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Abstract: Environmentally-induced epigenetic changes of gene regulation could result from chronic, lifelong exposure, to low 
doses of environmental toxicants, such as chemicals including, tobacco smoking and endocrine disrupting compounds, or to 
other environmental factors such as nutritional changes, and lifestyle-related conditions. These environmentally-acquired 
epigenetic marks may influence the control of gene regulation through DNA methylation, histone modification, or through a 
large set of non-coding RNAs (ncRNAs). These epigenetic effects might be passed on to the developing embryo and child as 
inheritable non-genetic marks, which recapitulate previous lifelong history of exposure to environmental influences that start 
from the stage of primordial germ cell, passing through the maturing germ cell, and ending by the zygote stage. This involves the 
paternally transmitted information on the sperm that contribute to modulating embryogenesis functions and later childhood 
development, in concert with, the maternally transmitted information encountered by the exposure to a large milieu of 
environmental factors either periconceptionally or during lactation period. 
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1. Epigenetics: the Role in Embryogenesis 

& Development 

As all cells in living organism contain the same genetic 
blueprint, epigenetics allows for cells to adopt different 
phenotypes and maintain them upon cell replication. As such, 
during the life cycle, there are moments in which the 
epigenetic information needs to be reset for the initiation of a 
new organism. [1] 

In at least two stages of the life cycle of mammals, epigenetic 
stability is globally perturbed: when gametes fuse to form the 
zygote and when gamete precursors (primordial germ cells; 
PGCs) develop and migrate in the embryo. That is what is 
called in vivo 'reprogramming' of the epigenetic landscape that 
points to the reacquisition of totipotency in the zygote and the 
formation of the next generation through PGCs. [2] 

At fertilization, two specialized cell types (gametes) merge 
into the zygote to generate the first cell of the developing 
embryo. Initially, the gamete genomes remain physically 
separate in the zygote, where they are subject to different 
chromatin changes while under the effect of a common set of 
maternally inherited factors. In the early zygote, the 
acquisition of a hyperacetylated and hypomethylated 
chromatin state may increase the accessibility of the paternal 
genome and allow additional remodeling to occur. [2] For this 
reason, sperm require a myriad of chromatin structural 
changes, not only to serve a protective role to DNA throughout 
spermatogenesis and future delivery to the egg, but also, it 
seems, to contribute to the developmental program of the 
future embryo. [3] 

Histone modifications, which include, but not limited to, 
phosphorylation, ubiquitylation, sumoylation, acetylation and 
methylation could have different consequences on chromatin 
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condensation, and therefore regulate chromatin accessibility 
to different transcription factors and regulators, thus result in 
diverse effects on gene expression. In fact, growing evidence 
suggests that mature sperm provide appropriate epigenetic 
marks that drive specific genes toward activation and 
contribute to the totipotent state of the embryonic cells. [4] 

These epigenetic factors may reveal the historical record of 
spermatogenesis, foresee future functions in embryogenesis, 
and help explain the mechanism of pluripotency. In contrast to 
the once held dogma regarding the importance of the paternal 
epigenome, the unique epigenetic landscape in sperm appears 
to serve more than the gamete itself and is likely influential in 
the developing embryo. [5] Also, the asymmetric program in 
the zygote is probably a consequence of inheriting gametes 
from the previous generation that had widely different 
epigenetic profiles. However, its functional importance still 
remains unclear. [2] 

2. Evolutionary Epigenetic Remodeling 

through Trans-Generational 

Inheritance 

Epigenetics, or regulation of gene expression independent 
of DNA sequence[6], is the missing link between genotype 
and phenotype. Epigenetic memory, mediated by histone and 
DNA modifications, is controlled by a set of specialized 
enzymes, metabolite availability, and signaling pathways. [7] 

A largely unstudied theme is how sub-toxic exposure to 
different xenobiotics during specific developmental stages can 
alter the epigenome and contribute to the development of 
disease phenotypes later in life. Furthermore, it has been 
shown that exposure to low-dose xenobiotics could result in 
further epigenetic remodeling in the germ line and contribute 
to increase disease risk in the next generation. [7] These 
heritable non-genetic marks that passed on from parents, by 
multi- or trans-generational mechanisms, to their descendants 
might reprogram critical developmental pathways during the 
early embryonic life. Aberrant reprogramming of these 
pathways would impact the health of the offspring and 
influence their susceptibility to develop diseases later on in 
life. 

A recent study done by Skinner et al., on rats exposed to an 
environmental toxicant such as vinclozolin revealed that, 
negligible copy number variants (CNV) in the rat sperm were 
identified in the first (F1) generation following exposure; 
however, in the transgenerational F3 generation, a significant 
increase in CNV was observed in the sperm. The study 
emphasized that the environmental toxicant vinclozolin could 
promote an epigenetic reprogramming of the germline in the 
first generation that induced increased genomic instability and 
genetic mutations transgenerationally that clearly appeared in 
The F3 generation. [8] 

In addition, the study provides an example of the ability of 
epigenetic mechanisms to drive genetic change and sheds the 
light on the role of environmental epigenetics that may be the 
major molecular mechanism involved in environment-gene 

interactions and emergence of genetic variation. This study 
also argues against the predominant current view for the origin 
and evolution of disease that considers genetic mutations as 
the primary molecular mechanism involved. Furthermore, it 
gives insights on how the environment may have direct impact 
on disease etiology and on the origins of phenotypic and 
genotypic variation in evolutionary processes. [8] 

3. Environmentally-Mediated Epigenetic 

Effects: the Developmental Window of 

Pediatric Cancer Susceptibility 

The old adage that you are what you eat highlights the 
interconnected relationship between humans and their 
environment. [9] A recent study examined the maternal diet 
and metabolism and their impact on fetal development, has 
demonstrated that circulating maternal lipids are associated 
with developmental epigenetic programming, which in turn 
may impact lifelong health and disease risk. [10] In addition, it 
was found that maternal plasma folate impacts differential 
DNA methylation in an epigenome-wide meta-analysis of 
newborns. [11] 

Also, there is overall consistency in literature about 
negative effects of fetal and postnatal exposure to parental 
tobacco smoking on several outcomes: preterm birth, fetal 
growth restriction, low birth weight, sudden infant death 
syndrome, neurodevelopmental and behavioral problems, 
obesity, hypertension, type 2 diabetes, impaired lung function, 
asthma and wheezing. While maternal smoking during 
pregnancy plays a major role on adverse postnatal outcomes, it 
may also cumulate negatively with smoking during lactation 
and with second-hand smoking exposure. [12] 

Recently published results of pooled analysis from two 
French national population-based case-control studies 
(ESCALE and ESTELLE) have shown positive associations 
between neuroblastoma diagnosis on the one hand, with being 
born either small or large for gestational age, or having a 
congenital malformation, on the other hand. In addition, the 
study has shown protective effects of breastfeeding and 
preconception use of supplements containing folic acid, 
vitamins or minerals. [13] 

However, an infectious etiology and a role of 
immunological modifiers in neuroblastoma development have 
not been prominent hypotheses as reported in pediatric 
leukemia. [14] Epigenetic mechanisms have been suggested 
based on the contribution of some human milk compounds to 
metabolic and differentiation processes, and to the 
development of the infant's immune system. [13, 15] 
Epigenetic mechanisms have rapidly and controversially 
emerged as silent modulators of host defenses that can lead to 
a more prominent immune response and shape the course of 
inflammation in the host. Thus, the epigenetics can both drive 
the production of specific inflammatory mediators and control 
the magnitude of the host response. [16] 

DNA methylation was identified as a potential mediator of 
environmental risks in the development of childhood acute 
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lymphoblastic leukemia[17], which is the commonest 
pediatric cancer. Differentially altered DNA methylation 
profiles have been observed between acute lymphoblastic 
leukemia (ALL) cells and nonleukemic bone marrow, and also 
within ALL subtypes, as a result of established environmental 
exposures that are linked to ALL risk, especially smoking 
[18-20], folic acid [21, 22] and infection. [17, 23] There is also 
evidence, although weaker for other exposures associated with 
ALL risk, such as iron, caffeine, pesticides/herbicides, paints 
and chemicals. [17, 24-32] 

In an Australian population-based case–control study, it 
was found that both maternal and paternal exposures to diesel 
exhaust before the child's birth were (independently) 
associated with an increased risk of childhood brain tumors 
[33], which is the most common solid tumor in children with 
cancer and the leading cause of death in these patients. It is 
estimated that 5% of human cancers are caused by viruses, 5% 
by radiation, and the remaining 90% by chemicals. Of these, 
an estimated 30% are caused by the use of tobacco products 
and the rest by chemicals associated with diet, lifestyle, and 
the environment. [34] 

4. Aberrant Reprogramming: the 

Potential Link between Developmental 

Malformations & Childhood Cancer 

The findings described in the previous section from the 
pooled analysis of the ESCALE and ESTELLE French studies 
support the hypotheses that fetal growth anomalies and 
congenital malformations are related to neuroblastoma [13], 
which is the commonest extracranial pediatric solid tumor. 
This emphasizes the notion that pediatric solid tumors are 
developmental disorders. [35] 

Association of childhood tumors with congenital 
abnormalities suggests that disruption of normal 
developmental processes may be linked with oncogenesis. [36] 
Environmental influences through aberrant reprogramming 
could disrupt critical epigenetic processes during development, 
thus affecting gene-related signaling pathways and cellular 
function. 

Indeed, the process of cell reprogramming toward a 
pluripotent state shares many characteristics with cancer 
development, although the process is not accompanied by the 
genetic alterations that are believed to be the causative 
abnormalities in most cancers. In addition, recent in vivo 
reprogramming studies provided some clues to understanding 
the role of reprogramming-related epigenetic regulation in 
cancer development. It was shown that premature termination 
of the in vivo reprogramming result in the development of 
tumors that resemble pediatric cancers. [37] 

Differentiation and development are normally 
unidirectional processes in which progenitor/stem cells 
differentiate into more mature cells. Transformation of adult 
cells into cancer cells is accompanied in many cases by 
dedifferentiation of the adult cell, while differentiation failure 
of progenitor cells can result in development of pediatric 

cancer. [38] Considering the fundamental role of epigenetic 
regulation in cell fate maintenance and conversion, it is 
expected that the failed reprogramming is attributable to the 
incomplete/unsuccessful reorganization of the epigenetic 
modifications. [37] 

It is noteworthy that failed reprogramming-associated 
cancers have a number of shared characteristics with pediatric 
cancers. Intriguingly, failed reprogramming-associated 
cancers in the kidney resembled Wilms’ tumors, the most 
common pediatric kidney cancer. [39] The study done by 
Urbach et al., showed that overexpression of Lin28, a gene 
encoding an RNA-binding protein that regulates gene 
expression during kidney development in mice, markedly 
expands nephrogenic progenitors by blocking their final wave 
of differentiation, ultimately resulting in a pathology highly 
reminiscent of Wilms tumor. They also observed Wilms tumor 
only when Lin28 is aberrantly expressed in multiple 
derivatives of the intermediate mesoderm, implicating the cell 
of origin as a multipotential renal progenitor. Surprisingly, 
they found that withdrawal of Lin28 expression reverts 
tumorigenesis and markedly expands the numbers of 
glomerulus-like structures. [40] Additionally, failed 
reprogramming-associated cancers of the liver and the 
pancreas showed similarities to those of hepatoblastomas and 
pancreatoblastomas, respectively. [39] 

Furthermore, epigenetics-related diseases such as 
imprinting disorders, in particular, Beckwith–Wiedemann 
syndrome that has been associated with pediatric embryonal 
tumors (most commonly Wilms tumor) [41, 42]. These 
findings provided a further connection between failed 
reprogramming-induced epigenetic regulations and pediatric 
blastomas development, [39] and give an explanation about 
the association of pediatric cancer with dysmorphic 
developmental anomalies such as congenital malformations & 
fetal growth anomalies.  

5. Remaining Questions & Concluding 

Remarks 

Many questions still remain to be answered; some of these 
questions are outlined hereafter: 

1. Could the multi- & trans-generational epigenetic 
inheritance explain why pediatric cancer has a shorter 
latency to develop, as unusual, when compared to the 
long latency required for the development of adult 
cancer?  

2. Could the longstanding lifelong parental exposure to 
low-doses of environmental influences behave as 
promoters for carcinogenesis by modulating 
embryogenesis by aberrant reprogramming through 
epigenetic effects? 

3. Could the environmentally-mediated epigenetic effects 
[43-45] that transgenerationally [46, 47] passed on from 
the parents to their offspring be the fertile soil for 
oncogenesis, through global epigenetic changes [48-51] 
that precede the initial genetic mutations (hits) [50, 51], 
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or even could drive their formation by the development 
of epigenetically-induced genetic variants [52, 53] 
through successive generations? 

4. Does the epigenetic progenitor origin model for human 
cancer [54] fit well in explaining pediatric cancer 
pathogenesis? 

It seems that the epigenetic origin model for human cancer 
explain many of the unique criteria of pediatric cancer. 
Aberrant reprogramming through environmentally-mediated 
disruption of critical epigenetic processes during development 
could alter cellular state and fate of progenitor cells that finally 
emerge as developmental disorders or cancer in children.  

Plasticity in developmental programming [55-57] that 
involves epigenetic adaptation to environmental changes may 
explain the regression of some pediatric tumors[58, 59]. In 
addition, the intra and inter-tumor heterogeneity [56, 57] 
encountered in pediatric cancer could be explained on the 
basis of inheriting gametes from the previous generations that 
known to have widely diverse epigenetic profiles. This 
epigenetic heterogeneity recapitulates previous lifelong 
history of exposure to environmental influences.  

To uncover many of unanswered questions, more focused 
research should be carried out through longitudinal studies 
that address the effects of various environmental influences 
involving successive generations using integrated genetic & 
epigenetic approaches to gain insights & accumulate further 
evidence about the interplay between genetics, epigenetics & 
exposure, and its possible role in initiation, promotion & 
progression of different pediatric tumors. 
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