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BEAUVILLE-VOISIN CONJECTURE FOR GENERALIZED

Inspired by their results on the Chow rings of projective K3 surfaces, Beauville and Voisin made the following conjecture: given a projective hyperkähler manifold, for any algebraic cycle which is a polynomial with rational coefficients of Chern classes of the tangent bundle and line bundles, it is rationally equivalent to zero if and only if it is numerically equivalent to zero. In this paper, we prove the Beauville-Voisin conjecture for generalized Kummer varieties.

Introduction

In [START_REF] Beauville | On the Chow ring of a K3 surface[END_REF], Beauville and Voisin observe the following property of the Chow rings of projective K3 surfaces.

Theorem 1.1 (Beauville-Voisin). Let S be a projective K3 surface. Then (i) There is a well defined 0-cycle o ∈ CH 0 (S ), which is represented by any point on any rational curve on S . It is called the canonical cycle. (ii) For any two divisors D, D , the intersection product D • D is proportional to the canonical cycle o in CH 0 (S ). (iii) c 2 (T S ) = 24o ∈ CH 0 (S ). In particular, for any algebraic cycle which is a polynomial on Chern classes of the tangent bundle T S and of line bundles on S , it is rationally equivalent to zero if and only if it is numerically equivalent to zero.

As is pointed out in their paper, the above result is surprising because CH 0 (S ) is very huge ('infinite dimensional' in the sense of Mumford [START_REF] Mumford | Rational equivalence of 0-cycles on surfaces[END_REF], cf. [START_REF] Voisin | Hodge theory and complex algebraic geometry[END_REF]Chapter 10]). In a subsequent paper [START_REF]On the splitting of the Bloch-Beilinson filtration[END_REF], Beauville proposed a conjectural explanation for Theorem 1.1 to put it into a larger picture. To explain his idea, let us firstly recall the following notion generalizing K3 surfaces to higher dimensions. See for example [START_REF]Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF], [START_REF] Huybrechts | Compact hyper-Kähler manifolds: basic results[END_REF], or [START_REF] Gross | Calabi-Yau manifolds and related geometries[END_REF] for a more detailed treatment. Definition 1.2 (cf. [START_REF]Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF]). A smooth projective complex variety X is called hyperkähler or irreducible holomorphic symplectic, if it is simply connected and H 2,0 (X) is 1-dimensional and generated by a holomorphic 2-form which is non-degenerate at each point of X. In particular, a hyperkähler variety has trivial canoncial bundle.

Examples 1.3. Let us give some basic examples of projective hyperkähler manifolds:

• (Beauville [START_REF]Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF]) Let S be a projective K3 surface and n ∈ N, then S [n] , which is the Hilbert scheme of subschemes of dimension 0 and length n, is hyperkähler of dimension 2n. • (Beauville [START_REF]Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF]) Let A be an abelian surface and n ∈ N. Let s : A [n+1] → A be the natural morphism defined by the composition of the Hilbert-Chow morphism A [n+1] → A (n+1) and the summation A (n+1) → A using the group law of A. It is clear that s is an isotrivial fibration. Then a fibre K n := s -1 (O A ) is hyperkähler of dimension 2n, called generalized Kummer variety. The name is justified by the fact that K 1 is exactly the Kummer K3 surface associated to A. • (Beauville-Donagi [START_REF] Beauville | La variété des droites d'une hypersurface cubique de dimension 4[END_REF]) Let X ⊂ P 5 be a smooth cubic fourfold, then its Fano variety of lines F(X) := l ∈ Gr P 1 , P 5 | l ⊂ X is hyperkähler of dimension 4.
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As an attempt to understand Theorem 1.1 in a broader framework, Beauville gives the point of view in [START_REF]On the splitting of the Bloch-Beilinson filtration[END_REF] that we can regard this result as a 'splitting property' of the conjectural Bloch-Beilinson-Murre filtration on Chow groups (see [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses[END_REF], [START_REF] Jannsen | Motivic sheaves and filtrations on Chow groups[END_REF]) for certain varieties with trivial canonical bundle. He suggests to verify the following down-to-earth consequence of this conjectural splitting of the conjectural filtration on Chow groups of hyperkähler varieties. As a first evidence, the special cases when X = S [2] or S [3] for a projective K3 surface S are verified in his paper loc.cit. Conjecture 1.4 (Beauville). Let X be a projective hyperkähler manifold, and z ∈ CH(X) Q be a polynomial with Q-coefficients of the first Chern classes of line bundles on X. Then z is homologically trivial if and only if z is (rationally equivalent to) zero.

Voisin pursues the work of Beauville and makes in [START_REF]On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF] the following stronger version of Conjecture 1.4, by involving also the Chern classes of the tangent bundle: Conjecture 1.5 (Beauville-Voisin). Let X be a projective hyperkähler manifold, and z ∈ CH(X) Q be a polynomial with Q-coefficients of the first Chern classes of line bundles on X and the Chern classes of the tangent bundle of X. Then z is numerically trivial if and only if z is (rationally equivalent to) zero.

Here we replaced 'homologically trivial' in the original statement in Voisin's paper [START_REF]On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF] by 'numerically trivial'. But according to the standard conjecture [START_REF] Steven | The standard conjectures, Motives[END_REF], the homological equivalence and the numerical equivalence are expected to coincide. We prefer to state the Beauville-Voisin conjecture in the above slightly stronger form since our proof for generalized Kummer varieties also works in this generality.

In [START_REF]On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF], Voisin proves Conjecture 1.5 for the Fano varieties of lines of cubic fourfolds, and for S [n] if S is a projective K3 surface and n ≤ 2b 2,tr + 4, where b 2,tr is the second Betti number of S minus its Picard number. We remark that here we indeed can replace the homological equivalence by the numerical equivalence since the standard conjecture in these two cases has been verified by Charles and Markman [START_REF] Franc | The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of K3 surfaces[END_REF].

The main result of this paper is to prove the Beauville-Voisin conjecture 1.5 for generalized Kummer varieties.

Theorem 1.6. Let A be an abelian surface, n ≥ 1 be a natural number. Denote by K n the generalized Kummer variety associated to A (cf. Examples 1.3). Consider any algebraic cycle z ∈ CH(K n ) Q which is a polynomial with rational coefficients of the first Chern classes of line bundles on K n and the Chern classes of the tangent bundle of K n , then z is numerically trivial if and only if z is (rationally equivalent to) zero.

There are two key ingredients in the proof of the above theorem: on the one hand, as in [START_REF]On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF], the result of De Cataldo-Migliorini [START_REF] Andrea | The Chow groups and the motive of the Hilbert scheme of points on a surface[END_REF] recalled in Section 2 relates the Chow groups of A [n] to the Chow groups of various products of A. On the other hand, a recent result on algebraic cycles on abelian varieties due to Moonen [START_REF] Moonen | On the Chow motive of an abelian scheme with non-trivial endomorphisms[END_REF] and O'Sullivan [START_REF] Peter | Algebraic cycles on an abelian variety[END_REF], which is explained in Section 3, allows us to upgrade a relation modulo numerical equivalence to a relation modulo rational equivalence.

Convention: Throughout this paper, we work over the field of complex numbers. All Chow groups are with rational coefficients CH := CH ⊗Q. If A is an abelian variety, we denote by O A its origin and Pic s (A) its group of symmetric line bundles. For any smooth projective surface S , we denote by S [n] the Hilbert scheme of subschemes of length n, which is a 2n-dimensional smooth projective variety by [START_REF] Fogarty | Algebraic families on an algebraic surface[END_REF]. Finally, for an algebraic variety X, the big diagonal ∆ i j in a self-product X n is the subvariety (

x 1 , • • • , x n ) ∈ X n | x i = x j .

De Cataldo-Migliorini's result

As mentioned above, a crucial ingredient for the proof of Theorem 1.6 will be the following result due to De Cataldo and Migliorini. We state their result in the form adapted to our purpose.

Let S be a projective surface, n ∈ N + and P(n) be the set of partitions of n. For any such partition µ = ( µ 1 , • • • , µ l ), we denote by lµ := l its length. Define S µ := S lµ = S × • • • × S lµ , and also a natural morphism from it to the symmetric product:

S µ → S (n) (x 1 , • • • , x l ) → µ 1 x 1 + • • • + µ l x l . Now define Eµ := S [n] × S (n) S µ
red to be the reduced incidence variety inside S [n] × S µ . Then Eµ can be viewed as a correspondence from S [n] to S µ , and we will write t Eµ for the transpose correspondence, namely the correspondence from S µ to S [n] defined by the same subvariety Eµ in the product.

Let µ = ( µ 1 , • • • , µ l ) = 1 a 1 2 a 2 • • • n a n be a partition of n, we define mµ := (-1) n-l l j=1 µ j and cµ := 1 mµ 1 a 1 !•••a n ! .
Theorem 2.1 (De Cataldo-Migliorini [START_REF] Andrea | The Chow groups and the motive of the Hilbert scheme of points on a surface[END_REF]). Let S be a projective surface, n ∈ N + . For each µ ∈ P(n), let Eµ and t Eµ be the correspondences defined above. Then the sum of the compositions

µ ∈P(n) cµ t Eµ • Eµ = ∆ S [n]
is the identity correspondence of S [n] , modulo rational equivalence. In particular,

µ ∈P(n) cµ E * µ • Eµ * = id CH(S [n]
) : CH(S [n] ) → CH(S [n] ).

Return to the case where S = A is an abelian surface. We view A [n+1] as a variety over A by the natural summation morphism s : A [n+1] → A. Similarly, for each µ ∈ P(n + 1) of length l, A µ also admits a natural morphism to A, namely, the weighted sum:

sµ : A µ → A (x 1 , • • • , x l ) → µ 1 x 1 + • • • + µ l x l .
By definition, the correspondences Eµ, t Eµ are compatible with morphisms s and sµ to A, i.e. the following diagram commutes:

Eµ | | πµ A [n+1] s " " A µ sµ Ã .
We point out that the three morphisms to A are all isotrivial fibrations: they become products after the base change A •n+1 ---→ A given by multiplication by n + 1. Now let us take their fibres over the origin of A, or equivalently, apply the base change i : Spec(C) = O A → A to the above commutative diagram, we obtain the following correspondence, where K n := s -1 (O A ) is the generalized Kummer variety, Bµ is the possibly non-connected abelian variety Bµ := ker sµ : A µ → A , and

Γµ := π -1 µ (O A ). Γµ x x & & K n & & Bµ x x O A = Spec(C) .
In the sequel, we sometimes view Eµ simply as an algebraic cycle in CH A [n+1] × A µ and also by definition

Γµ = i ! (Eµ) ∈ CH K n × B µ
, where i ! is the refined Gysin map defined in [START_REF] Fulton | Intersection theory[END_REF]Chapter 6]. We need the following standard fact in intersection theory. Lemma 2.2. For any γ ∈ CH A [n+1] , we have

Γµ * γ| K n = (Eµ * (γ)) | Bµ in CH (Bµ) .
Similarly, for any β ∈ CH A µ , we have

Γ * µ β| Bµ = E * µ (β) | K n in CH (K n ) .
Proof. All squares are cartesian in the following commutative diagram.

K n × Bµ q / / p w ) ) Bµ w * * K n / / w ) ) O A w i * * A [n+1] × A µ p q / / A µ sµ A [n+1] s / / A. Now for any γ ∈ CH A [n+1] , we have Γµ * γ| K n = Γµ * i ! (γ) (by [14, Theorem 6.2(c)], as s is isotrivial) = q * p * i ! (γ) • i ! (Eµ) = q * i ! p * (γ) • i ! (Eµ) (by [14, Theorem 6.2(b)]) = q * i ! p * (γ) • Eµ = i ! q * p * (γ) • Eµ (by [14, Theorem 6.2(a)]) = i ! (Eµ * (γ)) = (Eµ * (γ)) | Bµ (by [14, Theorem 6.2(c)], as sµ is isotrivial)
The proof of the second equality is completely analogous. Theorem 2.1 together with Lemma 2.2 implies the following Corollary 2.3. For each µ ∈ P(n + 1), let Γµ be the correspondences between K n and Bµ defined above. Then for any γ ∈ CH A [n+1] , we have

µ ∈P(n+1) cµΓ * µ • Γµ * (γ| K n ) = γ| K n in CH(K n ),
where for a partition µ

= ( µ 1 , • • • , µ l ) = 1 a 1 2 a 2 • • • (n + 1) a n+1 ∈ P(n + 1)
, the constant cµ is defined as

1 (-1) n+1-l l j=1 µ j • 1 a 1 !•••a n+1 ! .
For later use, we now describe Bµ.

Let d := gcd ( µ 1 , • • • , µ l )
, then Bµ has d 4 isomorphic connected components. We denote by B 0 µ the identity component, which is a connected abelian variety; and the other components are its torsion translations. More precisely, define the weighted sum homomorphism

sµ : Z ⊕lµ → Z (m 1 , • • • , m l ) → µ 1 m 1 + • • • + µ l m l ,
whose image is clearly dZ. Let U be the kernel of sµ, which is a free abelian group of rank lµ -1. Define the reduced weighted sum sµ :

Z ⊕lµ → Z (m 1 , • • • , m l ) → µ 1 d m 1 + • • • + µ l d m l .
Then we have a short exact sequence of free abelian groups

(1) 0 → U → Z ⊕lµ sµ -→ Z → 0.
By tensoring with A, we obtain a short exact sequence of abelian varieties

(2) 0 → B 0 µ → A µ sµ -→ A → 0.
Since the short exact sequence (1) splits, so does the short exact sequence (2): B 0 µ is a direct summand of A µ , thus we can choose a projection pµ : A µ B 0 µ such that pµ • iµ = id B 0 µ , where iµ : B 0 µ → A µ is the natural inclusion.

Denoting A[d] for the set of d-torsion points of A, we have

Bµ = t∈A[d] B t µ ,
where

B t µ := (x 1 , • • • , x l ) ∈ A µ | l i=1 µ i d x i = t ∈
A . Now we specify the way that we view B t µ as a torsion translation of

B 0 µ . Since d is the greatest common divisor of µ 1 , • • • , µ l , it divides n + 1. We choose t ∈ A[n + 1] such that n+1 d • t = t in A.
Then the torsion translation on A by t will induce some 'torsion translation automorphism'

τ t := (t , • • • , t ) on A [n+1] τ t : A [n+1] → A [n+1]
z → z + t , (e.g. when z is a reduced subscheme of length n + 1 given by (x 1 , • • • , x n+1 ) with x j 's pairwise distinct, it is mapped to z + t := (x 1 + t , • • • , x n+1 + t )); as well as on A µ τ t :

A µ → A µ (x 1 , • • • , x l ) → (x 1 + t , • • • , x l + t ).
These actions are compatible: we have the following commutative diagram with actions:

τ t Eµ x x & & τ t A [n+1] s ' ' A µ τ t sµ x x id A
Moreover, the action of τ t on A µ translates B 0 µ isomorphically to B t µ .

Result of Moonen and O'Sullivan

In this section, A is an abelian variety of dimension g. For any m ∈ Z, let m be the endomorphism of A defined by the multiplication by m. To motivate the result of Moonen and O'Sullivan, let us firstly recall the Beauville conjectures for algebraic cycles on abelian varieties. In [START_REF] Beauville | Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne[END_REF] and [START_REF]Sur l'anneau de Chow d'une variété abélienne[END_REF], Beauville investigates the Fourier transformation between the Chow rings of A and its dual abelian variety  and establishes the following: Theorem 3.1 (Beauville decomposition). Let A be a g-dimensional abelian variety. (i) For any 0 ≤ i ≤ g, there exists a direct-sum decomposition

CH i (A) = i s=i-g CH i (s) (A),
where

CH i (s) (A) := z ∈ CH i (A) | m * z = m 2i-s z, ∀m ∈ Z . (ii)
This decomposition is functorial: Let B be another abelian variety of dimension (g + c) and f : A → B be a homomorphism of abelian varieties. Then for any i,

f * CH i (s) (B) ⊂ CH i (s) (A); f * CH i (s) (A) ⊂ CH i+c (s) (B). (iii)
The intersection product respects the grading:

CH i (s) (A) • CH j (t) (A) ⊂ CH i+ j (s+t) (A).
In the spirit of Bloch-Beilinson-Murre conjecture (cf. [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses[END_REF], [START_REF] Jannsen | Motivic sheaves and filtrations on Chow groups[END_REF]), Beauville makes in [START_REF]Sur l'anneau de Chow d'une variété abélienne[END_REF] the following conjectures, which roughly say that F j CH i (A) := ⊕ s≥ j CH i (s) (A) should give the desired conjectural Bloch-Beilinson-Murre filtration.

Conjecture 3.2 (Beauville conjectures). (i)

For any i and any s < 0, CH i (s) (A) = 0; (ii) For any i, the restriction of the cycle class map cl :

CH i (0) (A) → H 2i (A, Q) is injective; (iii) For any i, the restriction of the Abel-Jacobi map AJ : CH i (1) (A) → J 2i-1 (A) Q is injective.
Obviously, the Beauville conjectures hold for divisors, i.e. CH 1 (A)

= CH 1 (0) (A) ⊕ CH 1 (1) (A) where CH 1 (0) (A) = Pic s (A) Q NS (A) Q ; CH 1 (1) (A) = Pic 0 (A) Q = Â ⊗ Z Q.
In particular, the Q-subalgebra of CH Remark 3.4. The above result is implicit in O'Sullivan's paper [START_REF] Peter | Algebraic cycles on an abelian variety[END_REF]. In fact, he constructs the so-called symmetrically distinguished cycles CH * (A) sd , which is a Q-subalgebra of CH * (A) containing the first Chern classes of symmetric line bundles and mapping isomorphically by the numerical cycle class map to CH * (A), the Q-algebra of cycles modulo the numerical equivalence.

Proof of Theorem 1.6

Let us prove the main result. To fix the notation, we recall the following description of line bundles on K n (see [START_REF]Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF]Proposition 8]). Let : A [n+1] → A (n+1) be the Hilbert-Chow morphism, which is a resolution of singularities ( [START_REF] Fogarty | Algebraic families on an algebraic surface[END_REF]). Proposition 4.1 (Beauville). We have an injective homomorphism

j : NS (A) Q → NS (K n ) Q c top 1 (L) → L| K n such that Pic(K n ) Q = NS (K n ) Q = j NS (A) Q ⊕ Q • δ| K n ,
where δ is the exceptional divisor of A [n+1] .

Here for a line bundle L on A, the S n+1 -invariant line bundle L • • • L on A × • • • × A descends to a line bundle L on the symmetric product A (n+1) and we define L := * (L ). Remark 4.2. As the notation in this proposition indicates, modifying the line bundle L on A inside its numerical equivalence class will not change the resulting line bundle j(L)

= L| K n ∈ NS (K n ) Q = Pic(K n ) Q .
We hence obtain the following Lemma 4.3. Given any polynomial z ∈ CH(K n ) in the Chern classes of T K n and the first Chern classes of line bundles on K n , as in the main theorem, then: (i) There exists γ ∈ CH(A [n+1] ) which is a polynomial of algebraic cycles of one of the three forms: c 1 L for some symmetric line bundle L ∈ Pic s (A) Q , δ, and c j T A [n+1] for some j ∈ N, such that

γ| K n = z in CH(K n ).
(ii) Moreover, for such γ, the automorphism τ t of A [n+1] constructed at the end of Section 2 satisfies

(τ t * (γ)) | K n = γ| K n = z in CH(K n ). Proof. (i) Note that c j T K n = c j T A [n+1] | K n , since T A is trivial. Part (i) thus follows from Proposition 4.1 because c top 1 : Pic s (A) Q -→ NS (A) Q is an isomorphism (see [4, Page 649]). (ii) It is clear that τ t * (δ) = δ and τ t * (T A [n+1] ) = T A [n+1]
. On the other hand, the pushforward of L by a torsion translation on A has the same numerical class as L and hence by Remark 4.2, τ t * ( L) | K n = L| K n as line bundles. Therefore modifying γ by the automorphism τ t does not change its restriction to K n , although it might change the cycle γ itself.

Recall that d = gcd( µ 1 , • • • , µ l ) and for any d-torsion point t of A, the automorphism τ t constructed at the end of Section 2 translates B 0 µ to B t µ , therefore (4) implies that

τ t * (β)| B t µ = 0 for any t ∈ A[d].
However, τ t * (β) = τ t * (Eµ * (γ)) = Eµ * (τ t * (γ)) by the compatibility of the actions of τ t on A [n+1] and on A µ , as explained in Section 2.

We thus obtain that for any t ∈ A[d],

Γµ * (z) | B t µ = Γµ * τ t * γ| K n | B t µ = (Eµ * (τ t * γ)) | B t µ = τ t * (β)| B t µ = 0.
Here the first equality comes from Lemma 4.3(ii), see also Remark 4.2; the second equality uses Lemma 2.2. Since Bµ is the disjoint union of all B t µ for all t ∈ A[d], we have Γµ * (z) = 0 for any µ ∈ P(n + 1).

Using De Cataldo-Migliorini's result (rather Corollary 2.3), we have for z = γ| K n as before,

z = µ ∈P(n+1) cµ Γ * µ • Γµ * (z) = 0.
The proof of Theorem 1.6 is complete if one admits Proposition 4.4.

The proof of Proposition 4.4

The proof of Proposition 4.4 is quite technical but analogous to that of [START_REF]On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF]Proposition 2.4]. For the convenience of readers, we give in this section a more or less self-contained proof closely following [START_REF]On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF], emphasizing the differences from the case in [START_REF]On the Chow ring of certain algebraic hyper-Kähler manifolds[END_REF]. The author thanks Claire Voisin for allowing him to reproduce her arguments. For simplicity, we switch from n + 1 to n. Let A still be an abelian surface.

There are two natural vector bundles on A [n] . The first one is the tangent bundle T n := T A [n] , the second one is the rank n vector bundle O n := pr 1 * O U n , where U n ⊂ A [n] × A is the universal subscheme and pr 1 :

A [n] × A → A [n] is the first projection. As c 1 (O n ) = -1
2 δ, we can generalize Proposition 4.4 by proving it for any γ a polynomial of c 1 L for some L ∈ Pic s (A) Q , c i (O n ) for some i ∈ N, and c j (T n ) for some j ∈ N.

For any L ∈ Pic s (A), by the construction of Eµ

⊂ A [n] × A µ , the restriction pr * 1 L | Eµ is the pull back of the line bundle L ⊗ µ 1 • • • L ⊗ µ l on A µ .
Hence by projection formula, we only need to prove the following Proposition 5.1. For γ ∈ CH(A [n] ) a polynomial with rational coefficients of cycles of the forms:

• c i (O n ) for some i ∈ N; • c j (T n ) for some j ∈ N, the algebraic cycle β = Eµ * (γ) ∈ CH A µ is a polynomial with rational coefficients in the big diagonals ∆ i j of A µ = A lµ for 1 ≤ i j ≤ lµ.
To show Proposition 5.1, we actually prove the more general Proposition 5.2 below (note that Proposition 5.1 corresponds to the special case m = 0), which allows us to do induction on n. Let us introduce some notation first: for any m ∈ N, let Eµ ,m be the correspondence between A [n] × A m and A µ × A m defined by Eµ ,m := Eµ × ∆ A m . Let I n be the ideal sheaf of the universal subscheme U n ⊂ A [n] × A. For any 1 ≤ i j ≤ m, we denote by pr 0 :

A [n] ×A m → A [n] , resp. pr i : A [n] ×A m → A, resp. pr 0i : A [n] ×A m → A [n]
×A, resp. pr i j : A [n] × A m → A × A the projection onto the factor A [n] , resp. the i-th factor of A m , resp. the product of the factor A [n] and the i-th factor of A m , resp. the product of the i-th and j-th factors of A m . structure sheaf, T 1 = T A is trivial and I 1 = I ∆ A is the ideal sheaf of the diagonal, whose Chern classes are either zero or ∆ A (by Lemma 5.3), Proposition 5.2 is verified in this case. Now assuming the statement holds for n -1, let us prove it for n. In the rest of the proof, a partition of n means a grouping of the set {1, 2, • • • , n} rather than just a decreasing sequence of natural numbers with sum n as before. More precisely, a partition µ of length l is a sequence of mutually exclusive subsets

µ 1 , • • • , µ l ∈ 2 {1,••• ,n} such that l j=1 µ j = {1, • • • , n}.
Thus we can naturally identify A µ := A lµ with the diagonal (x 1 , . . . , x n ) ∈ A n | x i = x j if i, j ∈ µ k for some k ⊂ A n . Consider the reduced fibre product (A µ × A (n) A [n-1,n] ) red , which has lµ irreducible components dominating A µ , depending on the choice of the residue point. Let us pick one component, for example, the one where over a general point (x 1 , • • • , x n ) ∈ A µ , the residue point is x n . Let µ be the partition of {1, 2, • • • , n -1} given by µ i := µ i \{n} for all i. Let us call this irreducible component Eµ , µ . Set theoretically,

Eµ , µ = ((x 1 , • • • , x n ), z ⊂ z) ∈ A µ × A [n-1,n] | [z ] = x 1 + • • • + x n-1 , [z] = x 1 + • • • + x n ; Eµ = ((x 1 , • • • , x n ), z) ∈ A µ × A [n] | [z] = x 1 + • • • + x n ; Eµ = ((x 1 , • • • , x n-1 ), z ) ∈ A µ × A [n-1] | [z ] = x 1 + • • • + x n-1 ,
where [-] means the Hilbert-Chow morphism.

We have the following commutative diagram with natural morphisms:

(6) A µ × A A µ ι o o Eµ × A gµ ,1 O O fµ ,1 Eµ , µ χ o o χ / / p Eµ gµ O O fµ A [n-1] × A A [n-1,n] σ=(φ,ρ) o o ψ / / A [n]
Here and in the sequel, for any morphism h and any m ∈ N, we denote by h m the morphism h × id A m . In the above diagram, fµ, gµ, fµ , gµ are the natural projections; χ = (id A µ , ψ) :

((x 1 , • • • , x n ), z ⊂ z) → ((x 1 , • • • , x n ), z), χ = (pr A µ , σ) : ((x 1 , • • • , x n ), z ⊂ z) → ((x 1 , • • • , x n-1 ), z , x n ) both are of degree 1; and finally ι : (x 1 , • • • , x n ) → ((x 1 , • • • , x n-1 ), x n
) is either an isomorphism or a diagonal embedding depending on whether n is the only one element in the subset of partition where n belongs to.

Here comes the key setting for the induction process. For any m ∈ N, we make a product of the above diagram with A m and replace any morphism h by h

m := h × id A m : (7) A µ × A m+1 A µ × A m ι m o o Eµ × A m+1 gµ ,m+1 O O fµ ,m+1 Eµ , µ × A m χ m o o χ m / / p m Eµ × A m gµ ,m O O fµ ,m A [n-1] × A m+1 A [n-1,n] × A m σ m o o ψ m / / A [n] × A m
Given γ ∈ CH(A [n] × A m ) a polynomial expression as in Proposition 5.2, we want to prove that gµ ,m * f * µ ,m γ ∈ CH(A µ × A m ) is a polynomial of big diagonals of A lµ+m . Since ι m is either an isomorphism or a diagonal embedding, it suffices to prove the same thing for ι m * • gµ ,m * f * µ ,m γ ∈ CH(A µ × A m+1 ). However, [25, Page 626 (2.13)]).

ι m * • gµ ,m * f * µ ,m γ = ι m * • gµ ,m * • χ m * • χ * m • f * µ ,m (γ) (since χ m is of degree 1) = gµ ,m+1 * • χ m * • χ * m • f * µ ,m (γ) = gµ ,m+1 * • χ m * • p * m • ψ * m (γ) = gµ ,m+1 * • f * µ ,m+1 • σ m * • ψ * m (γ) (by
Using the induction hypothesis (since µ is a partition of n -1), we find that to finish the proof, it is enough to verify

Proposition 5.4. If γ ∈ CH(A [n] × A m
) is a polynomial expression in the cycles of the following forms:

• pr * 0 c j (O n ) for some j ∈ N; • pr * 0 c j (T n ) for some j ∈ N; • pr * 0i c j (I n ) for some 1 ≤ i ≤ m and j ∈ N; • pr * i j (∆ A ) for some 1 ≤ i j ≤ m.

then

σ m * • ψ * m (γ) ∈ CH(A [n-1] × A m+1
) is a polynomial in cycles of these four forms with n replaced by n -1 and m replaced by m + 1. This will follow essentially from the formulae below established in [START_REF] Ellingsrud | On the cobordism class of the Hilbert scheme of a surface[END_REF]. We adopt the notation in Diagram ( 5), ( 6), [START_REF] Beauville | On the Chow ring of a K3 surface[END_REF] and the definition of the line bundle L after Diagram [START_REF]On the splitting of the Bloch-Beilinson filtration[END_REF]. In our case of abelian surface, the formulae are simplified thanks to the fact that T A is trivial. an equality in the Grothendieck group K 0 (A [n-1,n] × A):

(iii) ψ ! 1 I n = φ ! 1 I n-1 -(L O A ) • ρ ! 1 (O ∆ A );
and an equality in the Chow group CH(A [n-1] × A):

(iv) σ * c 1 (L) i = (-1) i c i (-I n-1 ).

Return to the proof of Proposition 5.4. Taking the Chern classes of both sides of (i), (ii), (iii) in Theorem 5. where we also use pr 0 to denote the projection A [n-1,n] × A m → A [n-1,n] , etc.

When apply σ m * to a polynomial in cycles of the above five types, using the projection formula for the birational morphism σ m and Theorem 5.5(iv), we conclude that σ m * • ψ * m (γ) is of the desired form. This finishes the proof of Proposition 5.4 thus completes the proof of Proposition 4.4.

Theorem 5 . 5 (

 55 [START_REF] Ellingsrud | On the cobordism class of the Hilbert scheme of a surface[END_REF], Proposition 2.3, Lemma 2.1, in the proof of Proposition 3.1 and Lemma 1.1). We have the following equalities in the Grothendieck group K 0 (A[n-1,n] ):(i) ψ ! T n = φ ! T n-1 + L • σ ! I ∨ n-1 + 1; (ii) ψ ! O n = φ ! O n-1 + L;

  5, we get formulae for pull-backs by ψ or ψ 1 of the Chern classes of T n , O n , I n in terms of polynomial expressions of the first Chern class of L and the pull-backs by φ, ρ, σ of the Chern classes of T n-1 , O n-1 , I n-1 and O ∆ A . Therefore by the calculations in Lemma 5.3 and the fact that σ = (φ, ρ), we obtain that ψ * m (γ) ∈ CH A [n-1,n] × A m is a polynomial of cycles of the following five forms:• σ * m • pr * 0 c j (T n-1 ) for some j ∈ N; • pr * 0 (c 1 (L)); • σ * m • pr * 0i c j (I n-1 ) for some 1 ≤ i ≤ m + 1 and j ∈ N; • σ * m • pr * 0 c j (O n-1) for some j ∈ N; • σ * m • pr * i j (∆ A ) for some 1 ≤ i j ≤ m + 1,

  Voisin raised the natural question whether the cycle class map cl is injective on this subalgebra. Recently, Moonen [20, Corollary 8.4] and O'Sullivan [23, Theorem Page 2-3] have given a positive answer to Voisin's question: Theorem 3.3 (Moonen, O'Sullivan).Let A be an abelian variety. Let P ∈ CH * (A) be a polynomial with rational coefficients in the first Chern classes of symmetric line bundles on A, then P is numerically equivalent to zero if and only if P is (rationally equivalent to) zero.

* (A) generated by symmetric line bundles on A is contained in CH * (0) (A) (by Theorem 3.1(iii)). As a special case of Beauville's Conjecture 3.2(ii),
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LIE FU

Let us start the proof of Theorem 1.6. We will use ≡ to denote the numerical equivalence. Given z ∈ CH(K n ) a polynomial of the Chern classes of T K n and line bundles on K n as in the main theorem 1.6. By Lemma 4.3(i), we can write z = γ| K n for γ ∈ CH(A [n+1] ) a polynomial of c 1 L for some L ∈ Pic s (A) Q , δ, and c j T A [n+1] for some j ∈ N.

Assuming z ≡ 0, we want to prove that z = 0. Adopting the previous notation, then for any µ ∈ P(n + 1) we have by Lemma 2.2

Define β := Eµ * (γ) ∈ CH A µ , the above equality says that β| Bµ ≡ 0, in particular, [START_REF]Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF] β| B 0 µ ≡ 0.

To describe β, we need the following proposition, which is the analogue of the corresponding result [25, Proposition 2.4] due to Voisin, and we will give its proof in the next section. Proposition 4.4. For γ ∈ CH(A [n+1] ) as above (i.e. a polynomial of cycles of the forms: c 1 L for some L ∈ Pic s (A) Q , δ, and c j T A [n+1] for some j ∈ N), the algebraic cycle β = Eµ * (γ) ∈ CH A µ is a polynomial with rational coefficients in cycles of the two forms:

• pr * i (L) for some symmetric line bundle L on A and

See the next section for its proof.

Corollary 4.5. With the same notation, β is a polynomial with rational coefficients in algebraic cycles of the form φ * (L), for some homomorphism of abelian varieties φ : A µ → A and some L ∈ Pic s (A) Q .

Proof. It is enough to remark that the big diagonal ∆ i j is nothing but the pull-back of O A ∈ CH 0 (A) via the homomorphism

Let us continue the proof of Theorem 1.6. Let B 0 µ be the identity component of Bµ, iµ : B 0 µ → A µ and pµ : A µ B 0 µ be the inclusion and the splitting constructed in Section 2. By assumption, we have equation

On the other hand, since iµ • pµ : A µ → A µ is an endomorphism of A µ , Corollary 4.5 implies that the numerically trivial cycle p * µ i * µ (β) is also a polynomial of cycles of the form φ * (L), for some homomorphism of abelian varieties φ : A µ → A and some L ∈ Pic s (A) Q . As a result, p * µ i * µ (β) is in the subalgebra of CH A µ generated by the first Chern classes of symmetric line bundles of A µ .

Therefore by the result of Moonen and O'Sullivan (Theorem 3.3),

LIE FU Proposition 5.2. For γ ∈ CH(A [n] × A m ) a polynomial with rational coefficients of cycles of the forms:

• pr * 0 c j (O n ) for some j ∈ N; • pr * 0 c j (T n ) for some j ∈ N; • pr * 0i c j (I n ) for some 1 ≤ i ≤ m and j ∈ N; • pr * i j (∆ A ) for some 1 ≤ i j ≤ m, the algebraic cycle Eµ ,m * (γ) ∈ CH A lµ+m is a polynomial with rational coefficients in the big diagonals ∆ i j of A lµ+m , for 1 ≤ i j ≤ lµ + m.

The main tool to prove this proposition is the so-called nested Hilbert schemes, which we briefly recall here (cf. [START_REF] Nakajima | Lectures on Hilbert schemes of points on surfaces[END_REF]). By definition, the nested Hilbert scheme is the incidence variety

where z ⊂ z means z is a closed subscheme of z. It admits natural projections to A [n-1] and A [n] , and also a natural morphism to A which associates the residue point to such a pair of subschemes (z ⊂ z). The situation is summarized by the following diagram:

(5)

A

We collect here some basic properties of the nested Hilbert scheme (cf. [START_REF] Ellingsrud | An intersection number for the punctual Hilbert scheme of a surface[END_REF], [START_REF] Lehn | Lectures on Hilbert schemes, Algebraic structures and moduli spaces[END_REF], [START_REF] Nakajima | Lectures on Hilbert schemes of points on surfaces[END_REF]):

• The nested Hilbert scheme A [n-1,n] is irreducible and smooth of dimension 2n (cf. [START_REF] Cheah | The cohomology of smooth nested Hilbert schemes of points[END_REF]).

• The natural morphism σ := (φ, ρ) : ,n] , where E is the exceptional divisor of the blow up. • The natural morphism σ = (φ, ρ) : A [n-1,n] → A [n-1] × A is also identified with the projection

Then L is identified with O P(In-1) (1) .

• The morphism ψ is generically finite of degree n.

• The natural morphism (ψ, ρ) :

where ω U n is the relative dualising sheaf (supported on U n ) of the universal subscheme U n ⊂ A [n] ×A.

Before we return to the proof of Proposition 5.2, we do the following calculation:

Proof. We apply the Grothendieck-Riemann-Roch formula to the diagonal embedding A → A × A, we get (since td (T A ) = td (T A×A ) = 1): ch(O ∆ A ) = ∆ A ∈ CH 2 (A × A), and the calculation of Chern classes follows.

Proof of Proposition 5.2. We do induction on n. When n = 0, there is nothing to prove. When n = 1, the only possible µ = (1), hence Eµ ,m is the identity correspondence of A m+1 . Since O 1 is the