K(xi, xi)−
1

(]Cu)2
∑

i,i′:xi,xi′∈Cu

K(xi, xi′).

Expansion for dissimilarity data

Using the result of Equation (2) in [18], we get that

I(u) =
1

]Cu

∑
i:xi∈Cu

[
∆iνu −

1

2
νTu ∆νu

]
,

48



in which νu = 1
]Cu 1Cu where the entries of 1Cu are equal to 1 for indexes i′

such that xi′ ∈ Cu and to 0 otherwise. Thus

I(u) =
1

]Cu

∑
i,i′:xi,xi′∈Cu

1

]Cu
δ(xi, xi′)−

1

2(]Cu)2
∑

j,j′:xj ,xj′∈Cu

δ(xj, xj′)

=
1

2](Cu)2
∑

i,i′:xi,xi′∈Cu

δ(xi, xi′).

49


