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Abstract. We define an integer-valued non-degenerate bi-invariant metric (the discriminant met-
ric) on the universal cover of the identity component of the contactomorphism group of any contact
manifold. This metric has a very simple geometric definition, based on the notion of discriminant
points of contactomorphisms. Using generating functions we prove that the discriminant metric is
unbounded for the standard contact structures on R2n ⇥ S1 and RP 2n+1. On the other hand we
also show by elementary arguments that the discriminant metric is bounded for the standard con-
tact structures on R2n+1 and S2n+1. As an application of these results we deduce that the contact
fragmentation norm is unbounded for R2n ⇥ S1 and RP 2n+1. By elaborating on the construc-
tion of the discriminant metric we then define an integer-valued bi-invariant pseudo-metric, which
we call the oscillation pseudo-metric, that is non-degenerate if and only if the contact manifold
is orderable in the sense of Eliashberg and Polterovich and, in this case, it is compatible with the
partial order. Finally we define the discriminant and oscillation lengths of a Legendrian isotopy, and
prove that they are unbounded for T ⇤B ⇥ S1 for any closed manifold B, for RP 2n+1 and for some
3-dimensional circle bundles.

Keywords. Bi-invariant metrics, contactomorphism group, discriminant and translated points of
contactomorphisms, Legendrian isotopies, orderability of contact manifolds, generating functions

1. Introduction

Since its discovery in 1990, the Hofer metric on the Hamiltonian group of a symplectic
manifold [Hof90] has been considered one of the most important notions in symplectic
topology. It is a manifestation of symplectic rigidity, and is crucially related to other sym-
plectic rigidity phenomena such as the existence of symplectic capacities and Gromov’s
non-squeezing theorem.

In 2000 Eliashberg and Polterovich [EP00] noticed that there can be no analogue of
the Hofer metric on the contactomorphism group, and raised the question of whether the
contactomorphism group admits any geometric structure at all. Motivated by this ques-
tion, they introduced the notion of orderability of contact manifolds: a contact manifold
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is said to be orderable if the natural relation induced by positive contact isotopies (i.e.
contact isotopies that move every point in a direction positively transverse to the contact
distribution) gives a bi-invariant partial order on the universal cover of the contactomor-
phism group. The original motivation of Eliashberg and Polterovich for introducing this
notion was that if (M, ⇠) is an orderable contact manifold then we can apply a general
procedure, which works for any partially ordered group, to associate to the universal cover
of the contactomorphism group of (M, ⇠) a partially ordered metric space (Z(M, ⇠), �).
This is done by first defining, in terms of relative growth, a pseudo-distance � on the
group of elements of the universal cover that are generated by a positive contact isotopy,
and then by quotienting this group by the equivalence classes of elements which are at
zero distance from each other. After the work of Eliashberg and Polterovich, integer-
valued bi-invariant metrics on the contactomorphism group itself have been discovered in
the case of R2n ⇥ S1 by the second author [S10], in the case of T ⇤B ⇥ S1 for any closed
manifold B by Zapolsky [Zap12], and for some other classes of circle bundles by Fraser,
Polterovich and Rosen [FPR12].

In this paper we define an integer-valued non-degenerate bi-invariant metric on the
universal cover of the identity component of the contactomorphism group of any contact
manifold. We call this metric the discriminant metric. It is the metric which is associated
to the norm1 described in the following definition.

Definition 1.1. Let (M, ⇠ = ker(↵)) be a (cooriented) compact2 contact manifold, and
consider the universal cover Ĉont0(M, ⇠) of the identity component of the contactomor-
phism group. The discriminant norm of an element of Ĉont0(M, ⇠) is the minimal inte-
ger N needed to write a representative {�t }t2[0,1] as the concatenation of a finite num-
ber of pieces {�t }t2[ti ,ti+1], i = 0, . . . , N � 1, such that, for each i, the submanifold
S

t2[ti ,ti+1] gr(�t ) of M ⇥ M ⇥ R is embedded.

In other words, the discriminant metric is the word metric on Ĉont0(M, ⇠) with re-
spect to the generating set formed by (non-constant) contact isotopies {�t }t2[0,1] such
that

S

t2[0,1] gr(�t ) is embedded (see Section 2). Recall that the graph of a contactomor-
phism � of M is the Legendrian submanifold of the contact product M ⇥ M ⇥ R which
is defined by gr(�) = {(q,�(q), g(q)) | q 2 M}, where g : M ! R is the function
satisfying �⇤↵ = eg↵. In Section 2 we show, by elementary arguments, that Definition
1.1 makes sense, does not depend on the choice of the contact form, and always gives rise
to a non-degenerate bi-invariant metric on Ĉont0(M, ⇠).

Note that an analogous definition would not work in the symplectic case: for any
Hamiltonian isotopy {'t } of a compact symplectic manifold (W,!), the union

S

t gr('t )

in W ⇥ W will never be embedded, because of the Arnold conjecture.
To understand the geometric meaning of the discriminant metric, and the motiva-

tion for its name, note that a union
S

t gr(�t ) fails to be embedded if for some values t0

1 Recall that any conjugation-invariant norm ⌫ : G ! [0, 1) on a group G induces a bi-invariant
metric d⌫ on G by defining d⌫(f, g) = ⌫(f �1g).

2 If M is not compact, we will consider the discriminant norm on the universal cover of the
identity component of the group of compactly supported contactomorphisms.
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and t1 the graph of �t0 intersects the graph of �t1 . Equivalently, this happens if and only
if ��1

t0 � �t1 has a discriminant point. Recall that a point q of M is called a discrimi-
nant point of a contactomorphism � if �(q) = q and g(q) = 0, where g : M ! R is
the function satisfying �⇤↵ = eg↵. This notion is independent of the choice of contact
form, and was introduced by Givental [Giv90]. Recall also that a point q of M is called
a translated point of � (with respect to a chosen contact form) if q and �(q) belong to
the same Reeb orbit, and g(q) = 0. Thus, discriminant points are translated points that
are also fixed points. As discussed in [S13], translated points seem to satisfy an analogue
of the Arnold conjecture. At least in the case of a C0-small contact isotopy {�t } (but pos-
sibly also in the general case) every �t has translated points (with respect to any contact
form), at least as many as the minimal number of critical points of a function on M . Note
however that the contactomorphisms �t do not necessarily have discriminant points. On
the other hand, discriminant points, in contrast to translated points, are invariant by con-
jugation: if q is a discriminant point of � then  (q) is a discriminant point of  � �1,
for any other contactomorphism  . Thus, while in the symplectic case fixed points at the
same time persist under Hamiltonian isotopies (because of the Arnold conjecture) and are
invariant by conjugation, in the contact case these two phenomena split: translated points
persist by contact isotopy but are not invariant by conjugation, while discriminant points
are invariant by conjugation but do not persist under contact isotopy. Roughly speaking,
this is what gives room for the definition of the discriminant metric to work in the contact
case: since discriminant points do not persist under contact isotopy, Definition 1.1 makes
sense (see Lemma 2.1). On the other hand, the fact that discriminant points are invariant
by conjugation implies that the discriminant metric is bi-invariant.

In contrast to fixed points of contactomorphisms (which are completely flexible),
translated and discriminant points turn out to be related to interesting contact rigidity
phenomena. For example, translated and discriminant points for contactomorphisms of
R2n ⇥ S1 play a crucial role in the proof of the contact non-squeezing theorem [EKP06,
S11], while translated and discriminant points of contactomorphisms of RP 2n+1 are inti-
mately related to Givental’s non-linear Maslov index [Giv90]. In view of these examples
we believe that the discriminant metric should be an interesting object to study, since its
properties on a given contact manifold might reflect the existence of contact rigidity phe-
nomena such as contact non-squeezing, orderability, or the existence of quasimorphisms
on the contactomorphism group.

An important question about the discriminant metric is to understand for which con-
tact manifolds it is unbounded. In this paper we prove the following results.

Theorem 1.2. (i) The discriminant metric is bounded for the standard contact struc-
tures on the Euclidean space R2n+1 and on the sphere S2n+1.

(ii) The discriminant metric is unbounded for the standard contact structure on R2n⇥S1.
(iii) The discriminant metric is unbounded for the standard contact structure on the pro-

jective space RP 2n+1.

Note that the distinction between boundedness and unboundedness is especially important
when dealing with integer-valued metrics. Indeed, if an integer-valued metric is bounded
then it is equivalent to the trivial metric, i.e. the metric for which any two distinct points
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are always at distance one from each other (recall that two bi-invariant metrics on the
same group are said to be equivalent if their ratio is bounded away from zero and from
infinity). Note also that boundedness of the discriminant metric for S2n+1 is consistent
with the fact, proved by Fraser, Polterovich and Rosen [FPR12], that any non-degenerate
bi-invariant metric on the standard contact sphere is necessarily equivalent to the trivial
metric.

Boundedness for R2n+1 and S2n+1 is proved in Section 4 by elementary arguments.
Unboundedness for R2n ⇥ S1 and RP 2n+1 is proved in Sections 6 and 7 respectively,
using generating functions.

The difference between the cases of R2n+1 and R2n⇥S1 is similar to the phenomenon
discussed in [S11]. While in R2n+1 we do not have any contact rigidity result (except for
the existence of a partial order on the contactomorphism group [Bh01]), 1-periodicity
of the Reeb flow in R2n ⇥ S1 makes it possible to construct integer-valued spectral in-
variants for contactomorphisms and, with them, an integer-valued contact capacity for
domains. The spectral invariants and the contact capacity can then be used to define an
integer-valued bi-invariant metric on the contactomorphism group of R2n ⇥ S1 [S10] and
to prove the contact non-squeezing theorem [S11]. Unboundedness of the discriminant
metric on R2n ⇥S1 is also proved using the spectral invariants defined in [S11] and thus it
relies crucially on the 1-periodicity of the Reeb flow. This might suggest that the discrim-
inant metric should always be unbounded whenever there is a 1-periodic Reeb flow, but
the case of S2n+1, where the discriminant metric is bounded, shows that this is not true
in general. On the other hand, the discriminant metric is unbounded on RP 2n+1: this is
proved using generating functions in the setting developed by Givental [Giv90], and relies
on the properties of the cohomological length of subsets of projective spaces. Note that
the same contrast between the cases of S2n+1 and RP 2n+1 also appears in the context of
orderability: RP 2n+1 is orderable, while S2n+1 is not. Moreover, also the construction of
the non-linear Maslov index, which gives a quasimorphism on the universal cover of the
contactomorphism group, works for RP 2n+1 but not for S2n+1. To summarize, the differ-
ence between R2n+1 and R2n ⇥ S1 on the one hand and between S2n+1 and RP 2n+1 on
the other hand shows that, in both cases of R2n+1 and S2n+1, adding some topology to the
underlying manifold has the effect of making the discriminant metric unbounded and of
making some interesting contact rigidity phenomena appear. This interplay between con-
tact rigidity phenomena and the topology of the underlying manifold is quite mysterious
and, we believe, an interesting subject for further research.

Using the fact that the discriminant metric is bounded on R2n+1, we observe in Sec-
tion 5 that the discriminant metric always gives a lower bound for the contact fragmenta-
tion norm. Recall that the fragmentation norm on the diffeomorphism group of a smooth
compact manifold M is defined as follows. By the fragmentation lemma [Ban78] ev-
ery diffeomorphism � of M can be written as a finite composition � = �1 � · · · � �N

such that each factor is supported in an embedded ball. The fragmentation norm of � is
then defined to be the minimal number of factors in such a decomposition. By results of
Burago, Ivanov and Polterovich [BIP08] and Tsuboi [Ts08] we know that for any odd-
dimensional compact manifold M the smooth fragmentation norm is bounded. The frag-
mentation lemma has an analogue also for Hamiltonian and contact diffeomorphisms (see
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[Ban78] and [Ryb10] respectively). While the Hamiltonian fragmentation norm has been
studied in the special case of tori by Entov and Polterovich [EP03] and Burago, Ivanov
and Polterovich [BIP08] and for cotangent bundles by Monzner, Vichery and Zapolsky
[MVZ12], we did not find any result in the literature on the contact fragmentation norm.
As a corollary of Theorem 1.2 we get the following result.

Corollary 1.3. The contact fragmentation norm is unbounded for the standard contact
structures on R2n ⇥ S1 and RP 2n+1.

If in Definition 1.1 we also require that every embedded piece {�t }t2[ti ,ti+1] be either
positive or negative then we get another bi-invariant metric (which we call the zigzag
metric) on Ĉont0(M, ⇠). We suspect that this metric should always be equivalent to the
discriminant metric. A more interesting variation of the discriminant metric is what we
call the oscillation pseudo-metric. The oscillation pseudo-norm of an element [{�t }]
of Ĉont0(M, ⇠) is defined to be the sum of the minimal number of positive pieces and
the minimal number of negative pieces in a decomposition of a representative {�t } as a
concatenation of positive and negative embedded pieces. The oscillation pseudo-norm of
an element of Ĉont0(M, ⇠) is always smaller than or equal to, but in general different
from, its zigzag norm. The oscillation pseudo-metric is well-defined and bi-invariant for
every contact manifold (M, ⇠), and it is non-degenerate if and only if (M, ⇠) is orderable.
In this case it is compatible with the partial order and hence it gives Ĉont0(M, ⇠) the
structure of a partially ordered metric space (see the discussion in Section 3).

In the last section we study the Legendrian discriminant length. Given a Legendrian
isotopy {Lt }t2[0,1] in a contact manifold M , its discriminant length is the minimal number
N needed to write {Lt }t2[0,1] as a concatenation of pieces {Lt }t2[ti ,ti+1], i = 0, . . . , N �1,
such that each piece is embedded. As for contact isotopies we can then also define the
zigzag and the oscillation lengths of {Lt }t2[0,1]. As we show in Section 8, the generating
functions methods used in Sections 6 and 7 can also be applied to prove unboundedness
of the Legendrian discriminant length on T ⇤B ⇥ S1 for any compact smooth manifold B,
on RP 2n+1 and on certain 3-dimensional circle bundles.

The article is organized as follows. In the next two sections we will discuss in more de-
tail the construction of the discriminant, zigzag and oscillation (pseudo-)norms on the uni-
versal cover of the contactomorphism group. In Section 4 we prove that these (pseudo-)
norms are bounded on R2n+1 and S2n+1, and in Section 5 we use boundedness on R2n+1

to show that the contact fragmentation norm is always bounded below by twice the zigzag
norm. In Sections 6 and 7 respectively we prove that the discriminant, zigzag and oscil-
lation norms are unbounded for R2n ⇥ S1 and RP 2n+1. As a consequence, the contact
fragmentation norm is also unbounded in these two cases. In the last section we discuss
the Legendrian discriminant length.

2. The discriminant metric

Let (M, ⇠ = ker(↵)) be a (cooriented) contact manifold. We will define in this section a
bi-invariant metric on the universal cover Ĉontc0(M, ⇠) of the identity component of the
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group of compactly supported contactomorphisms of (M, ⇠). To simplify the exposition,
in the following discussion we will just assume that M is compact. In the case of com-
pactly supported contactomorphisms of a non-compact contact manifold all arguments
and definitions are analogous, by considering only the interior of the support.

Recall that we can associate to any contactomorphism � of M its graph gr(�) in the
contact product M ⇥ M ⇥ R. This is defined to be the submanifold

gr(�) = {(q,�(q), g(q)) | q 2 M}
of M ⇥ M ⇥ R, where g : M ! R is the function satisfying �⇤↵ = eg↵. The contact
structure on M ⇥ M ⇥ R is given by the kernel of the 1-form A = e✓↵1 � ↵2 where ↵1
and ↵2 are the pullbacks of ↵ with respect to the projections of M ⇥ M ⇥R onto the first
and second factors respectively, and ✓ is the R-coordinate.

Lemma 2.1. Let {�t }t2[0,1] be a contact isotopy of M . After perturbing {�t } in the same
homotopy class with fixed endpoints, there exist a positive integer N and a subdivision
0 = t0 < t1 < · · · < tN�1 < tN = 1 such that for all i = 0, . . . , N � 1 the submanifold
S

t2[ti ,ti+1] gr(�t ) of M ⇥ M ⇥ R is embedded.

In the following, we will say that a contact isotopy {�t } is embedded if the submanifold
S

t gr(�t ) of M ⇥ M ⇥ R is embedded. Recall also that a contact isotopy is said to be
positive (resp. negative) if it moves every point in a direction positively (resp. negatively)
transverse to the contact distribution, or equivalently if it is generated by a positive (resp.
negative) contact Hamiltonian. Moreover, a Legendrian isotopy {Lt } is said to be positive
(resp. negative) if it can be extended to a contact isotopy which is generated by a contact
Hamiltonian Ht with Ht |Lt positive (resp. negative). Note that if a contact isotopy �t of
M is positive (resp. negative) then the Legendrian isotopy {gr(�t )} in M ⇥ M ⇥ R is
negative (resp. positive). Indeed, given a contactomorphism � of M with �⇤↵ = eg↵ we
can consider the induced contactomorphism � of M ⇥ M ⇥ R defined by �(q1, q2, ✓) =
(q1,�(q2), ✓ + g(q2)). Then gr(�) = �(1) where 1 = {(q, q, 0) | q 2 M}. If {�t }
is a positive (resp. negative) contact isotopy then the induced contact isotopy {�t } of
M ⇥ M ⇥ R is negative (resp. positive). Hence {gr(�t )} = {�t (1)} is a negative (resp.
positive) Legendrian isotopy.

Proof of Lemma 2.1. Note first that for any other contact isotopy {'t } the initial {�t } co-
incides with {'�1

t �('t ��t )}, and so it is in the same homotopy class as the concatenation
of {'t � �t } and {'�1

t � ('1 � �1)}. If we take {'t } to be positive then {'�1
t � ('1 � �1)}

is negative and, if the Hamiltonian generating {'t } is sufficiently large, {'t � �t } is pos-
itive. Thus it is enough to show that if {�t }t2[0,1] is a positive contact isotopy which is
sufficiently C1-small then it is embedded (the case of a negative contact isotopy is of
course analogous). By Weinstein’s theorem, a small neighborhood of the diagonal 1 in
M ⇥ M ⇥ R is contactomorphic to a neighborhood of the 0-section of J 11. Since all
the �t are C1-small, their graphs belong to this small neighborhood of 1, and moreover
they correspond to sections of J 11. But all Legendrian sections of J 11 are 1-jets of func-
tions, so we see that the contact isotopy {�t } of M corresponds to a Legendrian isotopy
of J 11 of the form {j1ft } for a certain family of functions ft on 1. As discussed above,
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since {�t } is positive, {j1ft } is a negative Legendrian isotopy. We will now show that this
implies that the family ft is (strictly) decreasing, and therefore

S

t j1ft is embedded. Let
{9�t } be a contact isotopy of J 11 that locally coincides with the contact isotopy {�t } of
M ⇥ M ⇥R induced by {�t }. Then 9�t (j

10) = j1ft for all t . Denote by Ht : J 11 ! R
the Hamiltonian of {9�t }. Note that Ht(j

1(ft (x))) < 0 for all x 2 1, because {9�t } is
negative since {�t } is positive. Moreover, by the Hamilton–Jacobi equation (see [Arn89,
Section 46] or [Chap95]) we have

Ht(j
1(ft (x))) = d

dt
ft (x).

We thus see that the family ft is decreasing. But this implies that
S

t j1ft is embedded
and hence the contact isotopy {�t } is embedded, as desired. ut

Consider the subset eE of Ĉont0(M, ⇠) defined by

eE =
n

[{�t }t2[0,1]] 2 Ĉont0(M, ⇠) \ [id]
�

�

�

[

t2[0,1]
gr(�t ) is embedded

o

Lemma 2.1 proves that eE is a generating set for Ĉont0(M, ⇠).
Recall that a subset S of a group G is called a generating set if G = S

k�0 Sk where
S0 = {1} and Sk = S · Sk�1. If S�1 = S then we obtain a (non-degenerate) norm on G

(called the word norm with respect to the generating set S) by defining

⌫S(g) := min{k � 0 | g 2 Sk}.

Note that if S is invariant by conjugation then ⌫S is a conjugation-invariant norm on G.
Recall that a function ⌫ : G ! [0, 1) is called a non-degenerate conjugation-invariant
norm if it has the following properties:

(i) (Positivity) ⌫(g) � 0 for all g 2 G, with equality if g = id.
(ii) (Non-degeneracy) if ⌫(g) = 0 then g = id.

(iii) (Symmetry) ⌫(g) = ⌫(g�1).
(iv) (Triangle inequality) ⌫(fg)  ⌫(f ) + ⌫(g).
(v) (Conjugation-invariance) ⌫(f ) = ⌫(gfg�1).

Recall also that any conjugation-invariant norm ⌫ on G induces a bi-invariant metric d⌫
on G, by defining d(f, g) = ⌫(f �1g). We refer to [GK11] and the references therein for
more background on bi-invariant word metrics.

Definition 2.2. The discriminant metric on Ĉont0(M, ⇠) is the word metric with respect
to the generating set eE .

In view of the above general discussion, in order to prove that this definition gives rise
to a (non-degenerate) bi-invariant metric on Ĉont0(M, ⇠) we need to prove that the gen-
erating set eE is invariant by conjugation and satisfies eE�1 = eE . These properties can
be seen as follows. Note that a contact isotopy {�t }t2[0,1] fails to be embedded if and
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only if there are two values t0 and t1 for which gr(t0) and gr(t1) intersect. As shown
below, this is equivalent to gr(��1

t0 � �t1) intersecting the diagonal 1. Given a contacto-
morphism � of M , consider the induced contactomorphism � of M ⇥ M ⇥R (as defined
above). Note that for any two contactomorphisms � and  we have  � � =  � �. Thus
gr(�t0) = �t0(1) and gr(�t1) = �t1(1) intersect (and so {�t } fails to be embedded) if and
only if ��1

t0 � �t1(1) = gr(��1
t0 � �t1) intersects the diagonal 1. Equivalently, this also

shows that {�t }t2[0,1] fails to be embedded if and only if there are two values t0 and t1 for
which ��1

t0 � �t1 has a discriminant point. Indeed, recall q 2 M is called a discriminant
point of a contactomorphism � if �(q) = q and g(q) = 0 where g : M ! R is the
function satisfying �⇤↵ = eg↵. Clearly, q is a discriminant point for � if and only if
(q, q, 0) 2 gr(�) \ 1. In view of this discussion, the property eE�1 = eE follows imme-
diately from a 1-1 correspondence between discriminant points of a contactomorphism �

and discriminant points of ��1: indeed, q is a discriminant point of � if and only if �(q)

is a discriminant point for ��1. Similarly, the conjugation-invariance of eE follows from a
1-1 correspondence between discriminant points of a contactomorphism � and discrimi-
nant points of a conjugation  � �1: indeed, q is a discriminant point of � if and only if
 (q) is a discriminant point of  � �1.

Note that the definition of the discriminant length is independent of the choice of the
contact form ↵. Indeed, q 2 M is a discriminant point of � with respect to the contact
form ↵ if and only if it is a discriminant point of � with respect to any other contact
form ↵0 for ⇠ . To see this, write ↵0 = eh↵ and �⇤↵ = eg↵. Then �⇤↵0 = eh��+g�h↵0. If
q is a discriminant point of � with respect to ↵ then �(q) = q and g(q) = 0. But then
also (h � � + g � h)(q) = 0 and q is a discriminant point of � with respect to ↵0.

In Sections 4, 6 and 7 we will study, in some special cases, the problem for which con-
tact manifolds the discriminant metric is unbounded, and hence not equivalent to the triv-
ial metric. In Section 4 we will show that the discriminant norm is bounded for Euclidean
space R2n+1 and for the sphere S2n+1. In Sections 6 and 7 respectively we will then use
generating functions to prove that the discriminant norm is unbounded for R2n ⇥ S1 and
for projective space RP 2n+1. It would be interesting to try to apply the technology of
J -holomorphic curves or the new microlocal theory of sheaves to study this problem for
more general contact manifolds. It is not clear to us for which class of contact manifolds
we should expect our metric to be unbounded. As the example of the sphere shows, the
presence of a 1-periodic Reeb flow is not sufficient. On the other hand, as far as we un-
derstand, this condition might not even be necessary. Note that an important difference
between the cases of R2n ⇥ S1 and S2n+1, which could be behind the different behavior
of the discriminant metric, is the following. Although on both R2n ⇥ S1 and S2n+1 we
have a 1-periodic Reeb flow, in the case of S2n+1 the Reeb flow is trivial in homology
(all closed Reeb orbits are contractible), while on R2n ⇥ S1 the Reeb flow generates the
fundamental group of the manifold. In view of these examples it seems reasonable to ex-
pect that the discriminant metric should be unbounded if and only if there exists a closed
non-contractible Reeb orbit with respect to some contact form.

Question 2.3. Let ↵ be a contact form for (M, ⇠) and consider the Reeb flow 't . If T0 is
the minimal period of a closed Reeb orbit then, for all t0 2 R, the isotopy {'t }t2[t0,t0+T0)
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is embedded. Thus, if T is not a multiple of T0, {'t }t2[0,T ] has discriminant length smaller
than or equal to dT/T0e (where d·e denotes the smallest integer which is greater than or
equal than a given number). Is there a condition on (M, ⇠) (orderability? non-existence
of closed contractible Reeb orbits?. . . ) which ensures that the length is exactly dT/T0e,
i.e. {'t }t2[0,T ] is a geodesic?

Another interesting question is the following. Assume that (M, ⇠) is orderable, i.e. the
natural relation EP induced by positive contact isotopies is a partial order on the univer-
sal cover of the contactomorphism group [EP00]. In this case, is the discriminant metric
compatible with the partial order EP? In other words, does [{�t }] EP [{ t }] EP [{'t }]
imply that d([{�t }], [{ t }])  d([{�t }], [{'t }])? Although we cannot answer this ques-
tion directly for the discriminant metric, in the next section we construct a variation of the
discriminant metric, which we call the oscillation pseudo-metric and which can be easily
seen to be compatible with the partial order of Eliashberg and Polterovich. We believe that
the oscillation pseudo-metric should also help to understand the relation between our con-
struction and those of the second author [S10], Zapolsky [Zap12], and Fraser, Polterovich
and Rosen [FPR12].

3. The oscillation pseudo-metric, and the relation to the partial order of Eliashberg

and Polterovich

We will first describe a slight variation of the discriminant metric, which we call the zigzag
metric. We will then modify the construction a bit more to obtain the oscillation pseudo-
metric, which we will show to be non-degenerate if and only if the contact manifold is
orderable, and in this case to be compatible with the partial order.

From the proof of Lemma 2.1 it is clear that we can represent a contact isotopy
{�t }t2[0,1] of M as described in the statement of Lemma 2.1 and moreover require that
every piece {�t }t2[ti ,ti+1] be either positive or negative (not necessarily with alternating
signs). Therefore the set eE± = eE+ [ eE�, where

eE+ =
n

[{�t }t2[0,1]] 2 Ĉont0(M, ⇠)

�

�

�

[

t2[0,1]
gr(�t ) is embedded and {�t } is positive

o

,

eE� =
n

[{�t }t2[0,1]] 2 Ĉont0(M, ⇠)

�

�

�

[

t2[0,1]
gr(�t ) is embedded and {�t } is negative

o

,

is a generating set for Ĉont0(M, ⇠). Note that eE± is invariant by conjugation, and
eE�1
± = eE±. We define the zigzag metric on Ĉont0(M, ⇠) to be the word metric with

respect to the generating set eE±. Note that the zigzag metric is always greater than or
equal to the discriminant metric. We suspect that the discriminant and the zigzag metrics
should be equivalent.3

3 In Section 8 we will prove this for the Legendrian discriminant and zigzag lengths. However, it
is not clear to us how the argument should be modified in the context of contactomorphisms.
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A more interesting variation of the discriminant metric is given by the following def-
inition.

Definition 3.1. Given an element [{�t }t2[0,1]] of Ĉont0(M, ⇠), we define ⌫+([{�t }]) to
be the minimal number of positive pieces in a decomposition of [{�t }t2[0,1]] as a product
of elements in eE±, and ⌫�([{�t }]) to be minus4 the minimal number of negative pieces in
such a decomposition. We then define the oscillation pseudo-norm5 of [{�t }t2[0,1]] by

⌫osc([{�t }]) = ⌫+([{�t }]) � ⌫�([{�t }]).

Note that the oscillation pseudo-norm of [{�t }t2[0,1]] is always smaller than or equal to its
zigzag norm, but in general they do not coincide. For example if {�t }t2[0,1] is a positive
contractible loop of contactomorphisms then [{�t }t2[0,1/2]] has oscillation pseudo-norm
zero, while its zigzag norm is at least 1.

Proposition 3.2. The oscillation pseudo-norm ⌫osc is a conjugation-invariant pseudo-
norm on Ĉont0(M, ⇠). It is non-degenerate if and only if (M, ⇠) is orderable.

Before proving the proposition we recall in some more detail the notion of orderability.
For any contact manifold (M, ⇠) we can consider the relation EP on Ĉont0(M, ⇠) given
by setting

[{�t }t2[0,1]] EP [{ t }t2[0,1]]
if [{ t }t2[0,1]] · [{�t }t2[0,1]]�1 can be represented by a non-negative contact isotopy. This
relation is always reflexive and transitive. If it is also antisymmetric then it defines a
partial order on Ĉont0(M, ⇠), and the contact manifold (M, ⇠) is said to be orderable. As
was proved by Eliashberg, Kim and Polterovich [EKP06], S2n+1 is not orderable. On the
other hand, RP 2n+1, R2n+1 and R2n ⇥ S1 are orderable. This was proved respectively
by Eliashberg and Polterovich [EP00] for RP 2n+1, using Givental’s non-linear Maslov
index [Giv90], and by Bhupal [Bh01] for R2n+1 and R2n ⇥ S1 (see also [S11]).

Proof of Proposition 3.2. The result is a consequence of the following properties of the
numbers ⌫+ and ⌫�:

(i) For any [{�t }t2[0,1]] we have ⌫+([{�t }]) � 0 and ⌫�([{�t }])  0.
(ii) ⌫�({�t }) = �⌫+({��1

t }).
(iii) ⌫+({ t�t })  ⌫+({�t }) + ⌫+({ 1�t }) and ⌫�({ t�t }) � ⌫�({�t }) + ⌫�({ 1�t }).
(iv) ⌫±({�t }) = ⌫±({ t�t 

�1
t }).

(v) If (M, ⇠) is orderable then ⌫+({�t }) = ⌫�({�t }) = 0 if and only if {�t } is the
identity.

4 We put a minus sign here in order to be consistent with the notation for the metrics in [S10],
[Zap12] and [FPR12].

5 As in [Zap12], we can also define ⌫0
osc([{�t }]) = max(⌫+([{�t }]), �⌫�([{�t }])). Note that

the norms ⌫osc and ⌫0
osc are equivalent since ⌫0

osc([{�t }])  ⌫osc([{�t }])  2⌫0
osc([{�t }]) for every

[{�t }t2[0,1]].
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Note that (v) follows from the criterion proved by Eliashberg and Polterovich [EP00]:
(M, ⇠) is orderable if and only if there is no positive contractible loop of contactomor-
phisms. All other properties are immediate. ut

Question 3.3. Assume that (M, ⇠) is orderable. Are there examples of contact isotopies
for which the oscillation norm is strictly smaller than the zigzag norm?6 If yes, is the
oscillation norm always equivalent to the discriminant and zigzag norms?

We now assume that (M, ⇠) is orderable, and we denote by dosc the non-degenerate bi-
invariant metric on Ĉont0(M, ⇠) which is induced by the oscillation norm. As we will see,
dosc is compatible with the partial order EP introduced by Eliashberg and Polterovich,
i.e.

(Ĉont0(M, ⇠), dosc, EP)

is a partially ordered metric space. Recall that a partially ordered metric space is a metric
space (Z, d) endowed with a partial order  such that for any a, b, c in Z with a  b  c

we have d(a, b)  d(a, c).

Proposition 3.4. For every orderable contact manifold (M, ⇠), the bi-invariant metric
dosc on Ĉont0(M, ⇠) is compatible with the partial order EP.

Proof. It is enough to show that if id  [{�t }]  [{ t }] then ⌫osc([{�t }])  ⌫osc([{ t }]).
Since [{�t }] � id, [{�t }] can be represented by a non-negative contact isotopy and so
⌫�([{�t }]) = 0, i.e. ⌫osc([{�t }]) = ⌫+([{�t }]). Similarly, ⌫osc([{ t }]) = ⌫+([{ t }]). If
we suppose that ⌫osc([{ t }]) < ⌫osc([{�t }]) then this means that [{ t }] can be repre-
sented by a contact isotopy such that the number of positive embedded pieces is less than
⌫+([{�t }]). But this gives a contradiction because [{�t }] is also represented by the con-
catenation of { t } and the contact isotopy {�t �  �1

t �  1}, which is negative since by
hypothesis [{�t }]  [{ t }]. ut
Note that the definition of the oscillation pseudo-norm is a special case of a general con-
struction in the context of partially ordered groups and word metrics. Let G be a group. A
subset C of G is called a cone if 1 2 C and C2 ⇢ C. Every cone C induces a relation C

on G, defined by setting a C b if a�1b 2 C. This relation is always transitive and re-
flexive, and it is bi-invariant if C is invariant by conjugation. If it is also anti-symmetric
(i.e. a C b and b C a ) a = b) then it is a bi-invariant partial order on G. Assume
now that C has a generating set S such that S [S�1 is a generating set for G. We can then
define the counting functions ⌫±

S : G ! Z�0 by setting ⌫+
S (g) to be the minimal number

of elements of S in a representation of g as a product of elements of S and S�1, and
⌫�
S (g) to be minus the minimal number of elements of S�1 in such a representation. Then
⌫S := ⌫+

S � ⌫�
S is a pseudo-metric on G, bi-invariant if S is invariant by conjugation.

Moreover we find that ⌫S is non-degenerate if and only if C is a partial order, and in
this case (G, ⌫S, C) is a partially ordered metric space. The definition of the oscillation
metric falls into this general construction, by considering the cone formed by elements of

6 See [Polt01, p. 23] for a similar open question in Hofer geometry.
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Ĉont0(M, ⇠) that can be represented by a non-negative contact isotopy, with generating
set eE+.

Remark 3.5. As mentioned above, other integer-valued bi-invariant metrics have been
defined by the second author [S11] for R2n ⇥ S1, by Zapolsky [Zap12] for T ⇤B ⇥ S1

(for B closed) and by Fraser, Polterovich and Rosen [FPR12] for some other classes
of circle bundles. For these manifolds we expect that the oscillation metric should be
equivalent to these metrics (see also Remark 6.2 for the case of R2n ⇥ S1).

Remark 3.6. Let (M, ⇠) be an orderable contact manifold. Given a domain U in (M, ⇠)

we define its capacity by

c(U) = sup{⌫+([{�t }]) | �t supported in U}
and its displacement energy by

E(U) = inf{⌫osc([{ t }]) |  1(U) \ U = ;}.
Since the ⌫+ and ⌫� are invariant by conjugation, the capacity and displacement energy
of a domain are contact invariants. In the case of M = R2n ⇥ S1 we think that these
invariants should reduce to the capacity and displacement energy that were introduced in
[S11] to prove the contact non-squeezing theorem. It would be interesting to study the
capacity and displacement energy with respect to the oscillation metric for domains in
more general contact manifolds.

4. Boundedness for R2n+1
and S2n+1

We first show that the discriminant, zigzag and oscillation metrics are bounded for the
universal cover of the identity component of the group of compactly supported contacto-
morphisms of R2n+1, with its standard contact structure ⇠ = ker(dz + 1

2 (xdy � ydx)).
Since the discriminant and oscillation metrics are bounded above by the zigzag metric,
it is enough to show that the zigzag metric is bounded. This is proved in the following
proposition.

Proposition 4.1. The zigzag norm of the homotopy class of a compactly supported con-
tact isotopy {�t }t2[0,1] of R2n+1 is always smaller than or equal to 2.

Proof. As in the proof of Lemma 2.1, {�t } is in the same homotopy class as the concate-
nation of {'t��t } and {'�1

t �('1��1)} for any other contact isotopy {'t }. We will show that
it is possible to choose {'t } in such a way that {'t ��t } is positive, {'�1

t �('1 ��1)} is neg-
ative and both are embedded. Note first that for a contact Hamiltonian H : R2n+1 ! R
of the form H(x, y, z) = H(x, y) the corresponding contact vector field is given by

XH = �@H
@y

@

@x
+ @H

@x

@

@y
+

✓

H(x, y) � 1
2

✓

x
@H

@x
+ y

@H

@y

◆◆

@

@z
.

Consider now H⇢,R(x, y, z) = ⇢
� x2+y2

R

�

for some positive real number R and some
function ⇢ : [0, 1) ! [0, 1) which is supported in [0, 1] and has ⇢0 < 0 and ⇢00 > 0
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(Hamiltonian functions of this form have also been used by Traynor [Tr94] in her cal-
culations of symplectic homology of ellipsoids). The corresponding vector field is given
by

X⇢,R = �2y

R
⇢0

✓

x2 + y2

R

◆

@

@x
+ 2x

R
⇢0

✓

x2 + y2

R

◆

@

@y

+
✓

⇢

✓

x2 + y2

R

◆

� x2 + y2

R
⇢0

✓

x2 + y2

R

◆◆

@

@z
.

Thus the generated contact isotopy {'⇢,R
t } is embedded, since the coefficient of @

@z
is

always strictly positive. Hence {('⇢,R
t )�1 � ('1 � �1)} is embedded (and negative) for

any choice of ⇢ and R. Moreover if we choose ⇢ and R large enough then {'⇢,R
t � �t }

will also be embedded (and positive). Indeed, our initial contact isotopy {�t } is compactly
supported and so in particular every point is moved in the z-direction only by a bounded
quantity. Thus, by choosing ⇢ and R large enough we can make {'⇢,R

t } move every point
of the support of {�t } far enough in the z-direction so that {'⇢,R

t � �t } is embedded.
This does not finish the proof yet, because {'⇢,R

t } is not a compactly supported contact
isotopy (it is not compactly supported in the z-direction). In order to fix this, we cut off the
Hamiltonian H⇢,R in the z-direction, far away from the support of {�t }. More precisely,
we consider the contact Hamiltonian H⇢,R,f (x, y, z) = f (z)⇢

� x2+y2

R

�

for some positive
cut-off function f . Then

X⇢,R,f =
✓

�2y

R
⇢0

✓

x2 + y2

R

◆

+ x

2
f 0(z)⇢

✓

x2 + y2

R

◆◆

@

@x

+
✓

2x

R
⇢0

✓

x2 + y2

R

◆

+ y

2
f 0(z)⇢

✓

x2 + y2

R

◆◆

@

@y

+ f (z)

✓

⇢

✓

x2 + y2

R

◆

� x2 + y2

R
⇢0

✓

x2 + y2

R

◆◆

@

@z
.

By the same arguments as before, if we choose ⇢ and R large enough then for the gener-
ated contact isotopy {'t } := {'⇢,R,f

t } we will have {'t � �t } positive, {'�1
t � ('1 � �1)}

negative, and both will be embedded. ut
As a consequence of Proposition 4.1 we see that, on any contact manifold, the discrim-
inant, zigzag and oscillation norms of the homotopy class of a contact isotopy that is
supported in a Darboux ball are bounded.

Lemma 4.2. Let (M, ⇠) be a contact manifold and B ⇢ M a Darboux ball. Then the
zigzag norm of the homotopy class of a contact isotopy {�t }t2[0,1] supported in B is at
most 2.

Proof. This follows from Proposition 4.1 and the fact that any Darboux ball is contacto-
morphic to the whole R2n+1 (see [CKS09]). In the notation of the proof of Proposition
4.1, here instead of simply considering the flow of the contact vector field associated to
H⇢,R,f we take the contact isotopy {'t } to be the composition of the flow of the contact
vector field of H⇢,R,f and the flow of �R, where R is a fixed Reeb vector field on M and
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� > 0. If � is small enough then {'t } is embedded and positive. In that case, both {'�1
t }

and {'t � �t } are embedded and we conclude as in Proposition 4.1. ut
We will now use Lemma 4.2 to prove that the discriminant, zigzag and oscillation norms
on S2n+1 are bounded. Recall that the standard contact structure on S2n+1 is defined to
be the kernel of the restriction to S2n+1 of the 1-form ↵ = xdy � ydx, where we regard
S2n+1 as the unit sphere in R2n+2 and where (x, y) are the coordinates on R2n+2.

Proposition 4.3. The zigzag norm of the homotopy class of a contact isotopy {�t }t2[0,1]
of S2n+1 is always smaller than or equal to 4.

Proof. Consider a point q of S2n+1, and the arc � = S

t2[0,1] �t (q). Take a Darboux
ball B ⇢ S2n+1 that contains � (recall that for any point q 0 of S2n+1 the complement
S2n+1 \ q 0 is contactomorphic to R2n+1; see for example [Gei08]). Consider the contact
isotopy {vt }t2[0,1] generated by the contact Hamiltonian �Ht where Ht is the Hamiltonian
of {�t } and � a cut-off function that is 1 on B and 0 outside a slightly bigger Darboux
ball B 0 � B (in order for B 0 to exist we choose the initial B such that the complement is
not a single point). If N(q) is a sufficiently small neighborhood of q then �t (N(q)) ⇢ B

for all t 2 [0, 1]. Hence vt |N(q) = �t |N(q) and so v�1
t � �t is the identity on N(q). Note

that B 00 = S2n+1 \ N(q) is also a Darboux ball, and ut := v�1
t � �t is supported in B 00.

Since {�t = vt � ut } is homotopic to the concatenation of {ut } and {vt � u1}, and since
the zigzag length of {vt � u1} is equal to the zigzag length of {vt }, we see, by Lemma 4.2,
that the zigzag norm of {�t } is at most 4. ut

5. Relation to the fragmentation norm

Let M be a compact smooth manifold. The fragmentation lemma (see [Ban78]) says
that every diffeomorphism � of M which is isotopic to the identity can be written as a
finite product of diffeomorphisms supported in embedded open balls. The fragmentation
norm of � is then defined to be the minimal number of factors in such a decomposition.
Burago, Ivanov and Polterovich [BIP08] proved that if the fragmentation norm on M is
bounded then every conjugation-invariant norm on Diff0(M) is equivalent to the trivial
one. Moreover they showed that this is the case for M = Sn and for M a compact con-
nected 3-dimensional manifold. Tsuboi [Ts08, Ts12] extended this result to all compact
connected odd-dimensional manifolds and to the even-dimensional case. The fragmen-
tation norm can also be defined in the context of symplectic topology. Let (M,!) be a
compact symplectic manifold, and U an open domain in M . The Hamiltonian fragmen-
tation lemma [Ban78] says that every Hamiltonian symplectomorphism � of (M,!) can
be written as a finite product � = �1 · · ·�N where each �i is conjugate to a Hamiltonian
symplectomorphism generated by a Hamiltonian function supported in U . The Hamil-
tonian fragmentation norm of � with respect to U is defined to be the minimal number
of factors in such a decomposition. Using the work of Entov and Polterovich [EP03] it
was proved in [BIP08] that the Hamiltonian fragmentation norm in Ham(T2n) with re-
spect to a displaceable domain U is unbounded. See also Monzner, Vichery and Zapolsky
[MVZ12] for similar results in the cotangent bundle.
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In the contact case the fragmentation lemma holds again in the more general form, as
was proved by Rybicki.

Lemma 5.1 ([Ryb10, Lemma 5.2]). Let (M, ⇠) be a compact7 contact manifold and
{Ui}ki=1 an open cover. Then every contactomorphism � of M isotopic to the identity can
be written as a finite product � = �1 · · ·�N where each �j is supported in some Ui(j).
The same is true for isotopies of contactomorphisms instead of contactomorphisms.

Using this lemma, we can define the contact fragmentation norm of a contactomorphism
� to be the minimal number of factors in a decomposition of � as a finite product of
contactomorphisms supported in a Darboux ball. The same definition can also be given
for the contact fragmentation norm in the universal cover of the identity component of the
contactomorphism group of M . As far as we know, there are no results in the literature
about boundedness or unboundedness of the contact fragmentation norm.

As we will now see, for any contact manifold (M, ⇠) the contact fragmentation norm
in Ĉont0(M, ⇠) is bounded below by half of the zigzag norm. Hence, if the zigzag norm
is unbounded then so is the contact fragmentation norm.

Proposition 5.2. For any contact manifold (M, ⇠) and any [{�t }] 2 Ĉont0(M, ⇠) the
zigzag norm of [{�t }] is smaller than or equal to twice its fragmentation norm.

Proof. This follows from Lemma 4.2. ut
In the next two sections we will prove that the discriminant, zigzag and oscillation norms
are unbounded for M = R2n ⇥ S1 and M = RP 2n�1. Hence, by Proposition 5.2, the
contact fragmentation norm in the universal cover of the identity component of the con-
tactomorphism group is also unbounded in these two cases.

6. Unboundedness for R2n ⇥ S1

We consider the standard contact structure ⇠ = ker(dz � ydx) on R2n ⇥ S1. We will
show in this section that the discriminant and oscillation norms on the universal cover
Ĉontc0(R2n ⇥ S1) of the identity component of the group of compactly supported con-
tactomorphisms of R2n ⇥ S1 are unbounded. As a consequence, the zigzag norm is also
unbounded.

To prove this result we will use the spectral numbers c±(�) associated to a com-
pactly supported contactomorphism � of R2n ⇥S1 which is isotopic to the identity. These
spectral numbers were introduced by Bhupal [Bh01] in the case of R2n+1 and by the
second author [S11] for R2n ⇥ S1. Recall that to every � in Contc0(R2n ⇥ S1) we can
associate a Legendrian submanifold 0� of J 1(S2n ⇥ S1), which is defined as follows.
First we will see � as a 1-periodic contactomorphism of R2n+1, and associate to it the
Legendrian submanifold 0� of J 1R2n+1 which is the image of the graph of � under

7 The result is also true for compactly supported contactomorphisms of non-compact contact
manifolds.
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the contact embedding ⌧ : R2n+1 ⇥ R2n+1 ⇥ R ! J 1R2n+1, (x, y, z, X, Y,Z, ✓) 7!
(x, Y, z, Y � e✓y, x � X, e✓ � 1, xY � XY + Z � z). We then notice that, since � is
1-periodic, 0� can be seen as a Legendrian submanifold of J 1(R2n ⇥ S1). Moreover,
since ⌧ sends the diagonal to the 0-section and since � is compactly supported, we find
that 0� coincides with the 0-section outside a compact set. Hence it can be seen as a
Legendrian submanifold of J 1(S2n ⇥ S1), via compactification.

For a contactomorphism � in Contc0(R2n ⇥ S1) the spectral numbers c±(�) are then
defined by c+(�) = c(µ,0�) and c�(�) = c(1,0�) where µ and 1 are the volume and
unit classes respectively in H ⇤(S2n⇥S1). Recall that for a cohomology class u in H ⇤(B),
where B is a closed smooth manifold, and a Legendrian submanifold L of J 1B, the real
number c(u, L) is obtained by minimax from a generating function quadratic at infinity
of L (see [Vit92, Bh01, S11]).

To prove that the discriminant and oscillation metrics are unbounded we will actually
only use the spectral number c+. In particular we will need the following properties (see
[S11, S10]).

Lemma 6.1. (i) For any contactomorphism �, there exists a translated point q of �
with contact action equal to c+(�).

(ii) For any two �,  we have dc+(� )e  dc+(�)e + dc+( )e (where d·e denotes the
smallest integer greater than or equal to a given real number).

(iii) For any contact isotopy {�t }, c+(�t ) is continuous in t .
(iv) c+(id) = 0.
(v) If {�t } is a negative contact isotopy with �0 = id then c+(�t ) = 0 for all t .

Recall that a point q of R2n ⇥ S1 is called a translated point of � if �(q) and q are in
the same Reeb orbit (i.e. they only differ by a translation in the z-direction) and g(q) = 0
where g is the function determined by �⇤↵ = eg↵. If we view � as a 1-periodic contac-
tomorphism of R2n+1 then the contact action of a translated point q of � is by definition
the difference in the z-coordinate of �(q) and q.

In order to prove that the discriminant and oscillation metrics on Ĉontc0(R2n ⇥S1) are

unbounded, we will consider the pullback of c+ to Ĉontc0(R2n ⇥ S1) under the covering
projection

Ĉontc0(R
2n ⇥ S1) ! Contc0(R

2n ⇥ S1).

In other words, for [{�t }t2[0,1]] in Ĉontc0(R2n ⇥ S1) we define

fc+([{�t }t2[0,1]]) = c+(�1).

Note that dfc+e also satisfies the triangle inequality

dfc+([{�t }] · [{ t }])e  dfc+([{�t }])e + dfc+({[ t ]})e.

Moreover note that if {�t } is an embedded contact isotopy (with �0 = id) then (i)-(iii)-(iv)
of Lemma 6.1 imply that

fc+([{�t }])  1.
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As discussed in [S10], there are compactly supported contactomorphisms of R2n ⇥ S1,
isotopic to the identity, with arbitrarily large c+. Thus, unboundedness of the discriminant
and oscillation metrics follows if we can prove that for any [{�t }] in Ĉontc0(R2n⇥S1) with
dfc+([{�t }])e = k > 0 its discriminant and oscillation norms are greater than or equal to k.
To see this, suppose for contradiction that the discriminant metric of [{�t }] is k0 < k. Then
[{�t }] = Qk0

j=1[{�j,t }] with all the {�j,t } embedded. By the discussion above we then have

dfc+([{�t }])e 
k0

X

j=1
dfc+([{�j,t }])e  k0 < k,

contradicting our hypothesis. A similar argument also applies to the oscillation metric:
if the oscillation norm of [{�t }] is k0 < k then in a decomposition of [{�t }] as the prod-
uct of embedded monotone pieces, at most k0 of them are positive. Then as above (and
additionally using property (v) of Lemma 6.1) we get dfc+([{�t }])e  k0 < k.

Notice that for any contact manifold (M, ⇠) the discriminant metric on Ĉontc0(M, ⇠)

descends to a (non-degenerate) bi-invariant metric on the contactomorphism group
Contc0(M, ⇠) by considering the word metric with respect to the generating set

E = {� 2 Cont0(M, ⇠) | 9[{�t }t2[0,1]] 2 eE with �1 = �}
(i.e. E is the image of eE under the covering projection). Similarly, the oscillation pseudo-
metric on Ĉontc0(M, ⇠) also descends to a bi-invariant pseudo-metric on Contc0(M, ⇠).
Note that the above proof also shows that these induced discriminant and oscillation met-
rics on Contc0(R2n ⇥ S1) are unbounded.

As was proved in [S11], if {�t } is a positive contact isotopy then t 7! c+(�t ) is in-
creasing. This, together with Lemma 6.1(iv), implies that R2n ⇥S1 is orderable and so the
oscillation pseudo-metric on Ĉontc0(R2n ⇥ S1) is non-degenerate. Recall that orderability
is equivalent to the non-existence of a positive contractible loop of contactomorphisms. In
the case of R2n ⇥ S1, the monotonicity properties of c+ mentioned above actually imply
the stronger fact that there are no positive loops of contactomorphisms. Hence, the partial
order descends to Contc0(R2n ⇥ S1), and so also the induced oscillation pseudo-metric on
Contc0(R2n ⇥ S1) is non-degenerate.

Remark 6.2. Recall that the metric in [S10] is defined by d(�, ) = dc+( ��1)e �
bc+( ��1)c. It seems plausible that the oscillation metric on the contactomorphism
group of R2n ⇥ S1 should be equal (or at least equivalent) to this metric. Notice how-
ever that the argument above only shows that the oscillation norm is greater than or equal
to the norm of [S10].

7. Unboundedness for RP 2n�1

Consider the real projective space RP 2n�1 with the contact structure obtained by quo-
tienting the standard contact structure on the sphere S2n�1 by the antipodal action of Z2.
We want to show that the discriminant, zigzag and oscillation metrics are unbounded on



1674 Vincent Colin, Sheila Sandon

the universal cover of the identity component of the contactomorphism group of RP 2n�1.
We will consider first the discriminant metric, and prove that it is unbounded by showing
that, for every k, the element in the universal cover generated by the 4k-th iteration of the
Reeb flow has discriminant norm at least k + 1.

Recall that this Reeb flow associated to the standard contact form ↵ = xdy � ydx

on S2n�1 is given by the Hopf fibration z 7! e2⇡ it z. We denote by {'t }t2[0,1] the 4k-th
iteration of the Reeb flow, i.e. 't (z) = e8⇡ ikt z, and we use the same notation {'t } for
the induced contact isotopy in RP 2n�1. We want to show that the discriminant length of
{'t }t2[0,1] is at least k. Similarly to [Giv90, Th98, S13] we will prove this by studying a
1-parameter family of conical generating functions for the lift to R2n of a contact isotopy
of RP 2n�1.

We start by recalling how to lift to R2n a contact isotopy {�t }t2[0,1] of RP 2n�1. Notice
first that {�t }t2[0,1] can be uniquely lifted to a Z2-equivariant contact isotopy of S2n�1,
still denoted by {�t }t2[0,1], by taking the flow of the pullback of the contact Hamiltonian
under the projection S2n�1 ! RP 2n�1. For every t 2 [0, 1] we then define the lift
8t : R2n ! R2n of �t : S2n�1 ! S2n�1 by the formula

8t (z) = |z|
e

1
2 gt (z/|z|)

�t

✓

z

|z|

◆

(1)

where we identify R2n with Cn, and where gt : S2n�1 ! S2n�1 is the function deter-
mined by �⇤

t ↵ = egt↵. Although8t is only defined on R2n \ 0, we extend it continuously
to the whole R2n by setting 8t (0) = 0. Recall that, more generally, every contacto-
morphism � of a contact manifold (M, ⇠ = ker(↵)) can be lifted to an R-equivariant
symplectomorphism 8 of the symplectization (SM = M ⇥ R,! = d(e✓↵)) by defining
8(q, ✓) = (�(q), ✓ � g(q)). If we identify S(S2n�1) = S2n�1 ⇥ R with R2n \ 0 by the
symplectomorphism (q, ✓) 7!

p
2 e✓/2q then this formula for the lift 8 reduces to (1). If

{�t }t2[0,1] is a contact isotopy of (M, ⇠ = ker(↵)) generated by the contact Hamiltonian
ht : M ! R, then the lift {8t }t2[0,1] is the Hamiltonian isotopy of SM which is gener-
ated by the R-equivariant Hamiltonian Ht : SM ! R, Ht(q, ✓) = e✓ht (q). In the case
of M = S2n�1, if {�t }t2[0,1] is generated by ht : S2n�1 ! R then 8t : R2n ! R2n is
generated by Ht : R2n ! R, Ht(z) = 1

2 |z|2ht (z/|z|). Note that R-equivariance of the
Hamiltonian Ht reduces in the case of the sphere to the property of being homogeneous
of degree 2, i.e. Ht(�z) = �2Ht(z) for every � 2 R+. Moreover, if ht : S2n�1 ! R is the
lift of a function on RP 2n�1 then Ht is conical, i.e. Ht(�z) = �2Ht(z) for every � 2 R.

As was proved by Givental [Giv90], or by the second author [S13] following Théret
[Th98], the lift {8t }t2[0,1] of a contact isotopy {�t }t2[0,1] of RP 2n�1 has a 1-parameter
family of generating functions Ft : R2n⇥R2M ! R, t 2 [0, 1], which are conical, i.e. for
each Ft we have Ft(�z, �⇣ ) = �2Ft(z, ⇣ ) for every � 2 R. Because of this property, the
functions Ft are determined by the induced functions ft : RP 2n+2M�1 ! R. These func-
tions are useful to study the discriminant length of contact isotopies of RP 2n�1 because
of the following lemma (which also plays a crucial role in [Giv90] and [S13]).

Lemma 7.1. For every t 2 [0, 1], we have a 1-1 correspondence between critical points
of ft : RP 2n+2M�1 ! R with critical value 0 and discriminant points of �t : RP 2n�1 !
RP 2n�1 that are discriminant points also for the lift of �t to S2n�1.
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Proof. Given a contactomorphism � of (M, ⇠ = ker(↵)), every point of the symplectiza-
tion SM which is in the fiber above a discriminant point of � is a fixed point of the lift8.
In particular, for every t 2 [0, 1] we have a 1-1 correspondence between discriminant
points of the lift of �t to S2n�1 and lines of fixed points of8t : R2n ! R2n. On the other
hand, fixed points of 8t are in 1-1 correspondence with critical points of the generating
function Ft : R2n ⇥ R2M ! R. Since the function Ft is conical, critical points come in
lines and always have critical value 0. Moreover we have a 1-1 correspondence between
lines of critical points of Ft and critical points of ft with critical value 0. Hence, critical
points of ft of critical value 0 are in 1-1 correspondence with discriminant points of the
lift of �t to S2n�1. ut
In order to detect discriminant points and estimate the discriminant length, we will look
at changes in the topology of the subsets Nt := {ft  0} of RP 2n+2M�1 for t 2 [0, 1]. As
in [Giv90, Th98, S13] the tool we use is the cohomological index for subsets of projective
spaces, introduced by Fadell and Rabinowitz [FR78].

The cohomological index of a subset X of a real projective space RP m is de-
fined as follows. Recall that H ⇤(RP m;Z2) = Z2[u]/um+1 where u is the generator of
H 1(RP m;Z2). We define

ind(X) = 1 + max{k 2 N | i⇤X(uk) 6= 0}
where iX : X ,! RP m is the inclusion (and set by definition ind(;) = 0). In other words,
ind(X) is the dimension over Z2 of the image of the homomorphism i⇤X : H ⇤(RP m;Z2)
! H ⇤(X;Z2). Given a conical function F : Rm ! R we denote by ind(F ) the index of
{f  0} ⇢ RP m�1 where f : RP m�1 ! R is the function on projective space induced
by F . The following lemma was proved by Givental [Giv90, Appendices A and B] (see
also [S13, Lemma 5.2]).

Lemma 7.2. Let F and G be conical functions defined on Rm and Rm0
respectively, and

consider the direct sum F � G : Rm+m0 ! R. Then

ind(F � G) = ind(F ) + ind(G).

Given a contact isotopy {�t } of RP 2n�1 we define

µ([�t ]) = ind(F0) � ind(F1)

where Ft : R2n ⇥ R2M ! R is a 1-parameter family of generating functions for the
induced Hamiltonian isotopy 8t of R2n.

Lemma 7.3. µ([�t ]) is well-defined.

Proof. It was proved by Théret8 [Th98] that all 1-parameter families of conical generat-
ing functions Ft associated to a fixed contact isotopy �t of RP 2n�1 differ only by Z2-

8 Théret proved this for the lift to R2n of a Hamiltonian isotopy of CPn�1. Exactly the same
proof goes through for the lift of a contact isotopy of RP 2n�1, on replacing S1-symmetry by
Z2-symmetry.
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and R-equivariant fiber preserving diffeomorphisms and stabilization. Since a Z2- and R-
equivariant diffeomorphism of R2n ⇥R2M descends to a diffeomorphism of RP 2n+2M�1,
it does not affect the cohomological index of the sublevel sets of the generating functions.
Regarding stabilization, recall that a family of functions F 0

t : R2n ⇥ R2M ⇥ R2M 0 ! R
is said to be obtained by stabilization from Ft : R2n ⇥ R2M ! R if F 0

t = Ft � Q where
Q : R2M 0 ! R is a non-degenerate quadratic form. The invariance of µ([�t ]) under sta-
bilization of the generating functions thus follows from Lemma 7.2. We have just shown
that µ([�t ]) does not depend on the choice of a 1-parameter family Ft of generating
functions for �t . We now show that µ([�t ]) does not depend on the choice of a represen-
tative of the homotopy class [�t ]. Let {�0

t }t2[0,1] be another representative of [�t ], and let
{�s

t }s2[0,1] be a homotopy with fixed endpoints joining {�0
t } = {�t } to {�1

t } = {�0
t }. Then

we have a smooth 2-parameter family of functions f s
t : RP 2n+2M�1 ! R associated to

the �s
t . In particular we get a 1-parameter family f s

1 , s 2 [0, 1], of functions associated
to the same contactomorphism �1. Arguing as in [Th98, Lemma 4.8] we see that there is
a smooth isotopy 9s , s 2 [0, 1], of RP 2n+2M�1 such that f s

1 �9s = f 0
1 for all s. So the

sublevel sets Ns
1 = {f s

1  0} are all diffeomorphic and hence their cohomological index
is the same. The same argument also applies to show that all the Ns

0 are diffeomorphic,
and so in particular we see that µ([�t ]) = µ([�0

t ]). ut
In [Giv90], µ([�t ]) is called the non-linear Maslov index of the contact isotopy {�t } of
RP 2n�1. The non-linear Maslov index is a quasimorphism on the universal cover of the
contactomorphism group of RP 2n�1, as follows (see [BSim07]) from the next lemma.
This lemma will also be needed later on, in our proof of unboundedness of the discrimi-
nant norm.

Lemma 7.4 ([Giv90, Theorem 9.1]). For every contact isotopy �t and contactomor-
phism  of RP 2n�1 we have

|µ([ � �t ]) � µ([�t ])|  2n.

This lemma follows from Lemma 7.2 and the following two properties of generating
functions and of the cohomological index.

(i) Quasiadditivity of generating functions: Although the generating function for the
composition  � �t is different9 from the direct sum of the generating functions
for  and �t , it coincides with it on a subspace of codimension 2n.

(ii) Lefschetz property for the cohomological index: If X0 is a hyperplane section of
X ⇢ RP m then ind(X0) � ind(X) � 1.

We refer to Givental [Giv90] for more details of this proof.
As we will now explain, by looking at how the non-linear Maslov index changes

along a contact isotopy we can get information about the discriminant points at every
time. Consider a contact isotopy {�t }t2[0,1] of RP 2n�1. If �t does not have any discrimi-
nant point for all t in a subinterval (t0, t1] of [0, 1] then we must have µ([{�t }t2[0,t0]]) =

9 See the composition formula for example in [Th98].
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µ([{�t }t2[0,t1]]). Indeed, by Lemma 7.1 we know that 0 is a regular value of the corre-
sponding functions ft : RP 2n+2M�1 ! R for all t 2 (t0, t1], hence the sublevel sets
Nt ⇢ RP 2n+2M�1 are all diffeomorphic (see for example [S11, Lemma 2.17]) and so
in particular µ([{�t }t2[0,t0]]) = µ([{�t }t2[0,t1]]). Suppose now that µ([{�t }t2[0,t0]]) 6=
µ([{�t }t2[0,t1]]) and that there is a single value of t in (t0, t1] for which �t has discrimi-
nant points. Then we claim that the set of discriminant points of �t has index greater than
or equal to |µ([{�t }t2[0,t0]]) � µ([{�t }t2[0,t1]])|. Since the set of discriminant points of
�t is a subset of RP 2n�1, its index is at most 2n, and so it follows from our claim that
|µ([{�t }t2[0,t0]]) � µ([{�t }t2[0,t1]])|  2n.

The claim can be seen as follows. It was proved by Théret [Th95, Proposition 84] (see
also [S13, Lemma 5.3]) that if µ([{�t }t2[0,t0]]) 6= µ([{�t }t2[0,t1]]) and there is a single
value of t in (t0, t1] for which �t has discriminant points, then the set of critical points
of ft with critical value 0 has index at least |µ([{�t }t2[0,t0]]) � µ([{�t }t2[0,t1]])|. As we
have seen in Lemma 7.1, there is a bijection between the set of critical points of ft with
critical value 0 and a subset of the set of discriminant points of �t . Still, it is not clear
a priori that these two sets should have the same index, because they are contained in
different projective spaces: the set of discriminant points of �t is contained in RP 2n�1,
while the set of critical points of ft with critical value 0 is contained in RP 2n+2M�1.
However, the claim follows from the fact that the bijection described in Lemma 7.1 is the
restriction of a map i : RP 2n�1 ,! RP 2n+2M�1 which is diffeomorphic to the standard
inclusion i : RP 2n�1 ,! RP 2n+2M�1 (i.e. there is a diffeomorphism of RP 2n+2M�1 that
intertwines i and i). This fact can be seen by looking at the identifications underlying the
construction of generating functions for Hamiltonian symplectomorphisms of R2n. Recall
that a generating function for a Hamiltonian symplectomorphism 8 of R2n is actually a
generating function for the Lagrangian submanifold 08 of T ⇤R2n that is the image of
the graph of 8 under the identification ⌧ : R2n ⇥ R2n ! T ⇤R2n, ⌧ (x, y,X, Y ) =
�

x+X
2 ,

y+Y
2 , Y � y, x � X

�

. Fixed points of 8 correspond to intersections of 08 with
the 0-section. If F : R2n ⇥ R2M ! R is a generating function for 8 then there is a
diffeomorphism from the set of fiber critical points of F to 08, given by the restriction of
the map R2n ⇥ R2M ! T ⇤R2n, (q, ⇠) 7!

�

q, @F
@q

(q, ⇠)
�

. This diffeomorphism induces
the bijection between critical points of F and fixed points of 8 that appears in the proof
of Lemma 7.1. But, if 8 is Hamiltonian isotopic to the identity (as in our case) then the
set of fiber critical points of F is diffeomorphic to R2n ⇥ {0} ⇢ R2n ⇥R2M . This implies
our claim.

We are now ready to prove that the 4k-th iteration {'t }t2[0,1] of the Reeb flow has
discriminant length at least k + 1. As was proved by Givental [Giv90] and Théret [Th98],
we know that µ([{'t }t2[0,1]]) = 4kn. Let {�t }t2[0,1] be a contact isotopy representing
[{'t }t2[0,1]] which is of the form described in Lemma 2.1 and minimizes the discrim-
inant length. By Lemma 7.3 we still have µ([{�t }t2[0,1]]) = 4kn, hence if k 6= 0
then, by the discussion above, there must be a value t0 2 (0, 1] such that �t0 has dis-
criminant points. Assume that t0 is the smallest such value. Then, as discussed above,
µ([{�t }t2[0,t0]])  2n. Thus, we have shown that with a single embedded piece we
can only get to a t0 with µ([{�t }t2[0,t0]])  2n. Write now {�t }t2[0,1] as the concate-
nation {�t }t2[0,1] = {�t }t2[0,t0] ⇤ {�t }t2[t0,1]. By definition we have µ({�t }t2[0,1]) =
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µ({�t }t2[0,t0]) + µ({�t }t2[t0,1]), hence µ({�t }t2[t0,1]) � 2n(2k � 1). For t 2 (t0, 1]
we are not interested anymore in detecting values of t for which �t has discriminant
points, but instead we want to detect values of t for which gr(�t0) and gr(�t ) intersect,
i.e. ��1

t0 � �t has discriminant points. So write {�t }t2[t0,1] = {�t0 � (��1
t0 � �t )}t2[t0,1].

By Lemma 7.4 we have µ({�t0 � (��1
t0 � �t )}t2[t0,1]) � µ({��1

t0 � �t }t2[t0,1])  2n, and
so µ({��1

t0 � �t }t2[t0,1]) � 2n(2k � 1) � 2n = 2n(2k � 2). If k > 1 then, by the same
argument as before, there must be some t1 in (t0, 1] such that ��1

t0 � �t1 has discriminant
points, and hence gr(�t0) and gr(�t1) intersect. We continue in this way and conclude that
the discriminant length of {�t }t2[0,1] is at least k + 1.

Remark 7.5. It would be interesting to understand whether this estimate is sharp, i.e.
whether there is a contact isotopy of length k + 1 in the same homotopy class of the 4k-th
iteration of the Reeb flow.

Unboundedness of the discriminant oscillation norm is proved by combining the above
argument with the monotonicity of the non-linear Maslov index, which is described in the
next lemma.

Lemma 7.6. If {�t } is a positive (respectively negative) contact isotopy of RP 2n�1 then
µ([{�t }]) � 0 (respectively µ([{�t }])  0).

Proof. As proved for example in [S13, Lemma 3.6], if {�t } is a positive contact isotopy of
RP 2n�1 then there is a 1-parameter family of generating functions Ft : R2n ⇥R2M ! R
which is increasing, i.e. @Ft

@t
(q, ⇠) > 0 for all (q, ⇠) 2 R2n ⇥ R2M . Hence ind(Ft ) is

decreasing in t and so µ([{�t }]) = ind(F0) � ind(F1) � 0. ut
Note that if {�t } is a positive loop of contactomorphisms then µ([{�t }]) > 0. On the other
hand, if {�t } is contractible then µ([{�t }]) = µ([id]) = 0. As noticed by Eliashberg and
Polterovich [EP00], this shows that there are no positive contractible loops of contacto-
morphisms of RP 2n�1, i.e. that RP 2n�1 is orderable. Hence the discriminant oscillation
norm is non-degenerate.

8. The Legendrian discriminant length

Let (M, ⇠ = ker(↵)) be a (cooriented) contact manifold. We will now define the dis-
criminant length of a Legendrian isotopy in M . We first give the Legendrian analogue of
Lemma 2.1.

Lemma 8.1. Let {Lt }t2[0,1] be a Legendrian isotopy in M . After perturbing {Lt } in the
same homotopy class with fixed endpoints, there exist an integer N and a subdivision
0 = t0 < t1 < · · · < tN�1 < tN = 1 such that for all i = 0, . . . , N � 1 the submanifold
S

t2[ti ,ti+1] Lt of M is embedded.

Proof. Let {�t }t2[0,1] be a contact isotopy of M such that Lt = �t (L0) for all t (such a
contact isotopy exists because of the Legendrian isotopy extension theorem; see [Gei08]).
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As we saw in the proof of Lemma 2.1, the isotopy {�t } is homotopic with fixed endpoints
to the concatenation of {'t � �t } and {'�1

t � ('1 � �1)} for any other contact isotopy {'t }.
Hence {Lt } is homotopic with fixed endpoints to the concatenation of {'t � �t (L0)} and
{'�1

t ('1 � �1(L0))}. If {'t } is generated by a sufficiently large contact Hamiltonian then
{'t ��t (L0)} is positive and {'�1

t ('1 ��1(L0))} is negative. Thus it is enough to show that
if {Lt }t2[0,1] is a positive (or negative) Legendrian isotopy which is sufficiently C1-small
then it is embedded. This can be proved exactly as for Lemma 2.1, by using Weinstein’s
theorem and the Hamilton–Jacobi equation. ut

Definition 8.2. The discriminant length of the homotopy class of a Legendrian isotopy
{Lt } is the minimal integer N needed to represent it as described in Lemma 8.1. We also
set by definition the discriminant length of the homotopy class of a constant Legendrian
isotopy to be zero.

If {Lt }t2[0,1] is a Legendrian isotopy of M which is already of the form as in Lemma 8.1,
we say that the discriminant length of {Lt } is the minimal number N for which there exists
a subdivision 0 = t0 < t1 < · · · < tN�1 < tN = 1 such that for all i = 0, . . . , N � 1 the
submanifold

S

t2[ti ,ti+1] Lt is embedded. The discriminant length of the homotopy class
of {Lt } is then the minimal discriminant length of a representative which is of the form as
described in Lemma 8.1.

The zigzag and oscillation lengths of the homotopy class of a Legendrian isotopy are
defined by modifying the definition of the discriminant length in the same way as for the
case of contact isotopies. As we will now show, the discriminant and zigzag lengths on
the universal cover eL(M, ⇠) of the space of Legendrians are equivalent.

Proposition 8.3. For every Legendrian isotopy {Lt }t2[0,1] the zigzag length of its homo-
topy class is smaller than or equal to twice the discriminant length.

Proof. It is enough to show that if {Lt }t2[0,1] is an embedded Legendrian isotopy then we
can deform it (in the same homotopy class with fixed endpoints) into an embedded zigzag,
i.e. into the concatenation of a positive and a negative embedded Legendrian isotopies.

The construction of the embedded zigzag goes as follows. Consider a positive Leg-
endrian isotopy {L0

t }t2[0,�] obtained by pushing L0 by the Reeb flow for time t 2 [0, �].
Then L0

0 = L0 and, for � small enough, {L0
t }t2[0,�] is embedded. Note that if ✏ is small

enough then {Lt }t2[0,✏] does not intersect L0
� . Take now a contactomorphism � of M such

that for all t 2 [0, ✏] we have �(Lt ) = Lt/✏ . Hence, � sends the whole isotopy {Lt }t2[0,✏]
to {Lt }t2[0,1] without moving L0. Such a contactomorphism � can be found by applying
to the family of Legendrian isotopies {Lt }t2[0,s] for s 2 [✏, 1] a 1-parameter version of
the Legendrian isotopy extension theorem: given a family of embedded Legendrian iso-
topies {Ls

t }t2[0,1] for s 2 [0, 1], there is a contact isotopy {�s} of M such that, for all s,
�s(L

0
t ) = Ls

t for all t . We take the positive embedded Legendrian isotopy {�(L0
t )}t2[0,�] to

be the first part of our zigzag. Note that the endpoint �(L0
�) does not intersect

S

t2[0,1] Lt .
Indeed,

S

t2[0,1] Lt = �(
S

t2[0,✏] Lt) and we know that L0
� does not intersect

S

t2[0,✏] Lt .
Consider now a contact isotopy  t of M such that  t (L0) = Lt for all t 2 [0, 1]. Since
�(L0

�) does not intersect
S

t2[0,1] Lt , we can assume that �(L0
�) does not belong to the
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support of the isotopy { t }. The inverse of { 1(�(L0
t ))}t2[0,�] is a negative embedded

Legendrian isotopy connecting �1(L
0
�) to L1. It is the second part of our zigzag.

The zigzag we just constructed is in the same homotopy class as the initial {Lt }. An
explicit deformation between the two is given as follows. First keep the first piece {�(L0

t )}
fixed, and deform the second piece with a parameter s decreasing from 1 to 0 by replacing
it at time s by the inverse of  s(�(L0

t )) followed by {Lt }t2[s,1]. When s = 1 we thus
obtain the concatenation of {�(L0

t )}, its inverse, and {Lt }t2[0,1]. We can then homotope
the concatenation of {�(L0

t )} and its inverse to the constant isotopy {L0}. ut
Let {�t }t2[0,1] be a contact isotopy of M as in Lemma 2.1. Then its discriminant length is
equal to the discriminant length of the Legendrian isotopy {gr(�t )}t2[0,1] of M ⇥ M ⇥R.
Note however that the discriminant length of the homotopy class of {�t } is not necessarily
equal to the Legendrian discriminant length of the homotopy class of {gr(�t )} since there
could be a shorter Legendrian isotopy which is homotopic to {gr(�t )} but which is not
the graph of a contact isotopy, or is not the graph of a contact isotopy which is homotopic
to {�t }. Thus the map

j : Ĉont0(M, ⇠) ! fL1(M ⇥ M ⇥ R), [{�t }] 7! [{gr(�t )}],

a priori does not necessarily preserve the discriminant length. It seems plausible that
there might be examples of contact manifolds M for which j does not indeed preserve
the discriminant length. Note that this question was studied by Ostrover [Ostr03] in the
context of Hofer geometry. He proved that for any closed symplectic manifold W with
⇡2(W) = 0 the map j : � 7! gr(�) from Ham(W) to the space L1(W ⇥ W) of all
Lagrangians that are exact Lagrangian isotopic to the diagonal does not preserve the Hofer
distance. Moreover he showed that the image of Ham(W) inside L1(W ⇥W) is “strongly
distorted”. It would be interesting to understand if a similar phenomenon also appears in
some cases for the discriminant (zigzag, oscillation) metric.

In the rest of this section we will prove unboundedness of the Legendrian discriminant
length in three special cases. The arguments can be adapted as in Sections 6 and 7 to show
unboundedness also for the oscillation length.

8.1. Unboundedness for T ⇤B ⇥ S1

We will show that the Legendrian discriminant length is unbounded in T ⇤B⇥S1, for every
smooth closed manifold B. More precisely we will show that the Legendrian isotopy of
T ⇤B ⇥ S1 given by the image of the 0-section by the k-th iteration of the Reeb flow has
discriminant length k. Recall that the Reeb flow on T ⇤B ⇥ S1 is given by rotation in the
S1-direction.

Note that every Legendrian isotopy {Lt } of T ⇤B ⇥S1 can be uniquely lifted (once we
choose a starting point) to a Legendrian isotopy {eLt } of J 1B = T ⇤B ⇥ R. For example,
for the Legendrian isotopy given by the image of the 0-section under the k-th iteration
of the Reeb flow we will consider the lift eLt = 0B ⇥ {kt}. To calculate the discriminant
length of {Lt } we will use the spectral invariants for Legendrian submanifolds of J 1B,
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and an argument similar to the one we gave in Section 6 to show that the discriminant
metric in Ĉontc0(R2n ⇥ S1) is unbounded.

As already mentioned in Section 6, for every Legendrian submanifold L of J 1B which
is isotopic to the 0-section and for any cohomology class u 2 H ⇤(B), we can define a
spectral number c(u, L) 2 R by applying a minimax method to a generating function
quadratic at infinity for L. We will use the following properties (see [S11, S10]) of these
spectral numbers.

Lemma 8.4. The spectral numbers c(u, L) for Legendrian submanifolds L of J 1B have
the following properties:

(i) For any u 2 H ⇤(B), a Legendrian submanifold L which is isotopic to the 0-section
intersects the 0-wall at a point of the form (q, 0, c(u, L)) for some q 2 B. As a
consequence, for every u 2 H ⇤(B) and � 2 R we have c(u, 0B ⇥ {�}) = �.

(ii) c(u[ v, L1 +L2) � c(u, L1)+ c(v, L2), where L1 +L2 is defined to be the set10 of
all points (q, p, z) 2 J 1B such that p = p1 +p2, z = z1 + z2 and (q, p1, z1) 2 L1,
(q, p2, z2) 2 L2.

(iii) c(µ, L) = �c(1, L) where µ and 1 denote respectively the volume and unit class
in H ⇤(B) and where L denotes the image of L under the map J 1B ! J 1B,
(q, p, z) 7! (q, �p, �z).

(iv) For any Legendrian isotopy {Lt }, c(u, Lt ) is continuous in t .
(v) If 9 is a contactomorphism of J 1B which is 1-periodic in the R-coordinate and is

isotopic to the identity through 1-periodic contactomorphisms then

dc(u,9(L))e = dc(u, L �9�1(0B))e.
(vi) If {Lt } is a positive (respectively negative) Legendrian isotopy then the function

t 7! c(u, Lt ) is increasing (respectively decreasing).

We will write c+(L) := c(µ, L) and c�(L) := c(1, L).
Let now {Lt }t2[0,1] be the Legendrian isotopy of T ⇤B ⇥ S1 which is the image of

the 0-section under the k-th iteration of the Reeb flow. Consider the lift given by eLt =
0B ⇥ {kt} for t 2 [0, 1]. We will show that the discriminant length of {Lt }t2[0,1] is equal
to k.

Note first that the discriminant length of {Lt }t2[0,1] cannot be 1. Indeed, since c+(eL0)
= 0 and c+(eL1) = k, by Lemma 8.4(iv) there must be a t0 2 [0, 1] such that
c+(eLt0) = 1. But then Lemma 8.4(i) implies that Lt0 must intersect the 0-section, and
hence {Lt }t2[0,1] is not embedded. Thus, with a first embedded piece we can at most
reach a t0 with dc+(Lt0)e = 1. We will now show that with another embedded piece
we cannot get any further than getting at most c+(eLt) = 2. Indeed, assume that with
a second embedded piece we can get to a t > t0 with dc+(eLt)e = 3. We claim that
dc+(eLt)e  dc+(eLt0)e + dc+(9̃�1

t0 (eLt))e where 9̃t0 is the lift to J 1B of a contacto-
morphism of T ⇤B ⇥S1 that sends the 0-section to Lt0 . Indeed, by Lemma 8.4(v) we have

10 Although L1 +L2 is not necessarily a submanifold, one can still define c(u[v, L1 +L2)—see
for example the comment in [S10, Lemma 2.1].
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dc+(9̃�1
t0 (eLt))e = dc+(eLt � 9̃t0(0B))e. But, by Lemma 8.4(ii), (iii),

c+(eLt � 9̃t0(0B)) = c+(eLt � eLt0) = c(µ [ 1, eLt + eLt0)

� c(µ, eLt) + c(1, eLt0) = c+(eLt) � c+(eLt0)

and so dc+(9̃�1
t0 (eLt))e � dc+(eLt)e � dc+(eLt0)e as we wanted. Thus we get

dc+(9̃�1
t0

(eLt))e � 2,

and so we see that there must be a t1 in [t0, t] for which dc+(9̃�1
t0 (eLt1))e = 1. We then

deduce that 9�1
t0 (Lt1) intersects the 0-section. But this is equivalent to saying that Lt1

intersects Lt0 , which is a contradiction. Continuing, we see that the discriminant length
of {Lt }t2[0,1] is equal to k.

8.2. Unboundedness for RP 2n�1

Using the same techniques as in Section 7 we can also prove that the Legendrian discrim-
inant length in RP 2n�1 is unbounded. We see RP 2n�1 as the projectivization of R2n,
and denote by ⇡ : R2n \ {0} ! RP 2n�1 the projection. If L is a Legendrian submani-
fold of RP 2n�1 then eL := ⇡�1(L) is a (conical) Lagrangian submanifold of R2n. Note
that we can identify R2n with T ⇤Rn, by regarding the first n components of R2n as the
0-section of T ⇤Rn. In this way we can associate to a Legendrian submanifold of RP 2n�1

the generating function of its lift to R2n, seen as a Lagrangian submanifold of T ⇤Rn.
More precisely, consider a Legendrian isotopy {Lt }t2[0,1] in RP 2n�1, starting at the Leg-
endrian submanifold L0 of RP 2n�1 that corresponds to the 0-section of T ⇤Rn. Then
its lift eLt to R2n ⌘ T ⇤Rn has a 1-parameter family of conical generating functions
Ft : Rn ⇥ RN ! R, t 2 [0, 1]. Being conical, these functions are determined by the
induced functions ft : RP n+N�1 ! R, t 2 [0, 1]. Note that critical points of ft with
critical value 0 correspond to intersections of Lt with L0. As in Section 7, we can study
the discriminant length of a Legendrian isotopy {Lt }t2[0,1] by looking at the variation of
the non-linear Maslov index µ([Lt ]) := ind(F0) � ind(F1). The key Lemma 7.4 holds
(with the same proof) also in this context: if {Lt }t2[0,1] is a Legendrian isotopy and � a
contactomorphism then |µ([�(Lt )]) � µ([Lt ])|  n. Consider now the Legendrian iso-
topy {Lt = 't (L0)} where L0 is the Legendrian submanifold of RP 2n�1 corresponding
to the 0-section of T ⇤Rn and where {'t } is the 2k-th iteration of the Reeb flow. Then
µ([Lt ]) = 2nk (see Givental [Giv90]). Arguing along the same lines as in Section 7 we
see that the discriminant length of Lt is at least k + 1. Note that monotonicity of the non-
linear Maslov index also holds for Legendrian isotopies, and can be used to prove that the
Legendrian oscillation length is also unbounded.

8.3. Other examples

In the case where B = S1, the contact manifold (T ⇤B ⇥ S1, ker(dz � pdq)), (q, p, z) 2
R/Z ⇥ R ⇥ R/Z, is

(T 2 ⇥ (�⇡/2,⇡/2), ⇣ = ker(sin ✓dx + cos ✓dy))
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where (x, y, ✓) 2 R/Z ⇥ R/Z ⇥ (�⇡/2,⇡/2), via the change of variables

q = �x, p = tan ✓, z = y.

By the discussion in 8.1 we know that the homotopy class of the path given by Lt =
{(x, tk, 0)} for t 2 [0, 1] is of discriminant length k.

One can use this result to obtain Legendrian paths of arbitrary discriminant (or oscil-
lation) length in various examples of closed 3-manifolds. Here is one of them.

Let 6 be a closed oriented surface of genus g � 1 and M be an S1-fibration ⇡ :
M ! 6 over 6, together with a contact structure ⇠ that is S1-invariant and transverse to
the fibers. For any embedded curve � ⇢ 6, the incompressible torus T� = ⇡�1(� ) has
a non-singular characteristic foliation ⇠T� . This foliation is linear and its slope depends
continuously on the curve � . By the contact condition, if we move � in one direction the
slope changes, and thus, by moving � a little, one can assume that ⇠T� is a foliation by
Legendrian circles (Ls)s2R/Z.

Proposition 8.5. For all k 2 N, the discriminant (and oscillation) length of the homotopy
class of the Legendrian isotopy (Ls)s2[0,k] is at least k.

Proof. We consider the infinite cover bM of M with group ⇡1(T� ). It is the pullback
b⇡ : bM ! b6 of the fibration ⇡ along an infinite cover b6 ! 6, where b6 is diffeomorphic
to � ⇥ R. The manifold bM is thus diffeomorphic to T 2 ⇥ R, with T� ' T 2 ⇥ {0}. The
pullback b⇠ of ⇠ in bM is a connection for the S1-fibration bM ! b6. Taking coordinates
in the base b6 extended to bM by coordinates in the S1-fiber direction, we easily see that
( bM,b⇠) can be injectively immersed in (T 2 ⇥ (�⇡/2,⇡/2), ker(sin ✓dx + cos ✓dy)) by a
map taking T to T 2⇥{0}. Moreover any isotopy of L0 admits a lift to bM whose projection
to M is one-to-one on its image. We can thus deduce the statement of the proposition from
the result on T ⇤S1 ⇥ S1. ut
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