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MOTIVIC HYPERKÄHLER RESOLUTION CONJECTURE FOR GENERALIZED KUMMER
VARIETIES

LIE FU, ZHIYU TIAN, AND CHARLES VIAL

Abstract. Given a smooth projective variety M endowed with an action of a finite group G, following
Jarvis–Kaufmann–Kimura [33] and Fantechi–Göttsche [25], we define the orbifold motive (or Chen–
Ruan motive) of the quotient stack [M/G] as an algebra object in the category of Chow motives.
Inspired by Ruan [46], one can formulate a motivic version of his Cohomological HyperKähler
Resolution Conjecture (CHRC). We prove this conjecture in two situations related to an abelian surface
A and a positive integer n. Case(A) concerns Hilbert schemes of points of A: the Chow motive of A[n]

is isomorphic as algebra objects, up to a suitable sign change, to the orbifold motive of the quotient
stack [An/Sn]. Case (B) for generalized Kummer varieties: the Chow motive of the generalized
Kummer variety Kn(A) is isomorphic as algebra objects, up to a suitable sign change, to the orbifold
motive of the quotient stack [An+1

0 /Sn+1], where An+1
0 is the kernel abelian variety of the summation

map An+1
→ A. In particular, these results give complete descriptions of the Chow motive algebras

(resp. Chow rings) of A[n] and Kn(A) in terms of h1(A) the first Chow motive of A (resp. CH∗(A) the
Chow ring of A). As a byproduct, we prove the Cohomological HyperKähler Resolution Conjecture
for generalized Kummer varieties. As an application, we provide multiplicative Chow–Künneth
decompositions for Hilbert schemes of abelian surfaces and for generalized Kummer varieties. In
particular, we have a multiplicative direct sum decomposition of their Chow rings with rational
coefficients, which are expected to be the splitting of the conjectural Bloch–Beilinson–Murre filtration.
The existence of such a splitting for holomorphic symplectic varieties is conjectured by Beauville [10].
Finally, as another application analogous to Voisin’s result in [54], we prove that over a non-empty
Zariski open subset of the base, there exists a decomposition isomorphism Rπ∗Q ' ⊕Riπ∗Q[−i] in
Db

c(B) which is compatible with the cup-products on both sides, where π : Kn(A)→ B is the relative
generalized Kummer variety associated to a (smooth) family of abelian surfacesA→ B.
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1. Introduction

1.1. Motivation 1 : Ruan’s hyperKähler resolution conjectures. In [17], Chen and Ruan construct
the orbifold cohomology ring H∗orb(X) for any complex orbifoldX. It is defined to be the cohomology
of its inertia variety H∗(IX) as Q-vector space (with degree shifted by some rational numbers called
age), but is endowed with a highly non-trivial ring structure coming from moduli spaces of curves
mapping to X. An algebro-geometric treatment is contained in Abramovich–Graber–Vistoli’s work
[1], based on the construction of moduli stack of twisted stable maps in [2]. In the global quotient
case1, some equivalent definitions are available : see for example [25], [33], [35] and §2.

Originating from the topological string theory of orbifolds in [23], [24], one observes that
the stringy topological invariants of an orbifold, e.g. the orbifold Euler number and the orbifold
Hodge numbers, should be related to the corresponding invariants of a crepant resolution ([4],
[5], [38]). A much deeper relation was brought forward by Ruan, who made, among others, the
following Cohomological HyperKähler Resolution Conjecture (CHRC) in [46]. For more general
and sophisticated versions of this conjecture, see [47], [15], [18].

Conjecture 1.1 (Ruan’s CHRC). Let X be a compact complex orbifold with underlying variety X being
Gorenstein. If there is a crepant resolution Y→ X with Y being hyperKähler, then we have an isomorphism
of graded commutative C-algebras : H∗(Y,C) ' H∗orb(X,C).

As the construction of orbifold product can be expressed using algebraic correspondences
(cf. [1] and §2), one has the analogous definition of the orbifold Chow ring CHorb(X), or more
generally the orbifold Chow motive horb(X) (see Definitions 2.6 and 2.5 for the global quotient case)
of a smooth proper Deligne–Mumford stackX. We propose to study the following motivic version
of Conjecture 1.1. Let CHMC be the category of Chow motives with complex coefficients and h be
the (contravariant) functor that associates to a smooth projective variety its Chow motive.

Conjecture 1.2 (Motivic HyperKähler Resolution Conjecture). Let X be a smooth proper complex
Deligne–Mumford stack with underlying coarse moduli space X being a (singular) symplectic variety. If
there is a symplectic resolution Y→ X, then we have an isomorphism h(Y) ' horb(X) as commutative algebra
objects in CHMC, hence in particular an isomorphism of graded C-algebras : CH∗(Y)C ' CH∗orb(X)C.

See Definition 3.1 for generalities on symplectic singularities and symplectic resolutions. See
also Conjecture 3.2 for a more precise statement which would contain all situations considered in
this paper.

From now on, we will restrict ourselves to the case where the Deligne–Mumford stack in
question is of the form of a global quotient X = [M/G], where M is a smooth projective variety
with an action of a finite group G. In this case, the definition of the orbifold motive of [M/G]
as a (commutative) algebra object in the category of Chow motives with rational coefficients2 is
particularly down-to-earth ; it is the G-invariant sub-algebra object of some explicit algebra object :

horb ([M/G]) :=

⊕
1∈G

h(M1)
(
− age(1)

)
, ?orb


G

,

1In this paper, by ‘global quotient’, we always mean the quotient of a smooth projective variety by a finite group.
2Strictly speaking, the orbifold Chow motive of [M/G] in general lives in the larger category of Chow motives with

fractional Tate twists. However, in the case that interests us, namely when there exists a crepant resolution, for the word
‘crepant resolution’ to make sense we understand that the underlying singular variety M/G is at least Gorenstein, in
which case all age shiftings are integers and we stay in the usual category of Chow motives. See 2.1 and 2.5 for the
general definitions.
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where for each 1 ∈ G, M1 is the fixed subvariety of 1 and the orbifold product ?orb is defined by
using natural inclusions and Chern classes of normal bundles of various fixed loci ; see Definition
2.5 (or (2) below) for the precise formula of ?orb as well as the Tate twists by age (2.3) and the
G-action. The orbifold Chow ring3 is then defined as the following commutative algebra

CH∗orb([M/G]) :=
⊕

i

HomCHM(1(−i), horb([M/G])),

or equivalently more explicitly :

(1) CH∗orb ([M/G]) :=

⊕
1∈G

CH∗−age(1)(M1), ?orb


G

,

where ?orb is as follows : for two elements 1, h ∈ G and α ∈ CHi−age(1)(M1), β ∈ CH j−age(h)(Mh), their
orbifold product is the following element in CHi+ j−age(1h)(M1h) :

(2) α ?orb β := ι∗
(
α|M<1,h> · β|M<1,h> · ctop(F1,h)

)
,

where ι : M<1,h> ↪→M1h is the natural inclusion and F1,h is the obstruction bundle. This construction
is completely parallel to the construction of orbifold cohomology due to Fantechi–Göttsche [25]
which is further simplified in Jarvis–Kaufmann–Kimura [33].

Interesting examples of symplectic resolutions appear when considering the Hilbert–Chow
morphism of a smooth projective surface. More precisely, in his fundamental paper [7], Beauville
provides such examples :

Example 1
Let S be a complex projective K3 surface or an abelian surface. Its Hilbert scheme of length-n
subschemes, denoted by S[n], is a symplectic crepant resolution of the symmetric product S(n)

via the Hilbert–Chow morphism. The corresponding Cohomological HyperKähler Resolution
Conjecture was proved independently by Fantechi–Göttsche in [25] and Uribe in [49] making use
of Lehn–Sorger’s work [37] computing the ring structure of H∗(S[n]). The Motivic HyperKähler
Resolution Conjecture 1.2 in the case of K3 surfaces will be treated in [29] and the case of abelian
surfaces is the following theorem.

Theorem 1.3 (MHRC for A[n]). Let A be an abelian surface and A[n] be its Hilbert scheme as before. Then
we have an isomorphism of commutative algebra objects in the category CHM of Chow motives with rational
coefficients :

h
(
A[n]

)
' horb,dt([An/Sn]),

where on the left hand side, the product structure is given by the small diagonal of A[n]
×A[n]

×A[n] while on
the right hand side, the product structure is given by the orbifold product ?orb with a suitable sign change,
called discrete torsion, in 3.4. In particular, we have an isomorphism of commutative graded Q-algebras :

(3) CH∗
(
A[n]

)
Q
' CH∗orb,dt([A

n/Sn]).

3The definition of the orbifold Chow ring has already appeared in Page 211 of Fantechi–Göttsche [25] and proved to
be equivalent to Abramovich–Grabber–Vistoli’s construction in [1] by Jarvis–Kaufmann–Kimura in [33] .
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Example 2
Let A be a complex abelian surface. The composition of the Hilbert–Chow morphism followed by
the sum map A[n+1]

→ A(n+1)
→ A is an isotrivial fibration. The generalized Kummer variety Kn(A)

is by definition the fiber of this morphism over the origin of A. It is a hyperKähler resolution of
the quotient An+1

0 /Sn+1, where An+1
0 is the kernel abelian variety of the sum map An+1

→ A. The
main result of the paper is the following theorem confirming the Motivic HyperKähler Resolution
Conjecture 1.2 in this situation.

Theorem 1.4 (MHRC for Kn(A)). Let Kn(A) be the 2n-dimensional generalized Kummer variety associated
to an abelian surface A. Let An+1

0 := Ker
(
+ : An+1

→ A
)

endowed with the natural Sn+1-action. Then we
have an isomorphism of commutative algebra objects in the category CHM of Chow motives with rational
coefficients :

h (Kn(A)) ' horb,dt([An+1
0 /Sn+1]),

where on the left hand side, the product structure is given by the small diagonal while on the right hand side,
the product structure is given by the orbifold product ?orb with the sign change given by discrete torsion in
3.4. In particular, we have an isomorphism of commutative graded Q-algebras :

(4) CH∗ (Kn(A))Q ' CH∗orb,dt([A
n+1
0 /Sn+1]).

Taking the Betti cohomological realization, we confirm Ruan’s original Cohomological Hy-
perKähler Resolution Conjecture 1.1 in this case :

Theorem 1.5 (CHRC for Kn(A)). Let notation be as in Theorem 1.4. We have an isomorphism of graded
commutative Q-algebras :

H∗ (Kn(A))Q ' H∗orb,dt([A
n+1
0 /Sn+1]).

The CHRC has never been checked in the case of generalized Kummer varieties in the
literature. Closely related work on the CHRC in this case are Nieper–Wisskirchen’s description of
the cohomology ring H∗(Kn(A),C) in [42], which plays an important rôle in our proof ; and Britze’s
thesis [14] comparing H∗(A × Kn(A),C) and the computation of the orbifold cohomology ring of
[A × An+1

0 /Sn+1] in Fantechi–Göttsche [25]. See however Remark 6.16.

1.2. On explicit description of Chow rings. Let us make some remarks on the way we understand
Theorem 1.3 and Theorem 1.4. For each of them, the seemingly fancy right hand side of (3) and
(4) given by orbifold Chow ring is actually very concrete (see (1)) : as groups, since all fixed loci
are just various diagonals, they are the Chow groups of products of the abelian surface A, which
can be handled by Beauville’s decomposition of Chow rings of abelian varieties [8] ; while the ring
structures are given by the orbifold product which is extremely simplified in our cases (see (2)) :
all obstruction bundles F1,h are trivial and hence the orbifold products are either the intersection
product pushed forward by inclusions or simply zero.

In short, given an abelian surface A, Theorem 1.3 and Theorem 1.4 provide an explicit
description of the Chow rings of A[n] and of Kn(A) in terms of Chow rings of products of A
(together with some combinatoric rules specified by the orbifold product). To illustrate how
explicit it is, we work out two simple examples in §3.2 : the Chow ring of the Hilbert square of a
K3 surface or an abelian surface and the Chow ring of the Kummer K3 surface associated to an
abelian surface.
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1.3. Motivation 2 : Beauville’s splitting principle. The original motivation for the authors to
study the Motivic HyperKähler Resolution Conjecture 1.2 was to understand the (rational) Chow
rings, or more generally the Chow motives, of smooth projective holomorphic symplectic vari-
eties, that is, an even-dimensional projective manifold carrying a holomorphic 2-form which is
symplectic (i.e. non-degenerate at each point). As an attempt to unify his work on algebraic cycles
on abelian varieties [8] and his result with Voisin on Chow rings of K3 surfaces [11], Beauville
conjectured in [10], under the name of the splitting principle, that for a smooth projective holo-
morphic symplectic variety X, there exists a canonical multiplicative splitting of the conjectural
Bloch–Beilinson–Murre filtration of the rational Chow ring (see Conjecture 7.1 for the precise state-
ment). In this paper, we will understand the splitting principle as in the following motivic version
(see Definition 7.2 and Conjecture 7.4) :

Conjecture 1.6 (Beauville’s Splitting Principle : motives). Let X be a smooth projective holomorphic
symplectic variety of dimension 2n. Then we have a canonical multiplicative Chow–Künneth decomposition
of h(X) of Bloch–Beilinson type, that is, a direct sum decomposition in the category of rational Chow motives :

(5) h(X) =

4n⊕
i=0

hi(X)

satisfying the following properties :

(1) (Chow–Künneth) The cohomology realization of the decomposition gives the Künneth decomposi-
tion : for each 0 ≤ i ≤ 4n, H∗(hi(X)) = Hi(X).

(2) (Multiplicativity) The product µ : h(X)⊗h(X)→ h(X) given by the small diagonal δX ⊂ X×X×X
respects the decomposition : the restriction of µ on the summand hi(X) ⊗ h j(X) factorizes through
hi+ j(X).

(3) (Bloch–Beilinson–Murre) for any i, j ∈ N,
- CHi(h j(X)) = 0 if j < i ;
- CHi(h j(X)) = 0 if j > 2i ;
- the realization induces an injective map HomCHM

(
1(−i), h2i(X)

)
→ HomQ−HS

(
Q(−i),H2i(X)

)
.

Such a decomposition naturally induces a (multiplicative) bigrading on the Chow ring
CH∗(X) = ⊕i,s CHi(X)s by setting :

CHi(X)s := HomCHM

(
1(−i), h2i−s(X)

)
,

which is the original splitting that Beauville envisaged.

Our main results Theorem 1.3 and Theorem 1.4 allow us, for X being a Hilbert scheme of
an abelian surface or a generalized Kummer variety, to achieve in Theorem 1.7 below partially the
goal Conjecture 1.6 : we construct the candidate direct sum decomposition (5) satisfying the first
two conditions (1) and (2) in Conjecture 1.6, namely a multiplicative Chow–Künneth decomposition
(see Definition 7.2, cf. [48]). The remaining Condition (3) on Bloch–Beilinson–Murre properties is
very much related to Beauville’s Weak Splitting Property, which has already been proved in [28] for
the case of generalized Kummer varieties considered in this paper ; see [10], [53], [57], [45] for the
complete story and more details.

Theorem 1.7 (=Theorem 7.9 + Proposition 7.13). Let A be an abelian surface and n be a positive integer.
Let X be the corresponding 2n-dimensional Hilbert scheme A[n] or generalized Kummer variety Kn(A). Then
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X has a canonical multiplicative Chow–Künneth decomposition

h(X) =

4n⊕
i=0

hi(X),

where in the two respective cases we have

hi(A[n]) :=

⊕
1∈Sn

hi−2 age(1)((An)1)(− age(1))


Sn

;

hi(Kn(A)) :=

 ⊕
1∈Sn+1

hi−2 age(1)((An+1
0 )1)(− age(1))


Sn+1

.

In particular, we have a canonical multiplicative bigrading on the (rational) Chow ring given by

CHi(X)s := CHi(h2i−s(X)).

Moreover, the i−th Chern class of X is in CHi(X)0 for any i.

The associated filtration F j CHi(X) := ⊕s≥ j CHi(X)s is supposed to satisfy the Bloch–Beilinson–
Murre conjecture (see Conjecture 7.11). We point out in Remark 7.12 that Beauville’s Conjecture
7.5 on abelian varieties implies for X in our two cases some Bloch–Beilinson–Murre properties :
CH∗(X)s = 0 for s < 0 and the cycle class map restricted to CH∗(X)0 is injective.

See Remark 7.10 for previous related results.

1.4. Cup products vs. decomposition theorem. For a smooth projective morphism π : X → B
Deligne shows in [21] that one has an isomorphism

Rπ∗Q �
⊕

i

Riπ∗Q[−i],

in the derived category of sheaves of Q−vector spaces on B. Voisin [54] remarks that this isomor-
phism cannot be made compatible with the product structures on both sides even after shrinking
B to a Zariski open subset and shows that it can be made so if π is a smooth family of projective
K3 surfaces. Her result is extended in [50] to relative Hilbert schemes of finite lengths of a smooth
family of projective K3 surfaces or abelian surfaces. As a by-product of our main result in this
paper, we can similarly prove the case of generalized Kummer varieties.

Theorem 1.8 (=Corollary 8.4). Let A → B be an abelian surface over B. Consider π : Kn(A) → B the
relative generalized Kummer variety. Then there exist a decomposition isomorphism

(6) Rπ∗Q �
⊕

i

Riπ∗Q[−i],

and a nonempty Zariski open subset U of B, such that this decomposition becomes multiplicative for the
restricted family over U.

Convention and notation. Throughout the paper, all varieties are defined over the field of complex
numbers.

• The notation CH (resp. CHC) means Chow groups with rational (resp. complex) coefficients.
CHM is the category of Chow motives over the complex numbers with rational coefficients.
• For a variety X, its small diagonal, always denoted by δX, is {(x, x, x) | x ∈ X} ⊂ X × X × X.
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• For a smooth surface X, its Hilbert scheme of length-n subschemes is always denoted by
X[n], which is smooth of dimension 2n by [26].
• An (even) dimensional smooth projective variety is holomorphic symplectic if it has a holomor-

phic symplectic (i.e. non-degenerate at each point) 2-form. When talking about resolutions,
we tend to use the word hyperKähler as its synonym, which usually (but not in this paper)
requires also the ‘irreducibility’, that is, the simple connectedness of the variety and the
uniqueness up to scalars of the holomorphic symplectic 2-form. In particular, punctual
Hilbert schemes of abelian surfaces are examples of holomorphic symplectic varieties.
• An abelian variety is always supposed to be connected. Its non-connected generalization

causes extra difficulty and is dealt with in §6.2.
• When working with 0-cycles on an abelian variety A, to avoid confusion, for a collection

of points x1, . . . , xm ∈ A, we will write [x1] + · · · + [xm] for the 0-cycle of degree m (or
equivalently, a point in A(m), the m-th symmetric product of A) and x1 + · · · + xm will stand
for the usual sum using the group law of A, which is therefore a point in A.

Acknowledgements. We would like to thank Samuel Boissière, Alessandro Chiodo, Julien Gri-
vaux, Bruno Kahn, Robert Laterveer, Manfred Lehn, Marc Nieper-Wißkirchen, Yongbin Ruan,
Claire Voisin, and Qizheng Yin for helpful discussions and email correspondences. The project
was initiated when we were members of the I.A.S. for the special year Topology and Algebraic Ge-
ometry in 2014–15 (L.F. and Z.T. were funded by the NSF and C.V. by the Fund for Mathematics).
We thank the Institute for the exceptional working conditions.

2. Orbifold motives and orbifold Chow rings

To fix the notation, we start by a brief reminder of the construction of pure motives (cf. [3]).
In order to work with Tate twists by age functions (2.3), we have to extend slightly the usual notion
of pure motives by allowing twists by a rational number.

Definition 2.1 (Chow motives with fractional Tate twists). The category of Chow motives with
fractional Tate twists with rational coefficients, denoted by C̃HM, has as objects finite direct sums
of triples of the form (X, p,n) with X a connected smooth projective variety, p ∈ CHdim X(X × X) a
projector and n ∈ Q a rational number. Given two objects (X, p,n) and (Y, q,m), the morphism space
between them consists of correspondences :

HomC̃HM
(
(X, p,n), (Y, q,m)

)
:= q ◦ CHdim X+m−n(X × Y) ◦ p,

where we simply impose that all Chow groups of a variety with non-integer codimension are
zero. The composition law of correspondences is the usual one. Identifying (X, p,n)⊕ (Y, q,n) with
(X

∐
Y, p

∐
q,n) makes CHM a Q-linear category. Moreover, CHM is a rigid symmetric monoı̈dal

category with unit1 := (Spec C, Spec C, 0), tensor product defined by (X, p,n)⊗(Y, q,m) := (X×Y, p×
q,n+m) and duality given by (X, p,n)

∨

:=
(
X, tp,dim X − n

)
. There is a natural contravariant functor

h : SmProjop
→ CHM sending a smooth projective variety X to its Chow motive h(X) = (X,∆X, 0)

and a morphism f : X→ Y to its transposed graph tΓ f ∈ CHdim Y(Y × X) = HomCHM(h(Y), h(X)).

Remarks 2.2. (1) The category C̃HMC of Chow motives with fractional Tate twists with complex
coefficients is defined similarly by replacing all Chow groups with rational coefficients CH
by Chow groups with complex coefficients CHC in the above definition.

(2) The usual category of Chow motives with rational (resp. complex) coefficients CHM
(resp. CHMC, cf. [3]) is identified with the full subcategory of C̃HM (resp. C̃HMC) con-
sisting of objects (X, p,n) with n ∈ Z.
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(3) The above construction works for any adequate equivalence relation and gives correspond-
ing categories of pure motives (with fractional Tate twists) by replacing CH by the group
of algebraic cycles modulo the chosen adequate equivalence relation (cf. [3]). In particular,
we can talk about the category of numerical motives NumM and homological motives4 HomM
with rational or complex coefficients as well as their variants with fractional Tate twists,
etc..

Let M be an m-dimensional smooth projective complex variety equipped with an action of
a finite group G. We adapt the constructions in [25] and [33] to define the orbifold motive of the
smooth proper Deligne–Mumford stack [M/G]. For any 1 ∈ G, M1 :=

{
x ∈M | 1x = x

}
is the fixed

locus of the automorphism 1, which is a smooth subvariety of M. The following notion is due to
Reid (see [44]).

Definition 2.3 (Age). Given an element 1 ∈ G, let r ∈ N be its order. The age of 1, denoted by
age(1), is the locally constant Q≥0-valued function on M1 defined as follows. Let Z be a connected
component of M1. Choosing any point x ∈ Z, we have the induced automorphism 1∗ ∈ GL(TxM),
whose eigenvalues, repeated according to multiplicities, are{

e2π
√
−1

α1
r , · · · , e2π

√
−1 αm

r

}
,

with 0 ≤ αi ≤ r − 1. One defines

age(1)|Z :=
1
r

m∑
i=1

αi.

It is obvious that the value of age(1) on Z is independent of the choice of x ∈ Z and it takes values in N
if 1∗ ∈ SL(TxM). Also immediate from the definition, we have age(1) + age(1−1) = codim(M1 ⊂M)
as locally constant functions. Thanks to the natural isomorphism h : M1 →Mh1h−1

sending x to h.x,
for any 1, h ∈ G, the age function is invariant under conjugation.

Example 2.4. Let S be a smooth projective variety of dimension d and n a positive integer. The
symmetric group Sn acts by permutation on M = Sn. For each 1 ∈ Sn, a straightforward compu-
tation shows that age(1) is the constant function d

2 (n − |O(1)|), where O(1) is the set of orbits of 1
as a permutation of {1, . . . ,n}. For example, when S is a surface (i.e. , d = 2), the age in this case is
always a non-negative integer and we have age(id) = 0, age(12 · · · r) = r − 1, age(12)(345) = 3 etc..

Recall that an algebra object in a symmetric monoı̈dal category (M,⊗,1) (for example, CHM,
C̃HM etc.) is an object A ∈ ObjM together with a morphism µ : A ⊗ A → A in M, called the
multiplication or product structure, satisfying the associativity axiom µ ◦ (µ ⊗ id) = µ ◦ (id⊗µ). An
algebra object A inM is called commutative if µ ◦ ι = µ, where ι : A ⊗ A → A ⊗ A is the structural
symmetry isomorphism of M. For each smooth projective variety X, its Chow motive h(X) is
naturally a commutative algebra object in CHM (hence in C̃HM, C̃HMC, etc.) whose multiplication
is given by the small diagonal δX ∈ CH2 dim X(X × X × X) = HomCHM (h(X) ⊗ h(X), h(X)).

Definition 2.5 (Orbifold Chow motive). We define first of all an auxiliary (in general non-
commutative) algebra object h(M,G) of C̃HM in several steps :

4One has to choose a Weil cohomology theory when talking about homological motives. In this paper, however, we
always use the Betti cohomology and make the choice implicit.
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(1) As a Chow motive with fractional twists, h(M,G) is defined to be the direct sum over G, of
the motives of fixed loci twisted à la Tate by − age :

h(M,G) :=
⊕
1∈G

h(M1)
(
− age(1)

)
.

(2) h(M,G) is equipped with a natural G-action : each element h ∈ G induces for each 1 ∈ G
an isomorphism h : M1 → Mh1h−1

by sending x to h.x, hence an isomorphism between the
direct factors h(M1)(− age(1)) and h(Mh1h−1

)(− age(h1h−1)) by the conjugation invariance of
the age function.

(3) For any 1 ∈ G, let r be its order. We have a natural automorphism 1∗ of the vector bundle
TM|M1 . Consider its eigen-subbundle decomposition :

TM|M1 =

r−1⊕
j=0

W1, j,

where W1, j is the subbundle associated to the eigenvalue e2π
√
−1 j

r . Define

S1 :=
r−1∑
j=0

j
r
[W1, j] ∈ K0(M1)Q.

Note that the virtual rank of S1 is nothing but age(1) by Definition 2.3.
(4) For any 11, 12 ∈ G, let M<11,12> = M11 ∩M12 and 13 = 1−1

2 1
−1
1 . Define the following element

in K0(M<11,12>)Q :

F11,12 := S11

∣∣∣
M<11 ,12>

+ S12

∣∣∣
M<11 ,12>

+ S13

∣∣∣
M<11 ,12>

+ TM<11,12> − TM|M<11 ,12> .

Note that its virtual rank is

(7) rk F11,12 = age(11) + age(12) − age(1112) − codim(M<11,12> ⊂M1112).

In fact, this class in the Grothendieck group is represented by a genuine obstruction vector
bundle constructed in [25] (cf. [33]). In particular, age(11) + age(12)− age(1112) is always an
integer.

(5) The product structure ?orb on h(M,G) is defined to be multiplicative with respect to the
G-grading and for each 11, 12 ∈ G, the orbifold product

?orb : h(M11)(− age(11)) ⊗ h(M12)(− age(12))→ h(M1112)(− age(1112))

is the correspondence determined by the algebraic cycle

δ∗(ctop(F11,12)) ∈ CHdim M11 +dim M12 +age(11)+age(12)−age(1112)(M11 ×M12 ×M1112),

where δ : M<11,12> → M11 ×M12 ×M1112 is the natural morphism sending x to (x, x, x) and
ctop means the top Chern class of F11,12 . One can check easily that the product structure ?orb
is invariant under the action of G.

(6) The associativity of ?orb is non-trivial. The proof in [33, Lemma 5.4] is completely algebraic
hence also works in our motivic case.
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(7) Finally, the orbifold Chow motive of [M/G], denoted by horb([M/G]), is the G-invariant subal-
gebra object5 of h(M,G), which turns out to be a commutative algebra object in C̃HM :

(8) horb ([M/G]) := h(M,G)G =

⊕
1∈G

h(M1)
(
− age(1)

)
, ?orb


G

We still use ?orb to denote the orbifold product on this sub-algebra object horb([M/G]).

By replacing the rational equivalence relation by another adequate equivalence relation, the
same construction gives the orbifold homological motives, orbifold numerical motives, etc. associated to
a global quotient smooth proper Deligne–Mumford stack as algebra objects in the corresponding
categories of pure motives (with fractional Tate twists).

The definition of the orbifold Chow ring then follows in the standard way and agrees with
the one in [25], [33] and [1].

Definition 2.6 (Orbifold Chow ring). The orbifold Chow ring of [M/G] is the commutative Q≥0-
graded Q-algebra CH∗orb([M/G]) :=

⊕
i∈Q≥0

CHi
orb([M/G]) with

(9) CHi
orb([M/G]) := HomC̃HM(1(−i), horb([M/G]))

The ring structure on CH∗orb([M/G]), called orbifold product, denoted again by ?orb, is determined
by the product structure ?orb : horb([M/G]) ⊗ horb([M/G])→ horb([M/G]) in Definition 2.5.
More concretely, CH∗orb([M/G]) is the G-invariant sub-Q-algebra of an auxiliary (non-commutative)
finitely Q≥0-graded Q-algebra CH∗(M,G), which is defined by

CH∗(M,G) :=

⊕
1∈G

CH∗−age(1)(M1), ?orb

 ,
where for two elements 1, h ∈ G and α ∈ CHi−age(1)(M1), β ∈ CH j−age(h)(Mh), their orbifold product
is the following element in CHi+ j−age(1h)(M1h) :

(10) α ?orb β := ι∗
(
α|M<1,h> · β|M<1,h> · ctop(F1,h)

)
,

where ι : M<1,h> ↪→M1h is the natural inclusion.

Remark 2.7. The main interest of the paper lies in the situation when the underlying singular
variety of the orbifold has at worst Gorenstein singularities. Recall that an algebraic variety X is
Gorenstein if it is Cohen–Macaulay and the dualizing sheaf is a line bundle, denoted ωX. In the
case of a global quotient M/G, being Gorenstein is the same thing as the local G-triviality of the
canonical bundle ωM, which is again equivalent to the condition that the stabilizer of each point
x ∈ M is contained in SL(TxM). In this case, it is straightforward to check that the Gorenstein
condition implies that the age function actually takes values in the integers Z and therefore the
orbifold motive lies in the usual category of pure motives (without fractional twists) CHM, the
orbifold Chow ring and orbifold cohomology ring are Z-graded. Example 2.4 shows a typical
situation that we would like to study. See also the remark after Conjecture 3.2.

5Here we use the fact that the category C̃HM is Q−linear and pseudo-abelian to define the G-invariant part AG of a
G-object A as the image of the projector 1

|G|

∑
1∈G 1 ∈ End(A).



MOTIVIC HYPERKÄHLER RESOLUTION CONJECTURE FOR GENERALIZED KUMMER VARIETIES 11

3. Motivic HyperKähler Resolution Conjecture

3.1. A motivic version of the Cohomological HyperKähler Resolution Conjecture. In [46], as
part of the broader picture of stringy geometry and topology of orbifolds, Yongbin Ruan proposed
the Cohomological HyperKähler Resolution Conjecture (CHRC) which says that the orbifold
cohomology ring of a compact Gorenstein orbifold is isomorphic to the Betti cohomology ring of
a hyperKähler crepant resolution of the underlying singular variety if one takes C as coefficients ;
see Conjecture 1.1 in the introduction for the statement. As explained in Ruan [47], the plausibility
of CHRC is justified by some considerations from theoretical physics as follows. Topological
string theory predicts that the quantum cohomology theory of an orbifold should be equivalent
to the quantum cohomology theory of a/any crepant resolution of (possibly some deformation
of) the underlying singular variety. On the one hand, the orbifold cohomology ring constructed
by Chen–Ruan [17] is the classical part (genus zero with three marked points) of the quantum
cohomology ring of the orbifold (see [16]) ; on the other hand, the classical limit of the quantum
cohomology of the resolution is the so-called quantum corrected cohomology ring ([47]). However
if the crepant resolution has a hyperKähler structure, then all its Gromov–Witten invariants as well
as the quantum corrections vanish and one expects therefore an equivalence, i.e. an isomorphism
of C-algebras, between the orbifold cohomology of the orbifold and the usual Betti cohomology of
the hyperKähler crepant resolution.

Before moving on to a more algebro-geometric study, we have to recall some standard
definitions and facts on (possibly singular) symplectic varieties (cf. [9], [41]) :

Definition 3.1. • A symplectic form on a smooth complex algebraic variety is a closed holo-
morphic 2-form that is non-degenerate at each point. A smooth variety is called holomorphic
symplectic or just symplectic if it admits a symplectic form. Projective examples include de-
formations of Hilbert schemes of K3 surfaces and abelian surfaces and generalized Kummer
varieties etc.. A typical non-projective example is provided by the cotangent bundle of a
smooth variety.
• A (possibly singular) symplectic variety is a normal complex algebraic variety such that

its smooth part admits a symplectic form whose pull-back to a/any resolution extends
to a holomorphic 2-form. A germ of such a variety is called a symplectic singularity. Such
singularities are necessarily rational Gorenstein [9] and conversely, by a result of Namikawa
[41], a normal variety is symplectic if and only if it has rational Gorenstein singularities
and its smooth part admits a symplectic form. The main examples that we are dealing with
are of the form of a quotient by a finite group of symplectic automorphisms of a smooth
symplectic variety, e.g., the symmetric products S(n) = Sn/Sn of smooth algebraic surfaces
S with trivial canonical bundle.
• Given a singular symplectic variety X, a symplectic resolution or hyperKähler resolution is a

resolution f : Y → X such that the pull-back of a symplectic form on the smooth part Xre1
extends to a symplectic form on Y. Note that a resolution is symplectic if and only if it
is crepant : f ∗ωX = ωY. The definition is independent of the choice of symplectic form on
Xre1. A symplectic resolution is always semi-small. The existence of symplectic resolutions
and the relations between them form a highly attractive topic in holomorphic symplectic
geometry. An interesting situation, which will not be touched upon in this paper however,
is the normalization of the closure of a nilpotent orbit in a complex semi-simple Lie algebra,
whose symplectic resolutions are extensively studied in the literature (see [27], [13]). For
examples relevant to this paper, see Examples 3.3.
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Returning to the story of the HyperKähler Resolution Conjecture, in order to study algebraic
cycles and motives of holomorphic symplectic varieties, especially with a view towards Beauville’s
splitting principle conjecture [10] (see §7), we would like to propose the motivic version of the
CHRC ; see Conjecture 1.2 in the introduction for the general statement. As we are dealing
exclusively with the global quotient case in this paper, we prefer to formulate the following more
precise statement in this more restricted case.

Conjecture 3.2 (MHRC : global quotient case). Let M be a smooth projective holomorphic symplectic
variety equipped with an action of a finite group G by symplectic automorphisms of M. If Y is a symplectic
resolution of the quotient variety M/G, then we have an isomorphism of (commutative) algebra objects in
the category of Chow motives with complex coefficients :

h(Y) ' horb ([M/G]) in CHMC .

In particular, we have an isomorphism of graded C-algebras

CH∗(Y)C ' CH∗orb([M/G])C.

Since G preserves a symplectic form (hence a canonical form) of M, the quotient variety
M/G has at worst Gorenstein singularities. As is pointed out in Remark 2.7, this implies that the
age functions take values in Z, the orbifold motive horb([M/G]) is in CHM, the usual category of
(rational) Chow motives and the orbifold Chow ring CH∗orb([M/G]) is integrally graded.

Examples 3.3. All examples studied in this paper are in the following situation : let M and G
be as in Conjecture 3.2 and Y be (the principal component of) the G-Hilbert scheme G−Hilb(M)
of G-clusters of M, that is, a 0-dimensional G-invariant subscheme of M whose global functions
form the regular G-representation (cf. [32], [40]). In some interesting cases, Y gives a symplectic
resolution of M/G :

• Let S be a smooth algebraic surface and G = Sn act on M = Sn by permutation. By the result
of Haiman [31], Y = Sn−Hilb(Sn) is isomorphic to the n-th punctual Hilbert scheme S[n],
which is a crepant resolution, hence symplectic resolution if S has trivial canonical bundle,
of M/G = S(n), the n-th symmetric product.
• Let A be an abelian surface, M be the kernel of the sum map s : An+1

→ A and G = Sn+1
acts on M by permutations, then Y = G−Hilb(M) is isomorphic to the generalized Kummer
variety Kn(A) and is a symplectic resolution of M/G.

Although both sides of the isomorphism in Conjecture 3.2 are in the category CHM of
motives with rational coefficients, it is in general necessary to make use of roots of unity to realize
such an isomorphism of algebra objects. However, in some situation, it is possible to stay in CHM
by making some sign change, which is related to the notion of discrete torsion in theoretical physics :

Definition 3.4 (Discrete torsion). For any 1, h ∈ G, let

(11) ε(1, h) :=
1
2
(
age(1) + age(h) − age(1h)

)
.

It is easy to check that

(12) ε(11, 12)ε(1112, 13) = ε(11, 1213)ε(12, 13).

In the case when ε(1, h) is an integer for all 1, h ∈ G, we can define the orbifold Chow motive with
discrete torsion of a global quotient stack [M/G], denoted by horb,dt([M/G]), by the following simple
change of sign in Step (5) of Definition 2.5 : the orbifold product with discrete torsion

?orb,dt : h(M11)(− age(11)) ⊗ h(M12)(− age(12))→ h(M1112)(− age(1112))
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is the correspondence determined by the algebraic cycle

ε(11, 12) · δ∗(ctop(F11,12)) ∈ CHdim M11 +dim M12 +age(11)+age(12)−age(1112)(M11 ×M12 ×M1112).

Thanks to (12), ?orb,dt is still associative. Similarly, the orbifold Chow ring with discrete torsion of
[M/G] is obtained by replacing Equation (10) in Definition 2.6 by

(13) α ?orb,dt β := ε(1, h) · i∗
(
α|M<1,h> · β|M<1,h> · ctop(F1,h)

)
,

which is again associative by (12).

Thanks to the notion of discrete torsions, we can have the following version of Motivic
HyperKähler Resolution Conjecture, which takes place in the category of rational Chow motives
and involves only rational Chow groups.

Conjecture 3.5 (MHRC : global quotient case with discrete torsion). In the same situation as Conjecture
3.2, suppose that ε(1, h) of Definition 3.4 is an integer for all 1, h ∈ G. Then we have an isomorphism of
(commutative) algebra objects in the category of Chow motives with rational coefficients :

h(Y) ' horb,dt ([M/G]) in CHM .

In particular, we have an isomorphism of graded Q-algebras

CH∗(Y) ' CH∗orb,dt([M/G]).

It is easy to see that Conjecture 3.5 implies Conjecture 3.2 : to get rid of the discrete torsion
sign change ε(1, h), it suffices to multiply the isomorphism to each factor h(M1)(− age(1)), or CH(M1)
by
√
−1age(1), which involves of course the complex numbers (roots of unities at least).

3.2. Toy examples. To better illustrate the conjecture as well as the proof in the next section, we
present in this subsection the explicit computation for two simplest nontrivial cases of MHRC.

3.2.1. Hilbert squares of K3 surfaces. Let S be a K3 surface or an abelian surface. Consider the invo-
lution f on S× S flipping the two factors. The relevant DM stack is [S2/ f ] ; its underlying singular
symplectic variety is the second symmetric product S(2), and S[2] is its symplectic resolution. Let
S̃2 be the blowup of S2 along its diagonal ∆S :

E
j
//

π

��

�

S̃2

ε
��

∆S i
// S × S

Then f lifts to a natural involution on S̃2 and the quotient is

q : S̃2 � S[2].

On the one hand, CH∗(S[2]) is identified, via q∗, with the invariant part of CH∗(S̃2) ; on the other
hand, by Definition 2.6, CH∗orb([S2/S2]) = CH∗(S2,S2)inv. Therefore to check the MHRC 3.2 or 3.5
in this case, we only have to show the following

Proposition 3.6. We have an isomorphism of C-algebras : CH∗(S̃2)C ' CH∗(S2,S2)C. If one makes a sign
change in the orbifold product on the right hand side, there is an isomorphism of Q-algebras of these two
Chow rings with rational coefficients.
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Proof. A straightforward computation using (3) and (4) of Definition 2.5 shows that all obstruction
bundles are trivial (at least in the Grothendieck group). Hence by Definition 2.6,

CH∗(S2,S2) = CH∗(S2) ⊕ CH∗−1(∆S)

whose ring structure is explicitly given by

• For any α ∈ CHi(S2), β ∈ CH j(S2), α ?orb β = α • β ∈ CHi+ j(S2) ;
• For any α ∈ CHi(S2), β ∈ CH j(∆S), α ?orb β = α|∆ • β ∈ CHi+ j(∆S) ;
• For any α ∈ CHi(∆S), β ∈ CH j(∆S), α ?orb β = ∆∗(α • β) ∈ CHi+ j+2(S2).

The blow-up formula (cf. for example, [52, Theorem 9.27]) provides an a priori only additive
isomorphism

(ε∗, j∗π∗) : CH∗(S2) ⊕ CH∗−1(∆S) '−→ CH∗(S̃2),

whose inverse is given by (ε∗,−π∗ j∗).
With everything given explicitly as above, it is straightforward to check that this isomorphism
respects also the multiplication up to a sign change :

• For any α ∈ CHi(S2), β ∈ CH j(S2), one has ε∗(α ?orb β) = ε∗(α • β) = ε∗(α) • ε∗(β) ;
• For any α ∈ CHi(S2), β ∈ CH j(∆S), the projection formula yields

j∗π∗(α ?orb β) = j∗π∗(α|∆ • β) = j∗
(
j∗ε∗(α) • π∗β

)
= ε∗(α) • j∗π∗(β) ;

• For any α ∈ CHi(∆S), β ∈ CH j(∆S), we make a sign change : α ?orb,dt β = −∆∗(α • β) and we
get

j∗π∗(α) • j∗π∗(β) = j∗
(
j∗ j∗π∗α • π∗β

)
= j∗

(
c1(N

E/S̃2) • π∗α • π∗β
)

= −ε∗∆∗(α • β) = ε∗(α ?orb,dt β),

where in the last but one equality one uses the excess intersection formula for the blowup
diagram together with the fact that N

E/S̃2 = Oπ(−1) while the excess normal bundle is

π∗TS/Oπ(−1) ' Tπ ⊗ Oπ(−1) ' Oπ(1),

where one uses the assumption that KS = 0 to deduce that Tπ ' Oπ(2).

As the sign change is exactly the one given by discrete torsion in Definition 3.4, we have an
isomorphism of Q-algebras

CH∗(S[2]) ' CH∗orb,dt([S
2/S2]).

Without making any sign change, the above computation shows that

(ε∗,
√

−1 · j∗π∗) : CH∗(S2)C ⊕ CH∗−1(∆S)C
'
−→ CH∗(S̃2)C

is an isomorphism of C-algebras, whose inverse is given by (ε∗,
√
−1 ·π∗ j∗). Hence the isomorphism

of C-algebras :

CH∗(S[2])C ' CH∗orb([S2/S2])C.

�
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3.2.2. Kummer K3 surfaces. Let A be an abelian surface. We always identify A2
0 := Ker

(
A × A +

−→ A
)

with A by (x,−x) 7→ x, under which the associated Kummer K3 surface S := K1(A) is a hyperKähler
crepant resolution of the symplectic quotient A/ f , where f is the involution of multiplication by
−1 on A. Consider the blow-up of A along the fixed locus F which is the set of 2-torsion points of
A :

E
j
//

π
��

�

Ã

ε
��

F
i
// A.

Then S is the quotient of Ã by f̃ , the lifting of the involution f . As in the previous toy example, the
MHRC in the present situation is reduced to the following

Proposition 3.7. We have an isomorphism of C-algebras : CH∗(Ã)C ' CH∗(A,S2)C. If one makes a sign
change in the orbifold product on the right hand side, there is an isomorphism of Q-algebras of these two
Chow rings with rational coefficients.

Proof. As the computation is quite similar to that of Proposition 3.6, we only give a sketch. By
Definition 2.6, age(id) = 0, age( f̃ ) = 1 and CH∗(A,S2) = CH∗(A) ⊕ CH∗−1(F) whose ring structure
is given by

• For any α ∈ CHi(A), β ∈ CH j(A), α ?orb β = α • β ∈ CHi+ j(A) ;
• For any α ∈ CHi(A), β ∈ CH0(F), α ?orb β = α|F • β ∈ CHi(F) ;
• For any α ∈ CH0(F), β ∈ CH0(F), α ?orb β = i∗(α • β) ∈ CH2(A).

Again by the blow-up formula, we have an isomorphism

(ε∗, j∗π∗) : CH∗(A) ⊕ CH∗−1(F) '−→ CH∗(Ã),

whose inverse is given by (ε∗,−π∗ j∗). It is now straightforward to check that they are moreover ring
isomorphisms with the left-hand side equipped with the orbifold product. The sign change comes
from the negativity of the self-intersection of (the components of) the exceptional divisor. �

4. Main results and steps of the proofs

The main results of the paper are the verification of Conjecture 3.5, hence Conjecture 3.2 in
the following two cases (A) and (B). See Theorem 1.3 and Theorem 1.4 in the introduction for the
precise statements. These two theorems are proved in §5 and §6 respectively. In this section, we
explain the main steps of their proofs. Let A be an abelian surface and n be a positive integer.

Case (A) (Hilbert schemes of abelian surfaces)
M = An endowed with the natural action of G = Sn. The symmetric product A(n) = M/G is
a singular symplectic variety and the Hilbert–Chow morphism

ρ : Y = A[n]
→ A(n)

gives a symplectic resolution.
Case (B) (Generalized Kummer varieties)

M = An+1
0 := Ker

(
An+1 s

−→ A
)

endowed with the natural action of G = Sn+1. The quotient
An+1

0 /Sn+1 = M/G is a singular symplectic variety. Recall that the generalized Kummer variety
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Kn(A) is the fiber over OA of the isotrivial fibration A[n+1]
→ A(n+1) s

−→ A. The restriction of
the Hilbert–Chow morphism

Y = Kn(A)→ An+1
0 /Sn+1

gives a symplectic resolution.

For both cases, the proof proceeds in three steps. For each step, Case (A) is quite straightforward
and Case (B) requires more subtle and technical arguments.

Step (i)

Recall the notation h(M,G) := ⊕1∈G h(M1)(− age(1)). Denote by

ι : h (M,G)G ↪→ h (M,G) and p : h (M,G)� h (M,G)G

the inclusion of and the projection onto the G-invariant part h (M,G)G, which is a direct factor of
h (M,G) inside CHM. We will firstly establish an a priori just additive G-equivariant morphism
of Chow motives h(Y)→ h(M,G), given by some correspondences

{
(−1)age(1)U1 ∈ CH(Y ×M1)

}
1∈G

inducing an (additive) isomorphism

φ = p ◦
∑
1

(−1)age(1)U1 : h(Y) '−→ horb([M/G]) = h(M,G)G.

The isomorphism φ will have the property that its inverse is ψ := ( 1
|G|

∑
1

tU1) ◦ ι (see Proposition
5.2 and Proposition 6.4 for Case (A) and (B) respectively). Our goal is then to prove that these
morphisms are moreover multiplicative (after the sign change by discrete torsion), i.e. the following
diagram is commutative:

(14) h(Y)⊗2

φ⊗2

��

δY // h(Y)

φ

��

horb([M/G])⊗2
?orb,dt

// horb([M/G])

The main theorem will then be deduced from the following

Proposition 4.1. Notation being as before, the following two algebraic cycles have the same symmetrization

in CH
((∐

1∈G M1
)3
)

:

• W :=
(

1
|G|

∑
1U1 × 1

|G|
∑
1U1 ×

∑
1(−1)age(1)U1

)
∗
(δY) ;

• The algebraic cycle Z determining the orbifold product (Definition 2.5(5)) with the sign change by
discrete torsion (Definition 3.4) :

Z|M11×M12×M13 =

0 if 13 , 1112

ε11,12 · δ∗ctop(F11,12) if 13 = 1112.

Here the symmetrization of a cycle in
(∐
1∈G M1

)3
is the operation

γ 7→
1
|G|3

∑
11,12,13∈G

(11, 12, 13).γ.
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Proposition 4.1 implies Theorem 1.3 and 1.4. The only thing to show is the commutativity of (14),
which is of course equivalent to the commutativity of the diagram

h(Y)⊗2 δY // h(Y)

φ

��

horb([M/G])⊗2

ψ⊗2

OO

?orb,dt

// horb([M/G])

By the definition of φ and ψ, we need to show that the following diagram is commutative :

(15) h(Y)⊗2 δY // h(Y)∑
1(−1)age(1)U1

��

h(M,G)⊗2

( 1
|G|

∑
1

tU1)⊗2

OO

h(M,G)

p
��

horb([M/G])⊗2

ι⊗2

OO

?orb,dt

// horb([M/G])

It is elementary to see that the composition
∑
1(−1)age(1)U1 ◦ δY ◦ ( 1

|G|
∑
1

tU1)⊗2 is the morphism
(or correspondence) induced by the cycle W in Proposition 4.1. On the other hand, ?orb,dt for
horb([M/G]) is by definition p ◦ Z ◦ ι⊗2. Therefore, the desired commutativity, hence also the main
results, amounts to the equality p◦W◦ ι⊗2 = p◦Z◦ ι⊗2, which says exactly that the symmetrizations

of W and of Z are equal in CH
((∐

1∈G M1
)3
)
. �

One is therefore reduced to show Proposition 4.1 in both cases (A) and (B).

Step (ii)

We prove that W on the one hand and Z on the other hand, as well as their symmetrizations,
are both symmetrically distinguished in the sense of O’Sullivan [43] (see Definition 5.4). In Case
(B) concerning the generalized Kummer varieties, we have to generalize a little bit the category
of abelian varieties and the corresponding notion of symmetrically distinguished cycles, in order
to deal with algebraic cycles on ‘non-connected abelian varieties’ in a canonical way. By the
result of O’Sullivan [43] (see Theorem 5.5 and Theorem 5.6), it suffices for us to check that the
symmetrizations of W and Z are numerically equivalent.

Step (iii)

Finally, in Case (A), explicit computations of the cohomological realization of φ show that
the induced (iso-)morphism φ : H∗(Y) → H∗orb([M/G]) is the same as the one constructed in [37].
While in Case (B), based on the result of [42], one can prove that the cohomological realization
of φ satisfies Ruan’s original Cohomological HyperKähler Resolution Conjecture. Therefore the
symmetrizations of W and Z are homologically equivalent, which finishes the proof by Step (ii).

5. Case (A) : Hilbert schemes of abelian surfaces

We prove Theorem 1.3 in this section. Notations are as before : M := An with the action of
G := Sn and the quotient X := A(n) := M/G. Then the Hilbert–Chow morphism

ρ : A[n] =: Y→ A(n)
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gives a symplectic resolution.

5.1. Step (i) – Additive isomorphisms. In this subsection, we establish an isomorphism between
h(Y) and horb([M/G]) by using results in [19]. First we construct some correspondences similar to
the ones used in loc.cit. . For each 1 ∈ G = Sn, let O(1) be the set of orbits of 1 as a permutation of
{1, 2, · · · n}. It is computed in Example 2.4 that

age(1) = n − |O(1)|.

As in [25], we make the natural identification

(An)1 ' AO(1).

Let

(16) U1 := (A[n]
×A(n) (An)1)red =

{
(z, x1, · · · , xn) ∈ A[n]

× (An)1
∣∣∣ ρ(z) = [x1] + · · · + [xn]

}
be the incidence variety, where ρ : A[n]

→ A(n) is the Hilbert–Chow morphism. As the notation
suggests, U1 is the fixed locus of the induced automorphism 1 on the isospectral Hilbert scheme

U := Uid = A[n]
×A(n) An =

{
(z, x1, · · · , xn) ∈ A[n]

× An
∣∣∣ ρ(z) = [x1] + · · · + [xn]

}
.

Note that dim U1 = n + |O(1)| = 2n − age(1) and dim
(
A[n]
× (An)1

)
= 2 dim U1. We consider the

following correspondence for each 1 ∈ G,

(17) Γ1 := (−1)age(1)U1 ∈ CH2n−age(1)
(
A[n]
× (An)1

)
,

which defines a morphism of Chow motives :

(18) Γ :=
∑
1∈G

Γ1 : h(A[n])→
⊕
1∈G

h ((An)1) (− age(1)) =: h(An,Sn),

here we used the notation from Definition 2.5.

Lemma 5.1. The algebraic cycle Γ in (18) defines an Sn-equivariant morphism with respect to the trivial
action on A[n] and the action on h(An,Sn) of Definition 2.5.

Proof. For each 1, h ∈ G, as the age function is invariant under conjugation, it suffices to show that
the following composition is equal to Γh1h−1 :

h(A[n])
Γ1
−→ h ((An)1) (− age(1)) h

−→ h
(
(An)h1h−1)

(− age(1)),

which follows from the commutative diagram :

A[n] U1oo

��

h
'
// Uh1h−1

��

(An)1 h
'
// (An)h1h−1

.

�

As before, ι : h (An,G)G ↪→ h (An,G) and p : h (An,G)� h (An,G)G are the inclusion of and the
projection onto the G-invariant part. Thanks to Lemma 5.1, we obtain the desired morphism

(19) φ := p ◦ Γ : h(A[n])→ horb([An/G]) = h (An,G)G ,

which satisfies Γ = ι ◦ φ.
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Now one can reformulate the result of de Cataldo–Migliorini [19], which actually works for
all surfaces, as follows :

Proposition 5.2. The morphism φ is an isomorphism, whose inverse is given by ψ := 1
n!

(∑
1∈G

tU1
)
◦ ι,

where
tU1 : h ((An)1) (− age(1))→ h(A[n])

is the transposed correspondence of U1.

Proof. We start by a recollection of some notation from [19]. Let P(n) be the set of partitions of
n. Given such a partition λ = (λ1 ≥ · · · ≥ λl) = (1a1 · · · nan), where l := |λ| is the length of λ and
ai = |{ j | 1 ≤ j ≤ n ;λ j = i}|, we define Sλ := Sa1 × · · · × San . Let Aλ be Al, equipped with the
natural action of Sλ and with the natural morphism to A(n) by sending (x1, · · · , xl) to

∑l
j=1 λ j[x j].

Define the incidence subvariety Uλ := (A[n]
×A(n) Aλ)red. Denote the quotient A(λ) := Aλ/Sλ and

U(λ) := Uλ/Sλ, where the latter is also regarded as a correspondence between A[n] and A(λ).
The main theorem in [19] asserts that the following correspondence is an isomorphism :

φ′ :=
∑

λ∈P(n)

U(λ) : h(A[n]) '−→
⊕
λ∈P(n)

h(A(λ))(|λ| − n) ;

moreover, the inverse of φ′ is given by

ψ′ :=
∑

λ∈P(n)

1
mλ
·

tU(λ) :
⊕
λ∈P(n)

h(A(λ))(|λ| − n) '−→ h(A[n]),

where mλ = (−1)n−|λ|∏|λ|
j=i λ j is a non-zero constant. To relate our morphism φ to the above

isomorphism φ′ as well as their inverses, one uses the following elementary

Lemma 5.3. One has a canonical isomorphism :⊕
1∈Sn

h ((An)1) (− age(1))


Sn

'
−→

⊕
λ∈P(n)

h
(
A(λ)

)
(|λ| − n).

Proof. By 1 ∈ λ, we mean that the partition determined by the permutation 1 ∈ Sn is λ ∈P(n). For
each partition λ of length l, since for any 1 ∈ λ, the stabilizer of 1 for the action ofSn is isomorphic
to the semi-direct product (Z/λ1 × · · · × Z/λl) oSλ. Thus⊕

1∈λ

h ((An)1)


Sn

' h ((An)1)(Z/λ1×···×Z/λl)oSλ ' h ((An)1)Sλ ' h
(
A(λ)

)
.

One concludes by taking the direct sum of this isomorphism over all λ ∈P(n). �

Now it is easy to conclude the proof of Proposition 5.2. For any 1 ∈ λ, the isomorphism
between (An)1 and Aλ will identify U1 to Uλ. Hence the composition of φ with the isomorphism
in Lemma 5.3 is equal to

∑
λ∈P(n)

n!
mλ

U(λ), which is an isomorphism since φ′ =
∑
λ∈P(n) U(λ) is. As a

consequence, φ itself is an isomorphism and its inverse is the composition of the isomorphism in
Lemma 5.3 followed by ψ′ =

∑
λ∈P(n)

1
n! ·

tU(λ), which is 1
n!

(∑
1∈G

tU1
)
◦ ι =: ψ. �

Then to show Theorem 1.3, it suffices to prove Proposition 4.1 in this situation, which will
be done in the next two steps.
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5.2. Step (ii) – Symmetrically distinguished cycles on abelian varieties. The following definition
is due to O’Sullivan [43]. Recall that all Chow groups are with rational coefficients. As in
loc.cit. we denote in this section by CH the Q-vector space of algebraic cycles modulo the numerical
equivalence relation.

Definition 5.4 (Symmetrically distinguished cycles [43]). Let A be an abelian variety and α ∈
CHi(A). For each integer m ≥ 0, denote by Vm(α) the Q-vector subspace of CH(Am) generated by
elements of the form

p∗(αr1 × αr2 · · · × αrn),
where n ≤ m, r j ≥ 0 are integers, and p : An

→ Am is a closed immersion with each component
An
→ A being either a projection or the composite of a projection with [−1] : A → A. Then α is

called symmetrically distinguished if for every m the restriction of the projection CH(Am)→ CH(Am)
to Vm(α) is injective.

Despite of its seemingly complicated definition, the symmetrically distinguished cycles
behave very well. More precisely, we have

Theorem 5.5 (O’Sullivan [43]). Let A be an abelian variety.

(1) The symmetric distinguished cycles in CHi(A) form a sub-Q-vector space.
(2) The fundamental class of A is symmetrically distinguished and the intersection product of two

symmetrically distinguished cycles is symmetrically distinguished. They form therefore a graded
sub-Q-algebra of CH∗(A).

(3) Let f : A → B be a morphism of abelian varieties, then f∗ : CH(A) → CH(B) and f ∗ : CH(B) →
CH(A) preserve symmetrically distinguished cycles.

The reason why this notion is very useful in practice is that it allows us to conclude an equality
of algebraic cycles modulo rational equivalence from an equality modulo numerical equivalence
(or, a fortiori, modulo homological equivalence) :

Theorem 5.6 (O’Sullivan [43]). The composition CH(A)sd ↪→ CH(A) � CH(A) is an isomorphism of
Q-algebras, where CH(A)sd is the sub-algebra of symmetrically distinguished cycles. In other words, in
each numerical class of algebraic cycle on A, there exists a unique symmetrically distinguished algebraic
cycle modulo rational equivalence. In particular, a (polynomial of) symmetrically distinguished cycles is
trivial in CH(A) if and only if it is numerically trivial.

Returning to the proof of Theorem 1.3, it remains to prove Proposition 4.1. Keep the same
notation as in Step (i), we first prove that in our situation the two cycles in Proposition 4.1 are
symmetrically distinguished.

Proposition 5.7. The following two algebraic cycles, as well as their symmetrizations,

• W :=
(

1
|G|

∑
1U1 × 1

|G|
∑
1U1 ×

∑
1(−1)age(1)U1

)
∗

(
δA[n]

)
;

• The algebraic cycle Z determining the orbifold product (Definition 2.5(5)) with the sign change by
discrete torsion (Definition 3.4) :

Z|M11×M12×M13 =

0 if 13 , 1112

ε11,12 · δ∗ctop(F11,12) if 13 = 1112.

are symmetrically distinguished in CH
((∐

1∈G(An)1
)3
)
.
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Proof. For W, it amounts to show that for any 11, 12, 13 ∈ G, we have that (U11 ×U12 ×U13)∗ (δA[n])
are symmetrically distinguished in CH ((An)11 × (An)12 × (An)13). Indeed, by [55, Proposition 5.6],
(U11 ×U12 ×U13)∗ (δA[n]) is a polynomial of big diagonals of (An)11×(An)12×(An)13 =: AN. However,
all big diagonals of AN is clearly symmetrically distinguished since ∆A ∈ CH(A×A) is. By Theorem
5.5, W is symmetrically distinguished.
As for Z, for any fixed 11, 12 ∈ G, F11,12 is easily seen to always be a trivial vector bundle, at least
virtually, hence its top Chern class is either 0 or 1 (the fundamental class), which is of course
symmetrically distinguished. Also recall that (Definition 2.5)

δ : (An)<11,12> ↪→ (An)11 × (An)12 × (An)1112 ,

which is a (partial) diagonal inclusion, in particular a morphism of abelian varieties. Therefore
δ∗(ctop(F11,12)) is symmetrically distinguished by Theorem 5.5, hence so is Z.
Finally, since any automorphism in G × G × G preserves symmetrically distinguished cycles,
symmetrizations of Z and W remain symmetrically distinguished. �

By Theorem 5.6, in order to show Proposition 4.1, it suffices to show on the one hand that
the symmetrizations of Z and W are both symmetrically distinguished, and on the other hand that
they are numerically equivalent. The first part is exactly the previous Proposition 5.7 and we now
turn to an a priori stronger version of the second part in the following final step.

5.3. Step (iii) – Cohomological realizations. We will show in this subsection that the symmetriza-
tions of the algebraic cycles W and Z have the same (rational) cohomology class. To this end, it is
enough to show the following

Proposition 5.8. The cohomology realization of the (additive) isomorphism

φ : h(A[n]) '−→
(
⊕1∈G h((An)1)(− age(1))

)Sn

is an isomorphism of Q-algebras

φ : H∗(A[n]) '−→ H∗orb,dt([A
n/Sn]) =

(
⊕1∈GH∗−2 age(1)((An)1), ?orb,dt

)Sn
.

In other words, Sym(W) and Sym(Z) are homologically equivalent.

Proof. The existence of isomorphism of Q-algebras between H∗(A[n]) and H∗orb,dt([A
n/Sn]) is estab-

lished by Fantechi and Göttsche [25, Theorem 3.10] based on the work of Lehn and Sorger [37].
Therefore by the definition of φ in Step (i), it suffices to show that the cohomological correspon-
dence

Γ∗ :=
∑
1∈Sn

(−1)age(1)U1∗ : H∗(A[n])→
⊕
1∈Sn

H∗−2 age(1) ((An)1)

coincides with the following inverse of the isomorphism Ψ used in Fantechi–Göttsche [25, Theorem
3.10]

Φ : H∗(A[n]) →
⊕
1∈Sn

H∗−2 age(1) ((An)1)

pλ1(α1) · · · pλl(αl)1 7→ n! · Sym(α1 × · · · × αl),

Let us explain the notations from [25] in the above formula : α1, . . . , αl ∈ H∗(A), × stands for the
exterior product

∏
pr∗i (−), p is the Nakajima operator (cf. [39]), 1 ∈ H0(A[0]) ' Q is the fundamental

class of the point, λ = (λ1, . . . , λl) is a partition of n, 1 ∈ Sn is a permutation of type λ with a
numbering of orbits of 1 (as a permutation) chosen : {1, . . . , l} ∼−→ O(1), such that λ j is the length of
the j-th orbit, then the class α1 × · · · × αl is placed in the direct summand indexed by 1 and Sym
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means the symmetrization operation 1
n!

∑
h∈Sn

h. Note that Sym(α1 × · · · × αl) is independent of the
choice of 1, numbering etc.

Recall that the Nakajima operator pk(α) : H∗(A[l]) → H∗(A[l+k]) for any l is by definition
β 7→ Il,l+k

∗(β × α) = q∗p∗(β × α) using the following correspondence :

Il,l+k :=
{
(ξ′, x, ξ) ∈ A[l+k]

× A × A[l]
∣∣∣ ξ ⊂ ξ′ ; ρ(ξ′) = ρ(ξ) + k[x]

}
q

ss

p

++
A[l+k] A[l]

× A

Here and in the sequel, ρ is always the Hilbert–Chow morphism.
By a repeated (but straightforward) use of the projection formula, one has

pλ1(α1) · · · pλl(αl)1 = Iλ∗(α1 × · · · × αl) = q∗p∗(α1 × · · · × αl)

using the following correspondence :

Iλ :=
{
(x1, . . . , xl, ξ1, . . . , ξl)

∣∣∣∣ xi∈A ; ξ1⊂···⊂ξl ;
ρ(ξi)=ρ(ξi−1)+λi[xi]

}
q

tt

p

**

A[n] Aλ := Al

where (x1, . . . , xl, ξ1, . . . , ξl) is sent to (x1, . . . , xl) by p and to ξl ∈ A[n] by q. It is easy to see
that the natural morphism Iλ → Uλ =

{
(ξ, x1, . . . , xl) ∈ A[n]

× Al
| ρ(ξ) =

∑l
i=1 λi[xi]

}
forgetting the

subschemes ξ1, . . . , ξl−1, is a birational morphism. Therefore

pλ1(α1) · · · pλl(αl)1 = Uλ∗(α1 × · · · × αl)

and one only has to show that

(20)
∑
1∈Sn

(−1)age(1)U1∗Uλ∗(α1 × · · · × αl) = n! · Sym(α1 × · · · × αl).

Indeed, for a given 1 ∈ G, if 1 in not of type λ, then by [19, Proposition 5.1.3], we know that
U1∗ ◦ Uλ∗ = 0. For any 1 ∈ G of type λ, fix a numbering ϕ : {1, . . . , l} ∼−→ O(1) such that |ϕ( j)| = λ j

and let ϕ̃ : Aλ = Al
→ AO(1) be the induced isomorphism. Then denoting by q : Aλ � A(λ) the

quotient map by Sλ, the computation [19, Proposition 5.1.4] implies that for such 1 ∈ λ,

U1∗ ◦Uλ∗(α1 × · · · × αl)

= ϕ̃∗ ◦Uλ
∗ ◦Uλ∗(α1 × · · · × αl)

= (−1)n−|λ|
|λ|∏
i=1

λi · ϕ̃∗ ◦ q∗ ◦ q∗(α1 × · · · × αl)

= (−1)n−|λ|
|λ|∏
i=1

λi · deg(q) · Sym(α1 × · · · × αl)

= (−1)n−|λ|
|λ|∏
i=1

λi · |Sλ | · Sym(α1 × · · · × αl)
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Putting those together, we have ∑
1∈Sn

(−1)age(1)U1∗Uλ∗(α1 × · · · × αl)

=
∑
1∈λ

(−1)n−|λ|U1∗Uλ∗(α1 × · · · × αl)

=
∑
1∈λ

 |λ|∏
i=1

λi

 · |Sλ | · Sym(α1 × · · · × αl)

= n! · Sym(α1 × · · · × αl),

where the last equality uses the simple counting of conjugacy class : the number of permutations
of type λ is n!(∏|λ|

i=1 λi
)
·|Sλ |

. The desired equality (20), hence also the Proposition, is proved. �

As explained in §4, the proof of Theorem 1.3 is now complete : Proposition 5.7 and Propo-
sition 5.8 together imply that Sym(W) and Sym(Z) are rationally equivalent using Theorem 5.6.
Therefore Proposition 4.1 holds in our situation Case (A), which means exactly that the isomor-
phism φ in Proposition 5.2 (defined in (19)) is also multiplicative with respect to the product
structure on h(A[n]) given by the small diagonal and the orbifold product with sign change by
discrete torsion on h(An,Sn)Sn .

6. Case (B) : Generalized Kummer varieties

We prove Theorem 1.4 in this section. Notation is as in the beginning of §4 :

M = An+1
0 := Ker

(
An+1 +

−→ A
)

which is non-canonically isomorphic to An, with the action of G = Sn+1 and the quotient X :=
A(n+1)

0 := M/G. Then the restriction of the Hilbert–Chow morphism to the generalized Kummer
variety

Kn(A) =: Y
f
−→ A(n+1)

0
is a symplectic resolution.

6.1. Step (i) – Additive isomorphisms. We use the result in [20] to establish an additive isomor-
phism h(Y) '−→ horb([M/G]).

Recall that a morphism f : Y→ X is called semi-small if for all integer k ≥ 0, the codimension
of the locus

{
x ∈ X | dim f−1(x) ≥ k

}
is at least 2k. In particular, f is generically finite. Consider a

(finite) Whitney stratification X =
∐

a Xa by connected strata, such that for any a, the restriction
f | f−1(Xa) : f−1(Xa)→ Xa is a topological fiber bundle of fiber dimension da. Then the semismallness
condition says that codim Xa ≥ 2da for any a. In that case, a stratum Xa is said to be relevant if the
equality holds : codim Xa = 2da. Here is the key result we are using :

Theorem 6.1 (de Cataldo – Migliorini [20]). Let f : Y → X be a semi-small morphism of complex
projective varieties with Y being smooth. For each connected relevant stratum Xa of codimension 2da
(and fiber dimension da), let Za → Xa be the (not necessarily connected) étale cover corresponding to
the π1(Xa)-set of maximal (=da) dimensional irreducible components of fibers. Assume Za → Xa is a
projective compactification with Za admitting a stratification with strata being finite group quotients of
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smooth varieties. Then (the closure of) the incidence subvarieties between Za and Y induce an isomorphism
of Chow motives : ⊕

a

h(Za)(−da) ' h(Y).

Moreover, the inverse isomorphism is again given by the incidence subvarieties but with different non-zero
coefficients.

Remark 6.2. • The statement about the correspondence inducing isomorphisms as well as
the (non-zero) coefficients of the inverse correspondence is contained in [20, §2.5].
• Since any symplectic resolution of a (singular) symplectic variety is semi-small, the previous

theorem applies to the situation of Conjecture 3.2 and 3.5.
• Note that the correspondence in [19] which is used in §5 for Case (A) is a special case of

Theorem 6.1.

Let us start by making precise a Whitney stratification for the (semi-small) symplectic reso-
lution Y = Kn(A) → X = A(n+1)

0 as follows. The notation is as in the proof of Proposition 5.2. Let
P(n + 1) be the set of partitions of n + 1, then

X =
∐

λ∈P(n+1)

Xλ,

where the locally closed strata are defined by

Xλ :=

 |λ|∑
i=1

λi[xi] ∈ A(n+1)

∣∣∣∣∣∣∣ ∑|λ|
i=1 λixi=0

xi distinct

 ,
with normalization of closure being

Zλ = Xλ
norm

= A(λ)
0 := Aλ

0/Sλ,

where

(21) Aλ
0 =

(x1, . . . , x|λ|) ∈ Aλ

∣∣∣∣∣∣∣
|λ|∑
i=1

λixi = 0

 .
It is easy to see that dim Xλ = dim Aλ

0 = 2(|λ| − 1) while the fibers over Xλ are isomorphic to
a product of Briançon varieties ([12])

∏
|λ|
i=1Bλi , which is irreducible of dimension

∑
|λ|
i=1(λi − 1) =

n + 1 − |λ| = 1
2 codim Xλ.

In conclusion, f : Kn(A)→ A(n+1)
0 is a semi-small morphism with all strata being relevant and

all fibers over strata being irreducible. One can therefore apply Theorem 6.1 to get the following

Corollary 6.3. For each λ ∈P(n + 1), let

Vλ :=
{
(ξ, x1, . . . , x|λ|)

∣∣∣∣∣ ρ(ξ)=
∑|λ|

i=1 λi[xi] ;∑|λ|
i=1 λixi=0

}
⊂ Kn(A) × Aλ

0

be the incidence subvariety, whose dimension is n−1+|λ|. Then the quotients V(λ) := Vλ/Sλ ⊂ Kn(A)×A(λ)
0

induce an isomorphism of rational Chow motives :

φ′ : h (Kn(A)) '−→
⊕

λ∈P(n+1)

h
(
A(λ)

0

)
(|λ| − n − 1).

Moreover, the inverse ψ′ := φ′−1 is induced by
∑
λ∈P(n+1)

1
mλ

V(λ), where mλ = (−1)n+1−|λ|∏|λ|
i=1 λi is a

non-zero constant.
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Similar to Proposition 5.2 for Case (A) , the previous Corollary 6.3 allows us to establish an
additive isomorphism between h(Kn(A)) and horb([An+1

0 /Sn+1]) :

Proposition 6.4. Let M = An+1
0 with the action of G = Sn+1. Let p and ι denote the projection onto and

the inclusion of the G-invariant part of h(M,G). For each 1 ∈ G, let

(22) V1 := (Kn(A) ×A(n+1)
0

M1)red ⊂ Kn(A) ×M1

be the incidence subvariety. Then they induce an isomorphism of rational Chow motives :

φ := p ◦
∑
1∈G

(−1)age(1)V1 : h (Kn(A)) '−→

⊕
1∈G

h (M1) (− age(1))


G

.

Moreover, its inverse ψ is given by 1
(n+1)! ·

∑
λ∈P(n+1)

tV1 ◦ ι.

Proof. The proof goes exactly as for Proposition 5.2, with Lemma 5.3 replaced by the following
canonical isomorphism : ⊕

1∈Sn+1

h
(
(An+1

0 )1
)

(− age(1))


Sn+1

'
−→

⊕
λ∈P(n+1)

h
(
A(λ)

0

)
(|λ| − n − 1).

Indeed, let λ be the partition determined by 1, then it is easy to compute age(1) = n + 1 − |O(1)| =
n + 1 − |λ| and moreover the quotient of (An+1

0 )1 by the centralizer of 1, which is
∏
|λ|
i=1 Z/λiZ oSλ,

is exactly A(λ)
0 . �

To show Theorem 1.4, it remains to show Proposition 4.1 in this situation (where all cycles
U are actually V of Proposition 6.4).

6.2. Step (ii) – Symmetrically distinguished cycles on abelian torsors with torsion structures.
Observe that we have the extra technical difficulty that (An+1

0 )1 is in general an extension of a
finite abelian group by an abelian variety, thus non-connected. To deal with algebraic cycles
on not necessarily connected ‘abelian varieties’ in a canonical way as well as the property of
being symmetrically distinguished, we would like to introduce the following category. Roughly
speaking, this is the category of abelian varieties with origin fixed only up to torsion. It is between
the notion of abelian varieties (with origin fixed) and the notion of abelian torsors (i.e. a variety
isomorphic to an abelian variety thus without a chosen origin).

Definition 6.5 (Abelian torsors with torsion structure). One defines the following category A .
An object of A , called an abelian torsor with torsion structure, or an a.t.t.s. , is a pair (X,QX) where
X is a connected smooth projective variety and QX is a subset of X such that there exists an
isomorphism, as complex algebraic varieties, f : X → A from X to an abelian variety A which
induces a bijection between QX and Tor(A), the set of all torsion points of A. The point here is
that the isomorphism f , called a marking, usually being non-canonical in practice, is not part of the
data.
A morphism between two objects (X,QX) and (Y,QY) is a morphism of complex algebraic varieties
φ : X→ Y such thatφ(QX) ⊂ QY. Compositions of morphisms are defined in the natural way. Note
that by choosing markings, a morphism between two objects in A is essentially the composition
of a morphism between two abelian varieties followed by a torsion translation.
Denote by A V the category of abelian varieties. Then there is a natural functor A V → A sending
an abelian variety A to (A,Tor(A)).



26 LIE FU, ZHIYU TIAN, AND CHARLES VIAL

The following elementary lemma provides the kind of examples that we will be considering :

Lemma 6.6 (Constructing a.t.t.s. and compatibility). Let A be an abelian variety. Let f : Λ→ Λ′ be a
morphism of lattices6 and fA : A ⊗Z Λ→ A ⊗Z Λ′ be the induced morphism of abelian varieties.

(1) Then Ker( fA) is canonically a disjoint union of a.t.t.s. such that QKer( fA) = Ker( fA)∩Tor(A⊗Z Λ).
(2) If one has another morphism of lattices 1 : Λ′ → Λ′′ inducing morphism of abelian varieties
1A : A ⊗Z Λ′ → A ⊗Z Λ′′. Then the natural inclusion Ker( fA) ↪→ Ker(1A ◦ fA) is a morphism of
a.t.t.s. (on each component).

Proof. For (1), we have the following two short exact sequences of abelian groups :

0→ Ker( f )→ Λ
π
−→ Im( f )→ 0 ;

0→ Im( f )→ Λ′ → Coker( f )→ 0,

with Ker( f ) and Im( f ) being lattices. Tensoring them with A, one has exact sequences

0→ A ⊗Z Ker( f )→ A ⊗Z Λ
πA
−−→ A ⊗Z Im( f )→ 0 ;

0→ TorZ (
A,Coker( f )

)
=: T→ A ⊗Z Im( f )→ A ⊗Z Λ′,

where T = TorZ (
A,Coker( f )

)
is a finite abelian group consisting of some torsion points of A ⊗Z

Im( f ). Then

Ker( fA) = π−1
A (T)

is an extension of the finite abelian group T by the abelian variety A⊗Z Ker( f ). Choosing a section of
πmakes A⊗Z Λ the product of A⊗Z Ker( f ) and A⊗Z Im( f ), inside of which Ker( fA) is the product of
A⊗ZKer( f ) and the finite subgroup T of A⊗ZIm( f ). This shows that QKer( fA) := Ker( fA)∩Tor(A⊗ZΛ),
which is independent of the choice of the section, makes Ker( fA) an a.t.t.s.
With (1) being proved, (2) is trivial : the torsion structures on Ker( fA) and on Ker(1A ◦ fA) are both
defined by claiming that a point is torsion if it is a torsion point in A ⊗Z Λ. �

Before generalizing the notion of symmetrically distinguished cycles to the new category A ,
we have to first prove the following well-known fact.

Lemma 6.7. Let A be an abelian variety, x ∈ Tor(A) be a torsion point. Then the corresponding torsion
translation

tx : A → A
y 7→ x + y

acts trivially on CH(A).

Proof. We follow the proof in [34, Lemma 2.1]. Let m be the order of x. Let Γtx be the graph of tx,
then one has m∗(Γtx) = m∗(∆A) in CH(A × A), where m is the multiplication by m map of A × A.
However, m∗ is an isomorphism of CH(A × A) by Beauville’s decomposition [8]. We conclude
that Γtx = ∆A, hence the induced correspondences are the same, which are t∗x and the identity
respectively. �

6A lattice is a free abelian group of finite rank.
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Definition 6.8 (Symmetrically distinguished cycles in A ). Given an a.t.t.s. (X,QX) ∈ A (see Def-
inition 6.5), an algebraic cycle γ ∈ CH(X) is called symmetrically distinguished, if for a marking
f : X→ A, the cycle f∗(γ) ∈ CH(A) is symmetrically distinguished in the sense of O’Sullivan (Def-
inition 5.4). By Lemma 6.7, this definition is independent of the choice of marking. An algebraic
cycle on a disjoint union of a.t.t.s. is symmetrically distinguished if it is so on each components.
Let CH(X)sd be the subspace of symmetrically distinguished cycles.

The following proposition is clear from Theorem 5.5 and Theorem 5.6.

Proposition 6.9. Let (X,QX) ∈ Obj(A ) be an a.t.t.s. .

(1) The space of symmetric distinguished cycles CH∗(X)sd is a graded sub-Q-algebra of CH∗(X).
(2) Let f : (X,QX) → (Y,QY) be a morphism in A , then f∗ : CH(X) → CH(Y) and f ∗ : CH(Y) →

CH(X) preserve symmetrically distinguished cycles.
(3) The composition CH(X)sd ↪→ CH(X) � CH(X) is an isomorphism. In particular, a (polynomial

of) symmetrically distinguished cycles is trivial in CH(X) if and only if it is numerically trivial.

We will need the following easy fact to prove that some cycles on an a.t.t.s. are symmetrically
distinguished by checking it in an ambient abelian variety.

Lemma 6.10. Let i : B ↪→ A be a morphism of a.t.t.s. which is a closed immersion. Let γ ∈ CH(B) be an
algebraic cycle. Then γ is symmetrically distinguished in B if and only if i∗(γ) is so in A.

Proof. One implication is clear from Proposition 6.9 (2). For the other one, assuming i∗(γ) is
symmetrically distinguished in A. By choosing markings, one can suppose that A is an abelian
variety and B is a torsion translation by τ ∈ Tor(A) of a sub-abelian variety of A. Thanks to Lemma
6.7, changing the origin of A to τ does not change the cycle class i∗(γ) ∈ CH(A), hence one can
further assume that B is a sub-abelian variety of A. By Poincaré reducibility, there is a sub-abelian
variety C ⊂ A, such that the natural morphism π : B×C→ A is an isogeny. We have the following
diagram :

B × C
pr1

��

π
��

B
j

DD

i
// A

As π∗ : CH(A)→ CH(B × C) is an isomorphism with inverse 1
deg(π)π∗, we have

γ = pr1∗ ◦ j∗(γ) = pr1∗ ◦ π
∗
◦

1
deg(π)

π∗ ◦ j∗(γ) =
1

deg(π)
pr1∗ ◦ π

∗
◦ i∗(γ).

Since π and pr1 are morphisms of abelian varieties, the hypothesis that i∗(γ) is symmetrically
distinguished implies that γ is also symmetrically distinguished by Proposition 6.9 (3). �

We now turn to the proof of Proposition 4.1 in Case (B), which takes the following form.
As is explained in §4, with Step (i) being done (Proposition 6.4), this would finish the proof of
Theorem 1.4.

Proposition 6.11 (=Proposition 4.1 in Case (B)). In CH
((∐

1∈G M1
)3
)
, the symmetrizations of the

following two algebraic cycles are rationally equivalent :

• W :=
(

1
|G|

∑
1V1 × 1

|G|
∑
1V1 ×

∑
1(−1)age(1)V1

)
∗

(
δKn(A)

)
;
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• Z is the cycle determining the orbifold product (Definition 2.5(5)) with the sign change by discrete
torsion (Definition 3.4) :

Z|M11×M12×M13 =

0 if 13 , 1112

ε11,12 · δ∗ctop(F11,12) if 13 = 1112.

To this end, we apply Proposition 6.9(3) by proving in this subsection that they are both sym-
metrically distinguished (Proposition 6.12) and then verifying in the next one §6.3 that they are
homologically equivalent (Proposition 6.13).

Let M be the abelian variety An+1
0 =

{
(x1, · · · , xn+1) ∈ An+1

∣∣∣ ∑i xi = 0
}

as before. For any 1 ∈ G,
the fixed locus

M1 =

(x1, · · · , xn+1) ∈ An+1

∣∣∣∣∣∣∣ ∑i

xi = 0 ; xi = x1.i ∀i


has the following decomposition into connected components :

(23) M1 =
∐
τ∈A[d]

M1τ,

where d := gcd(1) is the greatest common divisor of the lengths of orbits of the permutation 1, A[d]
is the set of d-torsion points and the connected component M1τ is described as follows.
Let λ ∈ P(n + 1) be the partition determined by 1 and l := |λ| be its length. Choose a numbering
ϕ : {1, · · · , l} '−→ O(1) of orbits such that |ϕ(i)| = λi. Then d = gcd(λ1, · · · , λl) and ϕ induces an
isomorphism

(24) ϕ̃ : Aλ
0
'
−→M1,

sending (x1, · · · , xl) to (y1, · · · , yn+1) with y j = xi if j ∈ ϕ(i). Here Aλ
0 is defined in (21), which has

obviously the following decomposition into connected components :

(25) Aλ
0 =

∐
τ∈A[d]

Aλ/d
τ ,

where

Aλ/d
τ =

(x1, · · · , xl) ∈ Aλ

∣∣∣∣∣∣∣
l∑

i=1

λi

d
xi = τ


is connected (non-canonically isomorphic to Al−1 as varieties) and is equipped with a canonical
a.t.t.s. (Definition 6.5) structure, namely, a point of Aλ/d

τ is defined to be of torsion (i.e. in QAλ/d
τ

) if

and only if it is a torsion point (in the usual sense) in the abelian variety Aλ. The decomposition (23)

of M1 is the transportation of the decomposition (25) of Aλ
0 via the isomorphism (24) : Aλ/d

τ
ϕ̃
−→
'

M1τ.

The component M1τ hence acquires a canonical structure of a.t.t.s. It is clear that the decomposition
(23) and the a.t.t.s. structure on components are both independent of the choice of ϕ. One can also
define the a.t.t.s. structure on M1 by using Lemma 6.6.

Similar to Proposition 5.7, here is the main result of this subsection :

Proposition 6.12. Notation is as in Proposition 6.11. W and Z, as well as their symmetrizations, are

symmetrically distinguished in CH
((∐

1∈G M1
)3
)
, where M1 is viewed as a disjoint union of a.t.t.s. as in

(23) and symmetrical distinguishedness is in the sense of Definition 6.8.



MOTIVIC HYPERKÄHLER RESOLUTION CONJECTURE FOR GENERALIZED KUMMER VARIETIES 29

Proof. For W, it is enough to show that for any 11, 12, 13 ∈ G, q∗ ◦ p∗ ◦ δ∗(1Kn(A)) is symmetrically
distinguished, where the notation is explained in the following commutative diagram, whose
squares are all cartesian and without excess intersections.

(26) (A[n+1])3

�

U11 ×U12 ×U13

�

p′′
oo

q′′
// (An+1)11 × (An+1)12 × (An+1)13

A[n+1]

�

+ �

δ′′
99

� � δ′ // (A[n+1])3/A

�

?�

OO

U11 ×A U12 ×A U13

�

p′
oo

q′
//

?�

OO

(An+1)11 ×A (An+1)12 ×A (An+1)13
?�

j

OO

Kn(A)
?�

OO

� � δ // Kn(A)3
?�

OO

V11 × V12 × V13
?�

OO

p
oo

q
// M11 ×M12 ×M13

?�

i

OO

where the incidence subvarieties U1’s are defined in §5.1 (16) (with n replaced by n + 1) ; all fiber
products in the second row are over A ; the second row is the base change by the inclusion of small
diagonal A ↪→ A3 of the first row ; the third row is the base change by OA ↪→ A of the second the
row ; finally, δ, δ′, δ′′ are various (absolute or relative) small diagonals.

Observe that the two inclusions i and j are in the situation of Lemma 6.6 : let

Λ := ZO(11)
⊕ ZO(12)

⊕ ZO(13),

which admits a natural morphism u to Λ′ := Z ⊕ Z ⊕ Z by weighted sum on each factor (with
weights being the lengths of orbits). Let v : Λ′ → Λ′′ := Z⊕Z be (m1,m2,m3) 7→ (m1 −m2,m1 −m3).
Then it is clear that i and j are identified with the following inclusions

Ker(uA) i
↪−→ Ker(vA ◦ uA)

j
↪−→ A ⊗Z Λ.

By Lemma 6.6, (An+1)11 ×A (An+1)12 ×A (An+1)13 and M11 ×M12 ×M13 are naturally disjoint unions
of a.t.t.s. and the inclusions i and j are morphisms of a.t.t.s. on each component.

Now by functorialities and the base change formula (cf. [30, Theorem 6.2]), we have

j∗ ◦ q′∗ ◦ p′∗ ◦ δ′∗(1A[n+1]) = q′′∗ ◦ p′′∗ ◦ δ′′∗ (1A[n+1]),

which is a polynomial of big diagonals of A|O(11)|+|O(12)|+|O(13)| by Voisin’s result [55, Proposition 5.6],
thus symmetrically distinguished in particular. By Lemma 6.10, q′∗ ◦p′∗ ◦δ′∗(1A[n+1]) is symmetrically
distinguished on each component of (An+1)11 ×A (An+1)12 ×A (An+1)13 .
Again by functorialities and the base change formula, we have

q∗ ◦ p∗ ◦ δ∗(1Kn(A)) = i∗ ◦ q′∗ ◦ p′∗ ◦ δ′∗(1A[n+1]).

Since i is a morphism of a.t.t.s. on each component (Lemma 6.6), one concludes that q∗◦p∗◦δ∗(1Kn(A))
is symmetrically distinguished on each component. Hence W, being a linear combination of such
cycles, is also symmetrically distinguished.
For Z, as in the Case (A), it is easy to see that all the obstruction bundles F11,12 are (at least virtually)
trivial vector bundles because according to Definition 2.5, there are only tangent/normal bundles
of/between abelian varieties involved. Therefore the only non-zero case is the push-forward of
the fundamental class of M<11,12> by the inclusion into M11 × M12 × M1112 , which is obviously
symmetrically distinguished. �

6.3. Step (iii) – Cohomological realizations. We keep the notation as before. To finish the proof
of Proposition 6.11, hence Theorem 1.4, it remains to show that the cohomology classes of the
symmetrizations of W and Z are the same. In other words, they have the same realization for Betti
cohomology.
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Proposition 6.13. The cohomology realization of the (a priori additive) isomorphism in Proposition 6.4

φ : h(Kn(A)) '−→
(
⊕1∈G h((An+1

0 )1)(− age(1))
)Sn+1

is an isomorphism of Q-algebras

φ : H∗(Kn(A)) '−→ H∗orb,dt([A
n+1
0 /Sn+1]) =

 ⊕
1∈Sn+1

H∗−2 age(1)((An+1
0 )1), ?orb,dt


Sn

.

In other words, Sym(W) and Sym(Z) are homologically equivalent.

Proof. We use Nieper–Wisskirchen’s following description [42] of the cohomology ring H∗(Kn(A),C).
Let s : A[n+1]

→ A be the composition of the Hilbert–Chow morphism followed by the summation
map. Recall that s is an isotrivial fibration. In the sequel, if not specified, all cohomology groups
are with complex coefficients. We have a commutative diagram :

H∗(A) s∗ //

ε

��

H∗(A[n])

restr.
��

C // H∗(Kn(A))

where the upper arrow s∗ is the pull-back by s, the lower arrow is the unit map sending 1 to the
fundamental class 1Kn(A), ε is the quotient by the ideal consisting of elements of strictly positive
degree and the right arrow is the restriction map. The commutativity comes from the fact that
Kn(A) = s−1(OA) is a fiber. Thus one has a ring homomorphism

R : H∗(A[n]) ⊗H∗(A) C→ H∗(Kn(A)).

Then [42, Theorem 1.7] asserts that this is an isomorphism of C-algebras.
Now consider the following diagram :

(27) H∗(A[n+1]) ⊗H∗(A) C R
'

//

Φ '

��

H∗(Kn(A))

φ'

��(
⊕1∈Sn+1H∗−2 age(1)((An+1)1)

)Sn+1
⊗H∗(A) C r

//
(
⊕1∈Sn+1H∗−2 age(1)((An+1

0 )1)
)Sn+1

,

• As just stated, the upper arrow is an isomorphism of C-algebras, by Nieper–Wisskirchen
[42, Theorem 1.7].
• The left arrow Φ comes from the ring isomorphism (which is exactly CHRC 1.1 for Case

(A), see §5.3) :

H∗(A[n+1]) '−→
(
⊕1∈Sn+1H∗−2 age(1)((An+1)1)

)Sn+1
,

established in [25] based on [37]. By (the proof of) Proposition 5.8, this isomorphism is
actually induced by

∑
1(−1)age(1)

· U1∗ : H(A[n+1]) → ⊕1H((An+1)1) with U1 the incidence
subvariety defined in (16). Note that on the lower-left term of the diagram, the ring

homomorphism H∗(A) →
(
⊕1∈Sn+1H∗−2 age(1)((An+1)1)

)Sn+1
lands in the summand indexed

by 1 = id, and the map H∗(A) → H∗(An+1)Sn+1 is simply the pull-back by the summation
map A(n+1)

→ A.
• The right arrow is the morphism φ in question. It is already shown in Step (i) Proposition

6.4 to be an isomorphism of vector spaces. The goal is to show that it is also multiplicative.
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• The lower arrow r is defined as follows. On the one hand, let the image of the unit 1 ∈ C be
the fundamental class of A(n+1)

0 in the summand indexed by 1 = id. On the other hand, for
any 1 ∈ Sn+1, we have a natural restriction map H∗−2 age(1)((An+1)1) → H∗−2 age(1)((An+1

0 )1).
They will induce a ring homomorphism H∗(An+1,Sn+1)C → H∗(An+1

0 ,Sn+1)C by Lemma
6.14 below, which is easily seen to be compatible with the Sn+1-action and the ring homo-
morphisms from H∗(A), hence r is a well-defined homomorphism of C-algebras.
• To show the commutativity of the diagram (27), the case for the unit 1 ∈ C is easy to check.

For the case of H∗(A[n+1]), it suffices to remark that for any 1 the following diagram is
commutative

H∗(A[n+1]) restr. //

U1∗
��

H∗(Kn(A))

V1∗
��

H((An+1)1)
restr
// H((An+1

0 )1)

where V1 is the incidence subvariety defined in (22).

In conclusion, since in the commutative diagram (27), Φ,R are isomorphisms of C-algebras, r is a
homomorphism of C-algebra and φ is an isomorphism of vector spaces, we know that they are all
isomorphisms of algebras. Thus Proposition 6.13 is proved assuming the following :

Lemma 6.14. The natural restriction maps H∗−2 age(1)((An+1)1) → H∗−2 age(1)((An+1
0 )1) for all 1 ∈ Sn+1

induce a ring homomorphism H∗(An+1,Sn+1)→ H∗(An+1
0 ,Sn+1), where their product structures are given

by the orbifold product (see Definition 2.5 or 2.6).

Proof. This is straightforward by definition. Indeed, for any 11, 12 ∈ Sn+1 together with α ∈
H((An+1)11) and β ∈ H((An+1)12), since the obstruction bundle F11,12 is a trivial vector bundle, we
have

α ?orb β =

i∗
(
α|(An+1)<11 ,12> ∪ β|(An+1)<11 ,12>

)
if rk F11,12 = 0

0 if rk F11,12 , 0

where i : (An+1)<11,12> ↪→ (An+1)1112 is the natural inclusion. Therefore by the base change for the
cartesian diagram without excess intersection :

(An+1
0 )<11,12> �

� i0 //
� _

��

(An+1
0 )1112
� _

��

(An+1)<11,12> �
�

i
// (An+1)1112

we have :

α ?orb β|(An+1
0 )1112

=

i0∗
((
α|(An+1)<11 ,12> ∪ β|(An+1)<11 ,12>

) ∣∣∣∣ (An+1
0 )<11 ,12>

)
= i0∗

(
α|(An+1

0 )<11 ,12> ∪ β|(An+1
0 )<11 ,12>

)
if rk F11,12 = 0

0 if rk F11,12 , 0

= α|(An+1
0 )11 ?orb β|(An+1

0 )12

which means that the restriction map is a ring homomorphism. �

The proof of Proposition 6.13 is finished. �
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Now the proof of Theorem 1.4 is complete : by Proposition 6.12 and Proposition 6.13, we
know that, thanks to Proposition 6.9 (3), the symmetrizations of Z and W in Proposition 6.11
are rationally equivalent, which proves Proposition 4.1 in Case (B). Hence the isomorphism φ
in Proposition 6.4 is an isomorphism of algebra objects between the motive of the generalized
Kummer variety h(Kn(A)) and the orbifold Chow motive horb([An+1

0 /Sn+1]). �

We would like to note the following corollary obtained by applying the cohomological
realization functor to Theorem 1.4.

Corollary 6.15 (CHRC : Kummer case). The Cohomological HyperKähler Resolution Conjecture is true
for Case (B), namely, one has an isomorphism of Q-algebras :

H∗(Kn(A),Q) ' H∗orb,dt

(
[An+1

0 /Sn+1]
)
.

Remark 6.16. For some reason unclear to the authors, this result has never appeared before in the
literature. It is presumably not hard to check CHRC in the case of generalized Kummer varieties
directly based on the cohomology result of Nieper–Wisskirchen [42], which is of course one of the
key ingredients used in our proof. It is also generally believed that the main result of Britze’s Ph.D.
thesis [14] should also imply this result. However, the proof of its main result [14, Theorem 40]
seems to be flawed : the linear map Θ constructed in the last line of Page 60, which is claimed to
be the desired ring isomorphism, is actually the zero map. Nevertheless, the authors believe that
it is feasible to check CHRC in this case with the very explicit description of the ring structure of
H∗(Kn(A) × A) obtained in [14].

7. Application 1 : Towards Beauville’s splitting principle

In this section, a holomorphic symplectic variety is always assumed to be smooth projective
unless stated otherwise and we require neither the simple connectedness nor the uniqueness up to
scalar of the holomorphic symplectic 2-form. Hence examples of holomorphic symplectic varieties
include projective deformations of Hilbert schemes of K3 or abelian surfaces, generalized Kummer
varieties etc..

7.1. Beauville’s Splitting Principle. Based on [8] and [11], Beauville envisages in [10] the follow-
ing Splitting Principle for all holomorphic symplectic varieties.

Conjecture 7.1 (Splitting Principle : Chow rings). Let X be a holomorphic symplectic variety of di-
mension 2n. Then one has a canonical bigrading of the rational Chow ring CH∗(X), called multiplicative
splitting of CH∗(X) of Bloch–Beilinson type : for any 0 ≤ i ≤ 4n,

(28) CHi(X) =

i⊕
s=0

CHi(X)s,

which satisfies :

• (Multiplicativity) CHi(X)s • CHi′(X)s′ ⊂ CHi+i′(X)s+s′ ;
• (Bloch–Beilinson) The associated filtration F j CHi(X) :=

⊕
s≥ j CHi(X)s satisfies the Bloch–Beilinson

conjecture (cf. [52, Conjecture 11.21] for example). In particular :
– (F1 = CHhom) The restriction of the cycle class map cl :

⊕
s>0 CHi(X)s → H2i(X,Q) is zero ;

– (Injectivity) The restriction of the cycle class map cl : CHi(X)0 → H2i(X,Q) is injective.
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We would like to reformulate (and slightly strengthen) Conjecture 7.1 by using the language
of Chow motives as follows, which is, we believe, more fundamental. Let us first of all introduce
the following (weaker) notion studied in detail in [48].

Definition 7.2 (Multiplicative Chow–Künneth decomposition). Given a smooth projective variety
X of dimension n, a multiplicative Chow–Künneth decomposition is a direct sum decomposition in the
category CHM of Chow motives with rational coefficients :

(29) h(X) =

2n⊕
i=0

hi(X)

satisfying the following two properties :

• (Chow–Künneth) The cohomology realization of the decomposition gives the Künneth
decomposition : for each 0 ≤ i ≤ 2n, H∗(hi(X)) = Hi(X).
• (Multiplicativity) The product µ : h(X) ⊗ h(X) → h(X) given by the small diagonal δX ⊂

X × X × X respects the decomposition : the restriction of µ on the summand hi(X) ⊗ h j(X)
factorizes through hi+ j(X).

Such a decomposition induces a (multiplicative) bigrading of the rational Chow ring CH∗(X) =

⊕i,s CHi(X)s by setting :

(30) CHi(X)s := CHi(h2i−s(X)) := HomCHM

(
1(−i), h2i−s(X)

)
.

By the definition of motives (cf. 2.1), a multiplicative Chow–Künneth decomposition is equivalent
to a collection of auto-correspondences

{
π0, · · · , π2 dim X

}
, where πi

∈ CHdim X(X × X), satisfying

• πi
◦ πi = πi,∀i ;

• πi
◦ π j = 0,∀i , j ;

• π0 + · · · + π2 dim X = ∆X ;
• Im(πi

∗ : H∗(X)→ H∗(X)) = Hi(X) ;
• πk

◦ δX ◦ (πi
⊗ π j) = 0,∀k , i + j.

The induced multiplicative bigrading on the rational Chow ring CH∗(X) is given by

CHi(X)s := Im
(
π2i−s
∗ : CHi(X)→ CHi(X)

)
.

For later use, we need to generalize the previous notion for Chow motive algebras :

Definition 7.3. Let h be an (associative but not-necessarily commutative) algebra object in the
category CHM of rational Chow motives. Denote by µ : h⊗ h → h its multiplication structure. A
multiplicative Chow–Künneth decomposition of h is a direct sum decomposition

h =
⊕
i∈Z

hi,

such that

• (Chow–Künneth) the cohomology realization gives the Künneth decomposition : Hi(h) =

H∗(hi) for all i ∈ Z ;
• (Multiplicativity) the restriction of µ to hi

⊗ h j factorizes through hi+ j.

Now one can enhance Conjecture 7.1 to the following :
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Conjecture 7.4 (Motivic Splitting Principle = Conjecture 1.6). Let X be a holomorphic symplectic
variety of dimension 2n. Then we have a canonical multiplicative Chow–Künneth decomposition of h(X) :

h(X) =

4n⊕
i=0

hi(X)

which is moreover of Bloch–Beilinson–Murre type, that is, for any i, j ∈ N,

(1) CHi(h j(X)) = 0 if j < i ;
(2) CHi(h j(X)) = 0 if j > 2i ;
(3) the realization induces an injective map HomCHM

(
1(−i), h2i(X)

)
→ HomQ−HS

(
Q(−i),H2i(X)

)
.

One can deduce Conjecture 7.1 from Conjecture 7.4 via (30). Note that the range of s in (28)
follows from the first two Bloch–Beilinson–Murre conditions in Conjecture 7.4.

7.2. Splitting Principle for abelian varieties. Recall that for an abelian variety B of dimension 1,
using Fourier transform [6], Beauville [8] constructs a multiplicative bigrading on CH∗(B) :

(31) CHi(B) =

i⊕
s=i−1

CHi(B)s, for any 0 ≤ i ≤ 1

where

(32) CHi(B)s :=
{
α ∈ CHi(B)

∣∣∣ m∗α = m2i−sα ; ∀m ∈ Z
}
,

is the simultaneous eigenspace for all m : B→ B, the multiplication by m ∈ Z map.

Using similar idea as in loc.cit. , Deninger and Murre [22] constructed a multiplicative Chow–
Künneth decomposition (Definition 7.2)

(33) h(B) =

21⊕
i=0

hi(B),

with (by [36])

(34) hi(B) ' Symi(h1(B)).

Moreover, one may choose such a multiplicative Chow–Künneth decomposition to be symmet-
rically distinguished ; see [48, Ch. 7]. This Chow–Künneth decomposition is the candidate
decomposition for the analogous Conjecture 7.4 in the case of abelian varieties and induces, via
(30), Beauville’s bigrading (32) ; the remaining Bloch–Beilinson condition becomes the following
conjecture of Beauville [6] on CH∗(B) , which is still largely open.

Conjecture 7.5 (Beauville’s conjecture on abelian varieties). Notation is as above. Then

• CHi(B)s = 0 for s < 0 ;
• The restriction of the cycle class map cl : CHi(B)0 → H2i(B,Q) is injective.

Remark 7.6. As torsion translations act trivially on the Chow rings of abelian varieties (Lemma
6.7), the Beauville–Deninger–Murre decompositions (32) and (33) naturally extend to the slightly
broader context of abelian torsors with torsion structure (see Definition 6.5).
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We collect some facts about the Beauville–Deninger–Murre decomposition (33) for the proof
of Theorem 7.9 in the next subsection. By choosing markings for a.t.t.s. ’s, thanks to Lemma 6.7, we
see that a.t.t.s. ’s can be endowed with multiplicative Chow–Künneth decompositions consisting
of Chow–Künneth projectors that are symmetrically distinguished, and enjoying the properties
embodied in the two following lemmas. Their proofs are reduced immediately to the case of
abelian varieties, which are certainly well-known.

Lemma 7.7 (Künneth). Let B and B′ be two abelian varieties (or more generally a.t.t.s. ’s), then the natural
isomorphism h(B)⊗h(B′) ' h(B×B′) identifies the summand hi(B)⊗h j(B) as a direct summand of hi+ j(B×B′)
for any i, j ∈ N. �

Lemma 7.8. Let f : B → B′ be a morphism of abelian varieties (or more generally a.t.t.s. ’s) of dimension
1, 1′ respectively.

• The pull back f ∗ := tΓ f : h(B′)→ h(B) sends hi(B′) to hi(B) ;
• The push forward f∗ := Γ f : h(B)→ h(B′) sends hi(B) to hi+21′−21(B′). �

7.3. Candidate decompositions in Case (A) and (B). In the sequel, let A be an abelian surface. We
want to do the similar thing as Beauville and Deninger–Murre did for abelian varieties (§7.2) : for
the holomorphic symplectic variety X being A[n] or Kn(A), we construct the candidate multiplicative
Chow–Künneth decomposition for Conjecture 7.4 thus the candidate bigrading on CH∗(X) for
Conjecture 7.1, then formulate the remaining Bloch–Beilinson condition into a conjecture on the
motive of A, which will be investigated upon, especially its relation with Beauville’s Conjecture
7.5 on abelian varieties.

Let us start by the existence of multiplicative Chow–Künneth decomposition :

Theorem 7.9. Given an abelian surface A, let X be
Case (A) : the 2n-dimensional Hilbert scheme A[n] ; or Case (B) : the n-th generalized Kummer variety Kn(A).
Then X has a canonical multiplicative Chow–Künneth decomposition

h(X) =

4n⊕
i=0

hi(X),

where in Case (A) and (B) respectively

hi(A[n]) :=

⊕
1∈Sn

hi−2 age(1)((An)1)(− age(1))


Sn

;(35)

hi(Kn(A)) :=

 ⊕
1∈Sn+1

hi−2 age(1)((An+1
0 )1)(− age(1))


Sn+1

.(36)

In particular, a canonical multiplicative bigrading on the (rational) Chow ring given by

CHi(X)s := CHi(h2i−s(X)).

Remark 7.10. The existence of a multiplicative Chow–Künneth decomposition of A[n] is not new :
it was previously obtained by Vial in [50]. As for the generalized Kummer varieties, if one ignores
the multiplicativity of the Chow–Künneth decomposition, which is of course the key point here,
then it follows rather directly from De Cataldo and Migliorini’s result [20] as explained in §6.1 (see
Corollary 6.3) and is explicitly written down by Z. Xu [56].
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Proof. The following proof works for both cases. Let M := An, G := Sn, X := A[n] in Case (A) and
M := An+1

0 , G := Sn+1, X := Kn(A) in Case (B). Thanks to Theorem 1.3 and Theorem 1.4, we have an
isomorphism of motive algebras :

h(X) '

⊕
1∈G

h (M1) (− age(1)), ?orb,dt


G

and it suffices to prove that the motive algebra

h :=
⊕
1∈G

h (M1) (− age(1)),with ?orb,dt as the product,

has a multiplicative Chow–Künneth decomposition in the sense of Definition 7.3. To this end, for
each 1 ∈ G, an application of Deninger–Murre’s decomposition (33) to M1, which is an abelian
variety in Case (A) and a disjoint union of a.t.t.s. in Case (B), gives us a multiplicative Chow–
Künneth decomposition

h(M1) =

2 dim M1⊕
i=0

hi(M1).

Now we define for each i ∈ N,

(37) hi :=
⊕
1∈G

hi−2 age(1)(M1)(− age(1)).

Here by convention, h j(M1) = 0 for j < 0, hence in (37), hi = 0 if i − 2 age(1) > 2 dim(M1) for any
1 ∈ G, that is, when i > max1∈G{4n − 2 age(1)} = 4n.

Then obviously, as a direct sum of Chow–Künneth decompositions,

h =

4n⊕
i=0

hi

is a Chow–Künneth decomposition. It remains to show the multiplicativity condition that µ :
hi
⊗ h j
→ h factorizes through hi+ j, which is equivalent to say that for any i, j ∈ N and 1, h ∈ G, the

orbifold product ?orb (discrete torsion only changes a sign thus irrelevant here) restricted to the
summand hi−2 age(1)(M1)(− age(1))⊗h j−2 age(h)(Mh)(− age(h)) factorizes through hi+ j−2 age(1h)(M1h)(− age(1h)).
Thanks to the fact that the obstruction bundle F1,h is always a trivial vector bundle in both of our
cases, we know that (see Definition 2.5) ?orb is either zero when rk(F1,h) , 0 ; or when rk(F1,h) = 0,
is defined as the correspondence from M1 ×Mh to M1h given by the following composition

(38) h(M1) ⊗ h(Mh) '−→ h(M1 ×Mh)
ι∗1
−→ h(M<1,h>)

ι2∗
−−→ h(M1h)(codim(ι2)),

where
M1h M<1,h>? _

ι2oo � � ι1 // M1 ×Mh

are morphisms of abelian varieties in Case (A) and morphisms of a.t.t.s. ’s in Case (B). Therefore,
one can suppose further that rk(F1,h) = 0, which implies by using (7) that the Tate twists match :

codim(ι2) − age(1) − age(h) = − age(1h).

Now Lemma 7.7 applied to the first isomorphism in (38) and Lemma 7.8 applied to the last two
morphisms in (38) show that, omitting the Tate twists, the summand hi−2 age(1)(M1)⊗ h j−2 age(h)(Mh)
is sent by µ inside the summand hk(M1h), with the index

k = i + j − 2 age(1) − 2 age(h) + 2 dim(M1h) − 2 dim(M<1,h>) = i + j − 2 age(1h),
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where the last equality is by equation (7) together with the assumption rk(F1,h) = 0.

In conclusion, we get a multiplicative Chow–Künneth decomposition h =
⊕4n

i=0 h
i with hi given

in (37) ; hence a multiplicative Chow–Künneth decomposition for its G-invariant part of the sub-
motive algebra h(X). �

The decomposition in Theorem 7.9 is supposed to be Beauville’s splitting of the Bloch–
Beilinson–Murre filtration on the rational Chow ring of X. In particular,

Conjecture 7.11. (Bloch–Beilinson for X) Notation is as in Theorem 7.9, then for all i ∈ N,

• CHi(X)s = 0 for s < 0 ;
• The restriction of the cycle class map cl : CHi(X)0 → H2i(X,Q) is injective.

As a first step towards this conjecture, let us make the following

Remark 7.12. Beauville’s conjecture 7.5 on abelian varieties implies Conjecture 7.11. Indeed, keep the
same notation as before. From (35) (36), we obtain

CHi(A[n])s = CHi(h2i−s(A[n])) =

⊕
1∈Sn

CHi−age(1)(h2i−s−2 age(1)(AO(1)))


Sn

=
⊕
λ∈P(n)

CHi+|λ|−n(Aλ)Sλs ;

CHi(KnA)s = CHi(h2i−s(KnA)) =

 ⊕
1∈Sn+1

CHi−age(1)(h2i−s−2 age(1)(AO(1)
0 ))


Sn+1

=
⊕

λ∈P(n+1)

CHi+|λ|−n−1(Aλ
0 )Sλs ,

in two cases respectively, whose vanishing (s < 0) and injectivity into cohomology by cycle class
map (s = 0) follow directly from those of Aλ or Aλ

0 .
In fact, [51, Theorem 3] proves more generally that the second point of Conjecture 7.5 (the injectivity
of the cycle class map cl : CHi(B)0 → H2i(B,Q) for all complex abelian varieties) implies Conjecture
7.11 for all smooth projective complex varieties X whose Chow motive is of abelian type, which is
the case for a generalized Kummer variety by Proposition 6.4. Of course, one has to check that our
definition of CHi(X)0 here coincides with the one in [51], which is quite straightforward.

The Chern classes of a (smooth) holomorphic symplectic variety X are also supposed to be
in CHi(X)0 with respect to Beauville’s conjectural splitting. We can indeed check this in both cases
considered here :

Proposition 7.13. Set-up as in Theorem 7.9. The Chern class ci(X) belongs to CHi(X)0 for all i.

Proof. In Case (A), that is, in the case where X is the Hilbert scheme A[n], this is proved in [50].
Let us now focus on Case (B), that is, on the case where X is the generalized Kummer variety
Kn(A). Let {πi : 0 ≤ i ≤ 2n} be the Chow–Künneth decomposition of Kn(A) given by (36). We
have to show that ci(Kn(A)) = (π2i)∗ci(Kn(A)), or equivalently that (π j)∗ci(Kn(A)) = 0 as soon as
(π j)∗ci(Kn(A)) is homologically trivial. By Proposition 6.4, it suffices to show that for any 1 ∈ G
(π j

M1)∗((V
1)∗ci(Kn(A))) = 0 as soon as (π j

M1)∗((V
1)∗ci(Kn(A))) is homologically trivial. Here, recall that

(23) makes M1 a disjoint union of a.t.t.s. and that π j
M1 is a Chow–Künneth projector on M1 which

is symmetrically distinguished on each component of M1. By Proposition 6.9, it is enough to show
that (V1)∗(ci(Kn(A)) is symmetrically distinguished on each component of M1. As in the proof of
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Proposition 6.12, we have for any 1 ∈ G the following commutative diagram, whose squares are
cartesian and without excess intersections :

(39) A[n+1]

�

U1

�

p′
oo

q′
// (An+1)1

Kn(A)
?�

OO

V1
?�

OO

p
oo

q
// M1
?�

i

OO

where the incidence subvariety U1 is defined in §5.1 (16) (with n replaced by n + 1) and the bottom
row is the base change by OA ↪→ A of the top row. Note that ci(Kn(A)) = ci(A[n+1])|Kn(A), since the
tangent bundle of A is trivial. Therefore, by functorialities and the base change formula (cf. [30,
Theorem 6.2]), we have

(V1)∗(ci(Kn(A)) := q∗ ◦ p∗(ci(Kn(A)) = i∗ ◦ q′∗ ◦ p′∗(ci(A[n+1])).

By Voisin’s result [55, Theorem 5.12], q′∗◦p′∗(ci(A[n+1])) is a polynomial of big diagonals of A|O(1)| , thus
symmetrically distinguished in particular. It follows from Proposition 6.9 that (V1)∗(ci(Kn(A)) is
symmetrically distinguished on each component of M1. This concludes the proof of the proposition.

�

8. Application 2 : Multiplicative decomposition theorem of rational cohomology

Deligne’s decomposition theorem states the following :

Theorem 8.1 (Deligne [21]). Let π : X → B be a smooth projective morphism. In the derived category of
sheaves of Q-vector spaces on B, there is a decomposition (which is non-canonical in general)

(40) Rπ∗Q �
⊕

i

Riπ∗Q[−i].

Both sides of (40) carry a cup-product : on the right-hand side the cup-product is the direct
sum of the usual cup-products Riπ∗Q ⊗ R jπ∗Q → Ri+ jπ∗Q defined on local systems, while on the
left-hand side the derived cup-product Rπ∗Q ⊗ Rπ∗Q→ Rπ∗Q is induced by the (derived) action
of the relative small diagonal δ ⊂ X ×B X ×B X seen as a relative correspondence from X ×B X to
X. As explained in [54], the isomorphism (40) does not respect the cup-product in general. Given
a family of smooth projective varieties π : X → B, Voisin [54, Question 0.2] asked if there exists
a decomposition as in (40) which is multiplicative, i.e., which is compatible with cup-product,
maybe over a nonempty Zariski open subset of B. By Deninger–Murre [22], there does exist such
a decomposition for an abelian scheme π : A→ B. The main result of [54] is :

Theorem 8.2 (Voisin [54]). For any smooth projective family π : X → B of K3 surfaces, there exist
a decomposition isomorphism as in (40) and a nonempty Zariski open subset U of B, such that this
decomposition becomes multiplicative for the restricted family π|U : X|U → U.

As implicitly noted in [50, Section 4], Voisin’s Theorem 8.2 holds more generally for any
smooth projective family π : X → B whose generic fiber admits a multiplicative Chow–Künneth
decomposition (K3 surfaces do have a multiplicative Chow–Künneth decomposition ; this follows
by suitably reinterpreting, as in [48, Proposition 8.14], the vanishing of the modified diagonal cycle
of Beauville–Voisin [11] as the multiplicativity of the Beauville–Voisin Chow–Künneth decompo-
sition.) :
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Theorem 8.3. Let π : X → B be a smooth projective family, and assume that the generic fiber X of π admits
a multiplicative Chow–Künneth decomposition. Then there exist a decomposition isomorphism as in (40)
and a nonempty Zariski open subset U of B, such that this decomposition becomes multiplicative for the
restricted family π|U : X|U → U.

Proof. By spreading out a multiplicative Chow–Künneth decomposition of X, there exist a suf-
ficiently small but nonempty Zariski open subset U of B and relative correspondences Πi

∈

CHdimBX(X|U ×U X|U), 0 ≤ i ≤ 2 dimBX, forming a relative Chow–Künneth decomposition, mean-
ing that ∆X|U/U =

∑
i Πi, Πi

◦Πi = Πi, Πi
◦Π j = 0 for i , j, and Πi acts as the identity on Ri(π[n]

|U)∗Q
and as zero on R j(π[n]

|U)∗Q for j , i. By [54, Lemma 2.1], the relative idempotents Πi induce a
decomposition in the derived category

R(π|U)∗Q �
4n⊕
i=0

Hi(R(π|U)∗Q)[−i] =

4n⊕
i=0

Ri(π|U)∗Q[−i]

with the property that Πi acts as the identity on the summand Hi(R(π|U)∗Q)[−i] and acts as zero on
the summands H j(R(π|U)∗Q)[− j] for j , i. In order to establish the existence of a decomposition
as in (40) that is multiplicative and hence to conclude the proof of the theorem, we thus have to
show that Πk

◦ δ◦ (Πi
×Π j) acts as zero on R(π|U)∗Q⊗R(π|U)∗Q, after possibly further shrinking U,

whenever k , i + j. But more is true : being generically multiplicative, the relative Chow–Künneth
decomposition {Πi

} is multiplicative, that is, Πk
◦ δ ◦ (Πi

×Π j) = 0 whenever k , i + j, after further
shrinking U if necessary. The theorem is now proved. �

As a corollary, we can extend Theorem 8.2 to families of generalized Kummer varieties :

Corollary 8.4. Let π : A → B be an abelian surface over B. Consider Case (A) : A[n]
→ B the relative

Hilbert scheme of length-n subschemes on A → B ; or Case (B) : Kn(A) → B the relative generalized
Kummer variety. Then, in both cases, there exist a decomposition isomorphism as in (40) and a nonempty
Zariski open subset U of B, such that this decomposition becomes multiplicative for the restricted family
over U.

Proof. The generic fiber of A[n]
→ B (resp. Kn(A) → B) is the 2n-dimensional Hilbert scheme

(resp. generalized Kummer variety) attached to the abelian surface that is the generic fiber of π.
By Theorem 7.9, it admits a multiplicative Chow–Künneth decomposition. (Strictly speaking, we
only established Theorem 7.9 for Hilbert schemes of abelian surfaces and generalized Kummer
varieties over the complex number ; however, the proof carries over over any field of characteristic
zero.) We conclude by invoking Theorem 8.3. �
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