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Abstract—The number of community detection algorithms is
growing continuously adopting a topological based approach to
discover optimal subgraphs or communities. In this paper, we
propose a new method combining both topology and semantic to
evaluate and rank community detection algorithms. To achieve
this goal we consider a probabilistic topic based approach to
define a new measure called semantic divergence of communities.
Combining this measure with others related to prior knowledge,
we compute a score for each algorithm to evaluate the effec-
tiveness of its communities and propose a ranking method. We
have evaluated our approach considering communities of real
web services.

Index Terms—Community detection algorithms, Web services,
Service communities, Topic models, Semantic divergence, Depen-
dency network.

I. INTRODUCTION

Web services are increasingly being adopted to access data
and applications through the Web. In order to ease the process
of web services discovery, it is suggested to gather similar web
services into groups known as communities or optimal sub-
graphs [1]. In this regard, the number of community detection
algorithms is growing continuously adopting a fopological
based approach, as reported in [2]. Unfortunately there is no
generally accepted definition of community; each algorithm
makes different assumptions that are consistent with the intu-
itive concept. Most assume that a graph or network contains
a flat set of disjoint communities.

In the literature, several works have been proposed for
comparing the resulted partitions in a supervised way [3].
In a social network, for instance, the communities could
be groups of people with common interests. Many social
networks emerge going far beyond the topological aspect and
focus on the semantic dimension. In fact, nodes are not only
black boxes but have a specific semantic. It became easy
to construct a network on a specific topic where each node
represents a user and contains all his tweets related to the
topic at hand. In the context of web services, the notion of
community is also very important. Classically, a community
is a set of web services with similar functionalities grouped
together independently of their location, of their maintenance
and of their provider [4]. A node of a network represents
for example a web service which generally have a textual
description. Recently, authors of [5] show that the discovery
of web services communities facilitates the service discovery
process.

An information network is usually represented by a graph
with data entities corresponding to the nodes in the graph and
edges indicating the relations among entities [6]. In addition
to the topological structure, nodes are usually represented with
various types of information that describe their semantics.
The task of identifying communities involves discovering
groups with common properties, such as similarity among
group members or densely connected structure. The main
problem with the majority of community detection algorithms
is that they completely ignore the semantics of nodes and
consider just the topological nature of the communities [13].
Community detection algorithms are usually informed only by
the network structure. So, the produced communities are not
sometimes homogeneous but nodes are divided into classes
with a higher probability of connections between nodes of the
same class than between nodes of different classes.

The work proposed in this paper aims to evaluate the quality
and the semantic consistency of detected communities. More
precisely, we propose a new method combining both topology
and semantic to evaluate and rank community detection algo-
rithms. Different phases of our method are defined as follows
(see Section III for more details):

1) Community quality evaluation.

2) Community semantic divergence evaluation.

3) Community detection algorithms ranking.

To evaluate the quality of detected communities, we use
the classical measures, i.e. purity and entropy [26]. These
measures are widely used to evaluate the performance of
supervised/unsupervised learning algorithms, particularly the
clustering and community detection algorithms. To evaluate
the semantic consistency of detected communities, we define
a new measure called community semantic divergence based
on the Kullback Leibler (KL) Divergence [8]. We use the
probabilistic topic models, more precisely Correlated Topic
Models [15] to extract topics from web service descriptions.
These extracted topics are then used to compute the semantic
divergence for each detected community (see Section III-B).
In our context, topic models are used as efficient dimension
reduction techniques, which are able to capture semantic
relationships between word-topic and topic-service interpreted
in terms of probability distributions.

In our experiments, we consider a set of community de-
tection algorithms, described in Section II-D, to evaluate
empirically our approach.

The remainder of this paper is organized as follows: Section



II introduces the basic concepts and problem formulation. It
lists also a set of community detection algorithms selected
to evaluate our approach. Section III presents the proposed
method to evaluate and rank community detection algorithms.
Section IV is devoted to the experimental evaluation. Finally,
the conclusion and future work can be found in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Web services representation

Generally, every web service has a WSDL (Web Service
Description Language) document that contains the descrip-
tion of the service. The WSDL is an XML-based language,
designed according to standards specified by the W3C, that
provides a model for describing web services. It describes one
or more services as collections of network endpoints, or ports.
It provides the specifications necessary to use the web service
by describing the communication protocol, the message format
required to communicate with the service, the operations that
the client can invoke and the service location. To manage
efficiently web service descriptions, we extract all features that
describe a web service from the WSDL document.

Before representing web services as a TF-IDF (Text Fre-
quency and Inverse Frequency) [9] vectors, we need some pre-
processing. The objective of this preprocessing is to identify
the textual concepts of services, which describe the semantics
of their functionalities. There are commonly several steps:
Features extraction, Tokenization, Tag and stop words removal,
Word stemming and Service Transaction Matrix construction
(see [10] for more details). After identifying all the functional
terms, we calculate the frequency of these terms for all web
services. We use the Vector Space Model (VSM) technique to
represent each web service as a vector of these terms. In fact, it
converts service description to vector form in order to facilitate
the computational analysis of data. In information retrieval,
VSM is identified as the most widely used representation for
documents and is a very useful method for analyzing service
descriptions. The TF-IDF algorithm [9] is used to represent a
dataset of WSDL documents and convert it to VSM form.
We use this technique, to represent a services descriptions
in the form of Service Matrix. In the service matrix, each
row represents a WSDL service description, each column
represents a word from the whole text corpus (vocabulary)
and each entry represents the TF-IDF weight of a word
appearing in a WSDL document. TF-IDF gives a weight w;;
to every term j in a service description ¢ using the equation:
w;i; = tfi;. log(%). Where tf;; is the frequency of term j in
WSDL document ¢, n is the total number of WSDL documents
in the dataset, and n; is the number of services that contain
term j.

B. Web services graph

Before computing web service communities, we explain the
structure of the web service space by modeling relationships
between services. Let S = {s1, sa, ..., s, } be the web services
space, we construct a semantic similarity graph, G = (V, E),
which captures the semantic similarity between different web

services. We compute the similarity between the two services
using the proximity measure called Multidimentional Angle
(also known as Cosine Similarity); a measure which uses the
cosine of the angle between two vectors [11]. The semantic
of the service s; is a vector d, which consists of the TF-
IDF scores extracted from the Service Transaction Matrix. The
multidimensional angle between a vector p containing the TF-
IDF scores of the service s, and a vector ¢ containing the TF-
IDF scores of a service s, can be calculated using Equation
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where ¢ is the number of terms representing each web service.
Consequently each vertex v; of our graph G represents the
service s; and two vertices are s,, s, will be connected if
and only if their similarity, i.e., cos(p,q), is larger than a
given threshold. After the construction of the web services
graph we apply several algorithms to detect communities of
web services. Our goal is not to use the semantic of web
services and to combine it with the structure of the graph to
find homogeneous web services communities like [12]. In fact,
we apply several graph structure based detection community
algorithms and we use the semantic of web services and their
categories to evaluate the resulted communities and to rank
the used algorithms.

Cos(p,q) @)

C. Global semantic and topics extraction

In Information Retrieval, Probabilistic Topic Models were
originally developed and utilized for topic extraction and
document modeling. Topics (or latent factors) are a concept
introduced by Probabilistic Topic Models [8]. These are a fam-
ily of generative probabilistic models based on the assumption
that documents are generated by a mixture of topics where
topics are probability distributions on words. In [10], [14], we
investigated the use of three probabilistic topic models PLSA,
LDA and CTM [15] to extract latent factors from semantically
enriched service descriptions. These latent factors provide a
model which represents any web service’s description by a
vector of terms. The results obtained from comparing the three
methods based on PLSA, LDA and CTM showed that the
CTM model provides a scalable and interoperable solution
for automated service discovery and ranking in large service
repositories. The CTM model assumes that the concepts of
each service arise from a mixture of topics, each of which is
a distribution over the vocabulary. In our work, a topic ¢ is
associated with a group of textual concepts (i.e. words) and/or
semantic concepts that can appear in service descriptions and
can be expressed as a probability distribution over words [16].
In this paper, we use the Correlated Topic Model (CTM)
[15] to extract latent factors from web service descriptions.
These extracted latent factors are then used to compute the
similarity between the services. In our context, topic models
are used as efficient dimension reduction techniques, which are
able to capture semantic relationships between word-topic and
topic-service interpreted in terms of probability distributions.



CTM is a probabilistic topic model that enhances base LDA
(Latent Dirichlet Allocation) [7] with modeling of correlations
between topics.

D. Community detection Algorithms

In the literature, there are numerous algorithms that have
been proposed for detecting communities by analyzing the
structure of graphs focusing on specific graph properties
and particular computing method [2]. Such algorithms are
generally tested on well known benchmark graphs [17] and
their results are summarized in different reviews [3]. However,
there are crucial problems to tackle, related to communities,
like the stability of communities’ structures [18], their dy-
namic and evolution, etc. Moreover, the analysis of most of
community algorithms shows that the objective assessment of
the algorithms quality is a complex task and until now, there
is no satisfactory answer to the question of choosing the most
appropriate algorithm in the context of a given network.

In this work, we therefore consider a set of algorithms,
among those who have received the most attention from the
scientific community, in order to evaluate empirically our
approach.

e Louvain [19] adopts an agglomerative hierarchical
method, but it relies on a slightly different greedy opti-
mization process, and includes an additional aggregation
step to improve processing on large networks.

e Multistep Greedy (MSG) [20] is a multistep extension
of the classical greedy algorithm. It allows the simulta-
neous merging of several pairs of communities at each
iteration. The essential idea is to prevent the premature
condensation into few large communities.

o greedy clique expansion (GCE) [21] works by first de-
tecting a set of seeds in a graph G, then expanding these
seeds in series by greedily maximizing a local community
fitness function, and then finally accepting only those
communities that are not nearduplicates of communities
that have already been accepted.

o WalkTrap [22] uses a distance measure based on random
walks and applies a hierarchical agglomerative clustering
approach. It is based on the idea that a small random
walk will stay inside the community from where it is
originating because there are many links inside and few
bridges leading outside.

o Community Overlap Propagation Algorithm (COPRA)
[23] is proposed for the first time by Raghavan, Albert
and Kumara in [24]. COPRA relies on a label propagation
strategy. The information takes the form of a label, and
the propagation mechanism relies on a vote between
neighbours. Initially, each node is labelled with a unique
value. Then, an iterative process takes place, where each
node takes the label which is the most spread in its
neighbourhood (ties are broken randomly). This process
goes on until convergence, i.e. each node has the majority
label of its neighbours. Communities are then obtained
by considering groups of nodes with the same label.
By construction, one node has more neighbours in its

community than in the others. This algorithm is faster
than most other algorithms.

e CMN [25]: this algorithm is for inferring community
structure from network topology which works by greedily
optimizing the modularity.

E. Problem formulation

Let us consider a web service network represented as a
graph where each node has not only a black-box but has a
specific information represented as textual data.

Definition II-E.1: A network is a graph G = (V, E),
where V' is a set of web services and E is a set of edges.
The neighbor of a node v, denoted INV,, is the set of nodes
linked to it.

Definition II-E.2: A community C on a network G is a
subgraph G¢ = (Vo, E¢) such that Vo € V and E¢ C
{link(z,y) : x € Vo Ay € Ny} such that a given predefined
property P(C,G) is true.

The goal of community detection consists of the formaliza-
tion of one or several properties P(C, G) and the development
of a method to compute such constrained subgraph with a
minimum complexity. Several algorithms have been proposed
considering different P(C,G) which are generally related to
both the structure of graph G and its properties like connex
components, Cores, etc. It is also well known in information
retrieval that the weight of a given document depends on
the other documents which constitute the corpus. By analogy,
we associate to a given node in the graph a semantic which
is computed considering all other nodes in the graph. This
latter semantic is called global semantic and consequently, a
node will be generally represented by both a local and global
semantics.

Definition 1I-E.3: The semantic of a vertex v is a pair
(I(v), g(v)) where [ and g are two functions returning respec-
tively local and global semantic of v.

We will consider in the remainder part of this paper that
the local semantic of a node is a vector of words and its
global semantic is a mixture of topics. More precisely, we
will consider that our nodes belong to predefined categories.
they represent the real truth. Consequently, the main tasks
are : (1) how to evaluate the compatibility of the computed
communities, (2) how to evaluate semantic coherence of a
community using topic modeling, and (3) how to evaluate
community detection algorithms from the semantic viewpoint.

III. PROPOSED METHOD FOR COMMUNITY DETECTION
ALGORITHMS RANKING

This section proposes a method for communities’ evaluation
by combining classical measures with a topic modeling on the
network: topics shared with different nodes of a community.
More specifically, we use the Entropy and Purity measures
[26] to evaluate the quality of the detected communities and
the Kullback Leibler (KL) Divergence [8] to measure the
semantic divergence of these communities.

In the following, we will explain how we calculate the
entropy, purity and semantic divergence measures in our



context. Let us assume that we have g classes representing
the partitioned web services (service domains), f communities
which are produced by each algorithm approach and 7 is the
total number of services.

A. Entropy and purity measures

The entropy measures how the various semantic classes
are distributed within each community. Given a particular
community C; of size n;, the entropy of this community is
defined to be:

L S
E(C)) = > “Llog(+2) )
J

~log(q) = n;

Where ¢ is the number of domains in the dataset, and n; is
the number of services of the ith domain that were assigned
to the jth community. The averaged entropy of the algorithm
solution is defined to be the weighted sum of the individual
community entropies (Equation 3). In general, smaller entropy
values indicate better algorithm solutions.

!
— nj .
Entropy = Z - E(Cj) 3)

Jj=1

The purity measure evaluates the coherence of a commu-
nity. It is the degree to which a community contains services
from a single domain. The purity of C; is formally defined
as:

1 .
P(Cj) = —mazi(n;) ©)
Uz
Where maz;(n}) is the number of services that are from
the dominant domain in community C; and n; represents the
number of services from community C; assigned to domain

1.

The purity gives the fraction of the overall community size

that the largest domain of services assigned to that community.

Thus, the overall purity is the weighted sum of the individual

community purities (Equation 5). In general, larger purity
values indicate better algorithm solutions.

. g
Purity = ;P(Ci) 5)

i=1

The entropy measure is more comprehensive than purity
because rather than just considering the number of services
in and not in the dominant domain, it considers the overall
distribution of all the domains in a given community. Contrary
to the purity measure, for an ideal algorithm with services from
only a single domain, the entropy of the community will be
0.

B. Semantic divergence measure

Using the correlated topic model, we have associated to
each node = a model 6, which is a probability distribution
on the topic space. There are several metrics to compute the
distance between the semantics of x and y. In this paper, we
consider the divergence of Kullback Leibler (KL) [8] defined
as follows:

T .
_ 9t

KLD(6,,60,) =Y 60 log, o (6)
i1=1 Yy

Where 02 = P(i | x) represents the proprability of the topic i
given the node z. K LD is not symetric and K LD = 0 when
0., = 0;, for all i.

In our work, the semantic divergence for each edge in the
network is measured by symmetric-KL. divergence. Indeed,
KL-divergence is a non symmetric measure between two prob-
ability distributions, while symmetric-KL divergence obtains
the symmetry by adding two KL-divergences. For purpose of
expediency, we will use the following symetric distance based
on KLD:

1
SymmetricK L(0,,60,) = §[KLD(91;7 6,) + KLD(6,,0,)]
(N

C. Community detection algorithms ranking

Based on the tree measures defined above, we inroduce a
new method to evaluate and rank the community detection
algorithms. In our context, each algorithm produces several
communities which are ranked according to some criterion,
i.e., purity/entropy and divergence semantic of a community.
Once the web service communities are detected using the
selected algorithms described in the Section II-D, we can rank
these communities as follows:

1) Community quality evaluation: we rank the communi-
ties detected by each algorithm considering both the pu-
rity and the entropy measures. Each community is then
characterized by the product Purity x (1 — Entropy)
and the higher the product value, the better the quality
of the community is.

2) Community semantic divergence evaluation: we com-
pute the Community Semantic Divergence, i.e. denoted
CSD, of each community, as the mean of the semantic
divergence of their pairs (i.e. linked nodes) as defined
in the equation 8. Then, we rank communities of each
algorithm according to their semantic divergence. The
lower Semantic Divergence Community value, the better
the community is: it is semantically coherent.

1

CSD(C;) = —

icK L
7] Z SymmetricKL(0,,0,) (8)

(z,y)EE

Where E is the set of edge (linked nodes) of the
community Cj.

3) Community detection algorithms ranking: each cri-
teria, i.e. purity/entropy and semantic divergence, allow
us to rank communities of each algorithm. Consequently,
we consider that these two rankings are coherent: com-
munities which are pure and with low entropy value
are also semantically coherent. Hence, we define the
score of a community detection algorithm as a distance
between its two ranked lists. The distance between two
ranked lists is measured using the Canberra distance
[27]. Smaller canberra distance values indicate better
algorithm solution. In fact, the Canberra distance is used
to measure the disarray for ranking lists, where rank
differences in the top of the lists should be penalized



more than those at the end of the lists. Given two real-
valued vectors [,m € R", their Canberra distance is
defined as follows:

N

Ca(l,m) =

|li — mi

R — ©)
< [li] 4 |m]

IV. EVALUATION
A. Web services collection

Our experiments are performed out based on real-world
web services obtained from the WSDL service retrieval test
collection called SAWSDL-TC3'. The WSDL corpus consists
of 1051 semantically annotated WSDL 1.1 based Web services
which cover 8 different application domains. Each web service
belongs to one out of nine service domains named as: Com-
munication, Education, Economy, Food, Geography, Medical,
Travel and Military. Table I lists the number of services from
each domain.

[ # | Domains [ Number of services |
1 | Communication | 59
2 | Economy 354
3 | Education 264
4 | Food 41
5 | Geography 60
6 | Medical 72
7 | Travel 161
8 | Military 40

[ | Total [ 1051

TABLE 1

DOMAINS OF WEB SERVICES

In order to construct the web services graph and to apply
the community detection algorithms, we start a pre-processing
step of the WSDL corpus. The objective of this first step is to
identify the functional terms of services, which describe the
semantics of their functionalities. WSDL corpus processing
consists of several steps: Features extraction, Tokenization:,
Tag and stop words removal, Word stemming and Service
Transaction Matrix construction.

B. Topic Extraction

To extract topics from web service descriptions, we use the
constructed service transaction matrix STM as training data
for the CTM model (based on the Blei’s implementation?,
which is a C implementation of CTM using Variational EM
for Parameter Estimation and Inference). The choice of the
number of topics corresponding to the original dataset has an
impact on the interpretability of the results. In CTM model, the
number of topics must be decided before the training phase.
There are several methods to choose the number of topics
that lead to best general performance [8]. In computational
linguistics, the measure of perplexity has been proposed to
assess generalizability of text models. We computed the per-
plexity of a held-out test set to choose the optimal number of

Uhttp://www.semwebcentral.org/projects/sawsdl-tc
Zhttp://www.cs.princeton.edu/~blei/ctm-c/index.html

topics. A lower perplexity score indicates better generalization
performance. Assume we have M web services as a held out
dataset D;.s; and each web service s contains /Ny word tokens.
More formally, the perplexity for a dataset Dy, ; is defined by:

Z Z logp wn|8d)

d=1n=1 dld

Perplexity = exp (10)

Where p(w,,|sq) is the probability of having word w,, given
the d-th. service.

Figure 1 shows the perplexity of the held-out data for
learned model by varying the number of topics (lower numbers
are better). As observed from this figure, the better perfor-
mance is obtained for K = 90 (where K is the number of
topics). Thus, in our experiment, the CTM model was trained
to generate 90 topics.
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Fig. 1. Perplexity values obtained for learned CTM model.

Algorithm |
CMN 3
LOUVAIN 9
MSG 6
7
2
1

#Communities [ #Communities (Nodes>=2) |

GCE
COPRA
WALTRAP

AN B W N | 3

AN 3 W oo W

TABLE III
NUMBER OF COMMUNITIES GENERATED BY EACH ALGORITHM

C. Web service communities detection

After the construction of the web services graph, we have
applied the community detection algorithms listed in section
II-D. In order to avoid the resulted communities, we have fil-
tered them to avoid very small communities; i.e. communities
that contain less than 2 nodes, see Table III.

Please remark that the algorithms CMN and COPRA detect
few communities, respectively 2 and 3, and 50% of MSG
detected communities are small, this number became 40% for
WALKTRAP, and finally, only 1 community is small for the



Generated communities |
# | Algorithm | Nbr Communities | Metrics C1 C2 C3 C4 C5 Cé6 C7 C8
1 | CMN 3 Purity 068 036 085 - - - - -
Entropy 048 0.74 024 - - - - -
Purity * (1 - Entropy) | 035 0.09 0.65 - - - - -
Semantic Divergence 497 206 083 - - - - -
2 | Louvain 8 Purity 052 049 093 0.6 071 0.88 094 041
Entropy 052 049 015 043 046 023 015 0.59
Purity * (1 - Entropy) | 0.25 025 0.79 034 038 068 0.8 0.17
Semantic Divergence 435 3.08 581 335 025 000 0.14 210
3 | MSG 3 Purity 0.64 039 038 - - - - -
Entropy 0.55 0.71 0.6 - - - - -
Purity * (1 - Entropy) | 0.29 0.11 0.15 - - - - -
Semantic Divergence 527 359 214 - - - - -
4 | GCE 7 Purity 056 032 079 068 063 093 098 -
Entropy 055 0.7 035 036 036 0.14 004 -
Purity * (I - Entropy) | 025 0.1 051 044 04 08 094 -
Semantic Divergence 348 194 464 354 431 356 0.00 -
5 | COPRA 2 Purity 0.66 036 - - - - - -
Entropy 0.51 072 - - - - - -
Purity * (1 - Entropy) | 0.32 0.10 - - - - - -
Semantic Divergence 495 201 - - - - - -
6 | Walktrap 6 Purity 0.87 059 0.67 0.8 061 039 - -
Entropy 0.19 049 04 027 038 0.67 - -
Purity * (1 - Entropy) | 0.7 0.3 0.4 058 038 013 - -
Semantic Divergence .30 3.79 4.10 598 3.17 158 - -
TABLE II
COMMUNITY QUALITY EVALUATION FOR SELECTED ALGORITHMS
Louvain algorithm. According to the number of filtered com-
munities, we divide the used algorithms into two categories: 07 YT re—
those finding only few filtered communities in contrast to all Overall Entropy
the other algorithms. Finally, we will consider only the filtered 065 - 1
communities during the evaluation process.
D. Prior knowledge based community quality evaluation T \\ |
\
Let us compute the purity and the entropy of all detected oss \ /
.. . . 551 \ 1
communities by each used algorithm. The results are given \ /
in Table II which may be summarized follows: (1) the com- ol \\ - |
munities detected by CMN, MSG and COPRA have similar SN
entropy (very large communities), but CMN is better than
. . . . . 045 | 4
MSG and COPRA if we consider the purity viewpoint, (2)
The algorithm Louvain detects communities which are better
than those computed by CGE and Walktrap. Consequently, we o CMN  LOUWVAN  MSG GCE  COPRA  WALKTRAP
rank the communities detected by each algorithm considering
both the purity and the entropy. As described in the section Fig. 3. Overall Purity and Entropy for all algorithms.

II-C, each community is then characterized by the product
Purity * (1 — Entropy) and the higher the product value,
the better the quality of the community is. For example,
communities rank of those detected by CMN is C3, Cl1, C2,
whereas those detected by Louvain algorithm are ranked as
follows : C7, C3, C6, CS5, C4, C2, C1, C8. The overall entropy
and purity are calculated and drawn in the Figure 3.

E. Community semantic divergence evaluation

Now, let us consider the evaluation of detecting commu-
nities according to the semantic divergence of their linked
nodes. In fact, we compute the semantic divergence of a
community as the mean of those of their pairs, i.e., linked
nodes. Figure 2 shows the results for the two kinds of

considered algorithms giving more statistical details on the
semantic divergence measures within a given community. In
Figure 2 (Left), detected communities are enough large and
are not semantically homogeneous except the very small one,
for example the community 3 detected by the CMN algorithm
that contains only 33 nodes.

This situation is not the same for an algorithm which de-
tects several communities. In fact, communities must be both
enough large and semantically homogeneous. So, an algorithm
may detect small and homogeneous communities or large and
semantically divergent communities. The obtained values of
Community Semantic Divergence measure of each detected
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community are drawn also in the Table II. The Louvain
algorithm detects 3 small and 3 enough large communities,
but others are larger and divergent. Note that the community
C1 is larger, more dense and less divergent than C3. The
other algorithms are balancing between enough large and small
communities with different semantic divergence. Similarly to
the criteria Purity * (1 — Entropy), we can also use the
semantic divergence to rank communities detected by each
system. How to score algorithms using these two ranking lists?

F. Score of algorithms

We have evaluated the community detection algorithms
using two criteria. The first, is based on categories or domains
of web services. The second one, focuses on the semantic
coherence of a community considering probabilistic topic
modelling. Each criterion allows us to rank the detected
communities for each algorithm. Consequently, we consider
that an algorithm is better if the two ranking of its detected
communities are compatible: if a community is well classified
by the criterion Purity*(1— Entropy) so, it will be also well
ranked by the semantic divergence and vice versa. To achieve
this goal we use the Canberra distance which is a measure of
disarray for ranked lists [27]. Thus, the score of each algorithm
is equal to the Canberra distance applied to its two resulted
ranking. Of course, this method is useful when the number
of detected communities is large because rank differences in
top positions need to pay higher penalties than movements
in the bottom part of the lists. The score for algorithms that
detect more than 3 communities are 4.68 for Louvain, 3.43 for
GCE and finally 1.81 for Walktrap. This latter is the best one
because even if it does not detect the most homogeneous, but
its communities are enough homogeneous and well classified
according to the purity and the entropy.

V. CONCLUSION

In this paper, we have proposed a new method for com-
munity detection algorithms ranking by combining classical
measures with a topic modeling. First, we have ranked the
detected communities for each algorithm using purity, entropy
and semantic divergence measures. A community is considered
well ranked if it has a low entropy value and a high purity.
In addition, according to the semantic divergence, the lower
Semantic Divergence Community value, the better the com-
munity is: it is semantically coherent. Our approach allows
us to evaluate the semantic homogeneity of the computed
communities that are based only on topology. We can also
evaluate the semantic coherence of a community using the
semantic divergence measure proposed in this paper. We
have tested our approach using several community detection
algorithms and considering real world web services.

In future work, we will propose a semantic homogeniety-
based approach to detect semantic web service communities.
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