
HAL Id: hal-01465110
https://hal.science/hal-01465110v1

Submitted on 12 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frequent Itemset Border Approximation by Dualization
Nicolas Durand, Mohamed Quafafou

To cite this version:
Nicolas Durand, Mohamed Quafafou. Frequent Itemset Border Approximation by Dualization. Trans-
actions on Large-Scale Data- and Knowledge-Centered Systems, 2016, 26, pp.32-60. �hal-01465110�

https://hal.science/hal-01465110v1
https://hal.archives-ouvertes.fr

Frequent Itemset Border Approximation by
Dualization

Nicolas Durand and Mohamed Quafafou

Aix Marseille Université, CNRS, ENSAM, Université de Toulon,
LSIS UMR 7296, 13397, Marseille, France

{nicolas.durand,mohamed.quafafou}@univ-amu.fr

http://www.lsis.org

Abstract. The approach FIBAD is introduced with the purpose of
computing approximate borders of frequent itemsets by leveraging du-
alization and computation of approximate minimal transversals of hy-
pergraphs. The distinctiveness of the FIBAD’s theoretical foundations
is the approximate dualization where a new function f̃ is defined to
compute the approximate negative border. From a methodological point
of view, the function f̃ is implemented by the method AMTHR that
consists of a reduction of the hypergraph and a computation of its min-
imal transversals. For evaluation purposes, we study the sensibility of
FIBAD to AMTHR by replacing this latter by two other algorithms
that compute approximate minimal transversals. We also compare our
approximate dualization-based method with an existing approach that
computes directly, without dualization, the approximate borders. The
experimental results show that our method outperforms the other meth-
ods as it produces borders that have the highest quality.

Keywords: frequent itemsets, borders, hypergraph transversals, dual-
ization, approximation.

1 Introduction

The discovery of frequent itemsets was initiated by Agrawal et al. [3]. This
research field has quickly become an important task of data mining. The problem
is to find the sets of items (i.e. attribute values) that appear together in at
least a certain number of transactions (i.e. objects) recorded in a database.
These sets of items are called frequent itemsets. In that regard, other types of
itemsets have been proposed, for instance, closed itemsets [33], free itemsets [8]
and emerging itemsets [11]. Even more important, such itemsets play a key role
in the generation of association rules [3], supervised classification [34], clustering
[14] and are useful in a broad of range of application fields [22].

Two issues are important in the discovery of frequent itemsets: (1) the re-
duction of the search space due to combinatorial explosion and (2) the reduction
of the number of generated itemsets to improve efficiency. In this paper, we
consider only the second point, with a focus on the set of maximal frequent

2 N. Durand and M. Quafafou

itemsets corresponding to a subset of frequent closed itemsets [33]. The max-
imal frequent itemsets represent a reduced collection of frequent itemsets, but
they are not considered as a condensed representation contrary to the frequent
closed itemsets. Indeed, the regeneration of all the frequent itemsets is possible
from the maximal frequent itemsets but the database must be read to compute
the frequencies. The problem of mining maximal frequent itemsets is NP-hard
[40]. The algorithms discovering these itemsets are, for instance, MaxMiner [5],
Pincer-Search [29], MAFIA [9], GenMax [20], Dualize&Advance [21], IBE
[37] and ABS [18]. Maximal frequent itemsets are used a lot in recommendation
systems where long itemsets describe trends. For example, a list of movies (i.e.,
a maximal itemset) that many people like can be used as recommendations for
other users that share a large overlap of movies with this list.

The maximal frequent itemsets and the minimal infrequent itemsets corre-
spond respectively to the positive border and the negative border of the set of
frequent itemsets [30]. These two borders are linked together by the computa-
tion of minimal hypergraph transversals (also called ”minimal hitting sets”) [30,
10]. Thus, it is possible to switch to a border from the other one. This is called
dualization. Algorithms like Dualize&Advance [21], IBE [37] and ABS [18] use
dualization to discover maximal frequent itemsets. Indeed, Dualize&Advance
computes the maximal frequent itemsets one by one, IBE is an improvement of
the previous algorithm as it avoids the redundant frequency checks, and ABS
starts computing the positive border and uses an adaptative strategy to decide
when it is interesting to switch to the other border. Let us remark that the
number of itemsets of the borders can be huge.

This paper extends our previous work in [15]. We propose the approach
FIBAD1 with the purpose of computing approximate borders of frequent item-
sets by leveraging dualization and computation of approximate minimal transver-
sals of hypergraphs. The aim is to reduce the size of borders. The originality of
the proposed approach comes from a new fonction we have defined to com-
pute approximate negative borders. From a methodological point of view, the
function is implemented by the method AMTHR2 that consists of a reduction
of the hypergraph and a computation of its minimal transversals. Next, the ap-
proximate positive borders are computed from the approximate negative borders
by an exact function. To the best of our knowledge, this is the first time that
such approach is proposed leveraging dualization and border approximation. For
evaluation purposes, we conduce experiments realized on different data sets, and
evaluated the quality of the computed approximate borders by using the distance
between the computed approximate borders and the exact ones. Morevover, we
study the sensibility of FIBAD to AMTHR. For this, we replace AMTHR
with two other methods that compute approximate minimal transversals. We
also compare our dualization-based method with an existing approach which
computes directly, without dualization, the approximate positive borders.

1 Frequent Itemset Border Approximation by Dualization
2 Approximate Minimal Transversals by Hypergraph Reduction

Frequent Itemset Border Approximation by Dualization 3

The rest of the paper is organized as follows. Section 2 defines notations and
basic notions necessary for understanding the paper. Related works are discussed
in Sect. 3. The proposed approach is detailed in Sect. 4. Section 5 presents our
method that computes approximate minimal transversals. The experiments and
the results are presented in Sect. 6. We conclude and present some future work
in Sect. 7.

2 Preliminaries

Let D = (T , I,R) be a data mining context, T a set of transactions, I a set
of items (denoted by capital letters), and R ⊆ T × I is a binary relation be-
tween transactions and items. Each couple (t, i) ∈ R denotes the fact that the
transaction t is related to the item i. A transactional database is a finite and
nonempty multi-set of transactions. Table 1 provides an example of a transac-
tional database consisting of 6 transactions (each one identified by its ”Id”) and
8 items (denoted A . . .H).

Table 1. Example of transactional database.

Id Items

t1 A C E G
t2 B C E G
t3 A C E H
t4 A D F H
t5 B C F H
t6 B C E F H

An itemset is a subset of I (note that we use a string notation for sets, e.g.,
AB for {A,B}). The complement of an itemset X (according to I) is noted
X. A transaction t supports an itemset X iff ∀i ∈ X, (t, i) ∈ R. An itemset X
is frequent if the number of transactions which support it, is greater than (or
is equal to) a minimum threshold value, noted minsup. The set of all-frequent
itemsets, noted S, is presented in Definition 1.

Definition 1 (Set of all-frequent itemsets).
Let D = (T , I,R) be a data mining context and minsup be the minimum thresh-
old value. The set of all-frequent itemsets, noted S, is:

S = {X ⊆ I, |{t ∈ T , ∀i ∈ X (t, i) ∈ R}| ≥ minsup}.

The notion of frequent itemset border was introduced by Mannila & Toivonen
in [30] (see Definition 2). The borders can be visualized by using the itemset
lattice, i.e., the partial order naturally defined on the powerset of I (see Fig. 1).
The itemset lattice represents the complete search space.

4 N. Durand and M. Quafafou

Fig. 1. Lattice of all subsets of items of I

Definition 2 (Positive border and negative border). The set of all maxi-
mal frequent itemsets (resp. minimal infrequent itemsets), w.r.t. set inclusion, in
D is the positive border (resp. negative border) of S and is noted Bd+(S) (resp.
Bd−(S)).

Bd+(S) = {X ∈ S | ∀Y ⊃ X, Y /∈ S}.
Bd−(S) = {X ∈ 2I \ S | ∀Y ⊂ X, Y ∈ S}.

Example 1. Let us take the example of Table 1, if minsup=3 then the itemset
H is frequent because 4 transactions support it (t3, t4, t5 and t6). AE is not
frequent because only t1 and t3 support it. The set of all-frequent itemsets is
S = {A,B,C,E, F,H,BC,CE,CH,FH}. The positive border and the negative
border are: Bd+(S) = {A, BC, CE, CH, FH} and Bd−(S) = {D, G, AB, AC,
AE, AF, AH, BE, BF, BH, CF, EF, EH}.

Before the presentation of the relationship between the positive border and
the negative border of frequent itemsets, we need to introduce the notion of
hypergraph (see Definition 3), the notion of simple hypergraph (see Definition
4) and the notion of minimal transversals of a hypergraph (see Definition 5) [6].

Definition 3 (Hypergraph and degree of a vertex). A hypergraph H =
(V , E) is composed of a set V of vertices and a set E of hyperedges [6]. Each
hyperedge e ∈ E is a set of vertices included or equal to V . The degree of a vertex
v in H, denoted degH(v), is the number of hyperedges of H containing v.

Definition 4 (Simple hypergraph and minimal hyperedges). Let H=(V ,
E) be a hypergraph. H is simple if for every pair ei, ej ∈ E, ej ⊆ ei ⇒ j = i.
min(H) is the set of minimal hyperedges of H w.r.t. set inclusion, i.e., min(H) =
{ei ∈ E|(∀ej ∈ E, i 6= j, ej ⊆ ei) : ej = ei)}. The hypergraph min(H) is simple.

Definition 5 (Transversal and minimal transversal). Let H be a hyper-
graph and τ be a set of vertices (τ ⊆ V). τ is a transversal of H if it intersects
all the hyperedges of H. A transversal is also called a ”hitting set”. The set of all
the transversals of H is Tr(H) = {τ ⊆ V | ∀ei ∈ E, τ ∩ ei 6= ∅}. A transversal τ
of H is minimal if no proper subset is a transversal of H. The set of all minimal
transversals of H is noted MinTr(H).

Frequent Itemset Border Approximation by Dualization 5

The following Proposition 1 results from the definition of the minimal transver-
sals of a hypergraph. Considering a hypergraph H, the minimal transversals of
H are the same as the minimal transversals of the set of minimal hyperedges of
H [28].

Proposition 1. Let H=(V , E) be a hypergraph. Then, MinTr(H) is a simple
hypergraph and MinTr(H) = MinTr(min(H)).

Fig. 2. The hypergraph from the example of Table 1

Example 2. Let us consider the example of Table 1 as a hypergraph H. The
transactions are the hyperedges and the items are the vertices (see Fig. 2). Here,
min(H) = {t1, t2, t3, t4, t5}. The set of vertices BC is not a transversal. ABC is
a transversal but is not minimal (by removing B, it remains a transversal). AC
and EF are minimal transversals. The set of all minimal transversals of H is
{AB,AC,CD,CF,CH,EF,EH,GH,AFG,BDE}.

The computation of the negative border from the positive border and vice
versa are presented in Property 1 [30] and Property 2 [10].

Property 1 (Negative border and minimal transversals)
Bd−(S) = MinTr(Bd+(S)) where Bd+(S) is the hypergraph formed by the items
of I (i.e. the vertices) and the complements of the itemsets of the positive border
of S (i.e. the hyperedges).

Property 2 (Positive border and minimal transversals)
Bd+(S) = MinTr(Bd−(S)) where Bd−(S) is the hypergraph formed by the items
of I (i.e. the vertices) and the itemsets of the negative border of S (i.e. the
hyperedges).

6 N. Durand and M. Quafafou

Example 3. Let us compute Bd−(S) from Bd+(S) with our running example.
Bd−(S) = MinTr(Bd+(S)) = MinTr({A, BC, CE, CH, FH})
= MinTr({BCDEFGH, ADEFGH, ABDFGH, ABDEFG, ABCDEG})
= {D, G, AB, AC, AE, AF, AH, BE, BF, BH, CF, EF, EH}.
Let us compute Bd+(S) from Bd−(S). Bd+(S) = MinTr(Bd−(S))
= MinTr({D,G,AB,AC,AE,AF,AH,BE,BF,BH,CF,EF,EH})
= {BCDEFGH, ADEFGH, ABDFGH, ABDEFG, ABCDEG}
= {A,BC,CE,CH,FH}.

The term dualization refers to the use of the two previous properties to com-
pute the negative border from the positive border, and vice versa.

Due to the exponential size of the search space, the size of the borders can be
huge according to minsup. In this paper, we propose an approach to approximate
the borders and to reduce their size. In this way, the exploitation of the itemsets
of the borders will be easier. The next section presents the related works and
positions our propositions.

3 Related Works

3.1 Approximation of the Frequent Itemset Border

The approximation of both positive and negative borders of frequent itemsets has
been examined on the basis algorithmic dimension [7]. At first, the computation
of the approximate borders is performed directly from the data. In fact, it was
shown that there is no algorithm of approximation to compute the positive
border with a reasonable approximation factor. Furthermore, the computation
of the negative border can be approximated by a greedy algorithm in polynomial
time.

Numerous methods have been proposed to reduce the number of itemsets of
the positive border. In [23], the authors have proposed an algorithm to obtain
k representative itemsets by uniformly sampling from the pool of all maximal
frequent itemsets (i.e., the positive border). They have used a variant of Markov
Chain Monte Carlo algorithm. The algorithm simulates a random walk over
the frequent itemset partial order graph with a prescribed transition probability
matrix, whose values are computed locally during the simulation. In [31], the au-
thors have studied the problem of randomly sampling maximal itemsets without
explicit enumeration of the complete itemset search space. They have employed
a simple random walk that only allows additions of singletons to the current set
untill a maximal itemset is found. An approximation measure, given as input
of the algorithm, is used to guide the search for maximal frequent itemsets to
different parts of the output space.

In [2], the approximation of a collection of frequent itemsets by the k best
covering sets has been studied. The proposed algorithm input is the whole collec-
tion of the frequent itemsets or the positive border. The authors have explained
the difficulties to use a greedy algorithm to obtain k covering sets belonging to

Frequent Itemset Border Approximation by Dualization 7

the initial collection. In [41], the authors have proposed the notion of colossal fre-
quent itemsets. Some small frequent itemsets (defined as core itemsets) are fused
into colossal itemsets by taking leaps in the itemset search space. The fusion pro-
cess is designed to give an approximation to the colossal frequent itemsets. The
maximal number of colossal itemsets to discover is given as input. In [25], the
authors have proposed a concise representation for a collection of frequent item-
sets, called cartesian contour, based on the cartesian product. They have linked
the computation of the cartesian contour into a generalized minimum biclique
cover problem and they have designed an approximate algorithm with bound.
This algorithm takes in input the set of all maximal frequent itemsets and pro-
duces a cover. Let us remark that, with this approach, there is no need to set
the number of itemsets, contrary to the previous presented works.

Other approaches exist to reduce the number of itemsets but the link with
maximal frequent itemsets is not direct. In [39], the authors have used the Min-
imum Description Length (MDL) principle: the best set of itemsets is that set
that compresses the database best. A post-treatment step would be needed to
obtain maximal itemsets.

Our approach computes an approximate border from a border given as input.
In that respect, other algorithms presented in [2] and [25] have borders as input.
Nevertheless, we do not try to find some covering sets, but our primary goal is
to approximate the border that may contains itemsets, which are not necessarily
belong to the initial collection. Our approach has the advantage to generate both
the approximate positive border and the corresponding approximate negative
border. We have an understanding mapping between the exact border and the
approximate border. Consequently, we have the possibility to use several other
strategies to approximate borders (see Sect. 4). Moreover, contrary to the most
of the previous presented works, we do not need to fix the size of the searched
borders.

3.2 Approximate Minimal Transversals

The computation of minimal transversals is a central point in hypergraph theory
[6] and represents a NP-hard problem. The algorithms that address this need
have been developed by different communities like graph theory [6, 28], logic [19,
16] and data mining [12, 4, 24]. Some works approximate the minimal transversals
in order to obtain several ones or only one [36]. Some works are based on an
evolutionary computation [38] where the transversality and the minimality are
transcribed both in a fitness function.

In [1], the Staccato algorithm computes low-cost approximate minimal trans-
versals with a depth-first search strategy. It has been designed for model-based
diagnosis. We have adapted Staccato in order to compute approximated mini-
mal transversals in general and to use it in the experiments (see Sect. 6). The
adaptation consists of defining the Staccato’s cost function using properties of
vertices belonging to the hypergraph (i.e., their degrees). This adaptation al-
lows the definition of vertex’s cost. The algorithm sorts the vertices according
to their cost value in decreasing order. This vertex ranking is exploited to guide

8 N. Durand and M. Quafafou

the search. At each selection step, only the first λ (%) vertices of the remaining
hypergraph are used. For instance, the algorithm starts by selecting the vertex
having the highest cost value. Then, it selects the vertex having the highest cost
value in the hypergraph formed by the hyperedges not intersected yet. Etc. The
more the λ value is high, the more the result is close to the set of all minimal
transversals.

The algorithm presented in [35], that we call δ-MTminer in reference to
MTminer [24], produces minimal transversals which can miss at most δ hy-
peredges. It uses a breadth-first search strategy and several itemset discovery
techniques (candidate generation, anti-monotone constraint, . . .). The search
space corresponds to the lattice of all subsets of items (i.e., the vertices). The
transactions correspond to the hyperedges. The algorithm uses the notion of
”anti-support”, where the anti-support of an itemset is the number of transac-
tions having no item in common with this itemset. If the anti-support of an item-
set is equals to 0 then this itemset is a transversal. The minimality is achieved
by using free itemsets [8]. A δ-minimal transversal is a free itemset having an
anti-support lower than or equals to δ. Let us note that δ-MTminer is especially
efficient on dense hypergraphs (i.e., hypergraphs which strongly intersect).

Staccato and δ-MTminer present two approaches to compute approximate
minimal transversals. Alternatively, we propose a method that performs a hyper-
graph reduction and then computes the minimal transversals of the reduced hy-
pergraph. These transversals are considered as the approximate minimal transver-
sals of the initial hypergraph. The number of missed hyperedges is free, contrary
to δ-MTminer. Moreover, using our method, there are no parameters to set in
advance.

3.3 Hypergraph Reduction

The classical approaches to reduce a hypergraph are edge and hyperedge coars-
ening [27]. In the edge coarsening approach, pairs of vertices that are present
in the same hyperedges are selected to group the vertices. On the contrary, in
the hyperedge coarsening approach, a set of independent hyperedges is selected
and the vertices that belong to individual hyperedges are contracted together.
The hyperedges are initially sorted, and they are visited according to the re-
sulted order. Variants of these two approaches exist. For more information, we
refer the reader to [27]. Recently, in [13], two algorithms of hypergraph reduc-
tion have been proposed. The first algorithm, called HR-IH, uses hyperedge
intersections. Whereas, the second algorithm, called HR-MST , uses minimum
spanning tree. The hypergraph reduction is a step of the proposed hypergraph
clustering method which is applied to image segmentation.

Our hypergraph reduction algorithm uses, as HR-IH, the hyperedge inter-
sections. Nevertheless, only the step of computation of hyperedge intersections
is in common. In fact, HR-IH computes a cover of the set of hyperedge inter-
sections and our algorithm selects the most interesting intersections according
to a heuristic for finding minimal transversals.

Frequent Itemset Border Approximation by Dualization 9

4 Proposed Approach of Border Approximation

The FIBAD approach is introduced with the purpose of computing approximate
borders by dualization. Let f and g be the functions that allow to compute re-
spectively the negative border from the positive border and vice versa:

f : 2I → 2I

x 7→MinTr(x)

g : 2I → 2I

x 7→MinTr(x)

The following diagram allow us to visualize the dualizations between the
positive and negative borders:

Bd+(S)

f
**
Bd−(S)

g

jj

The principle of FIBAD is to replace the function f by a function f̃ which
performs an approximate computation of the negative border. We define the
following new function f̃ that uses an approximate minimal transversals compu-
tation, noted ˜MinTr:

f̃ : 2I → 2I

x 7→ ˜MinTr(x)

From the positive border, the function f̃ computes an approximate negative

border, noted ˜Bd−(S) (see Definition 6).

Definition 6 (Approximate negative border). Let Bd+(S) be a positive

border of frequent itemsets. The approximate negative border, noted ˜Bd−(S), is
defined as follows:

˜Bd−(S) = f̃(Bd+(S)) = ˜MinTr(Bd+(S)).

The return to a positive border (via the function g) allows to obtain an

approximate positive border, noted ˜Bd+(S) (see Definition 7).

Definition 7 (Approximate positive border). Let ˜Bd−(S) be an approxi-
mate negative border of frequent itemsets. The approximate positive border, noted˜Bd+(S), is defined as follows:

˜Bd+(S) = g(˜Bd−(S)) = MinTr(˜Bd−(S)).

10 N. Durand and M. Quafafou

From the positive border, the proposed approach produces the approximate

negative border B̃d−(S) and the corresponding approximate positive border

B̃d+(S). The following diagram presents all the dualization process:

Bd+(S)

˜Bd+(S)

f̃
** ˜Bd−(S)

g

jj

Let us remark that we still have an exact dualization between the two ap-
proximated borders:

˜Bd+(S)

f
** ˜Bd−(S)

g

jj

In order to give a general overview of FIBAD, we introduce Algorithm 1 by
noting that its main Steps 2 and 3 are treatments considered in the next section.
Next, we illustrate FIBAD with Example 4.

Algorithm 1 General overview of FIBAD

Require: a positive border of frequent itemsets, Bd+(S)

Ensure: the approximate negative and positive borders, ˜Bd−(S) and ˜Bd+(S)

{Steps 1, 2 and 3: Dualization using function f̃}
1: H=Bd+(S); {Computation of the hypergraph from Bd+(S)}
2: HR=HR(H); {Reduction of the hypergraph H}
3: ˜Bd−(S)= ˜MinTr(H)=MinTr(HR) {Computation of the approximate negative

border ; The approximate minimal transversals ofH are the exact minimal transver-
sals of HR}
{Step 4 and 5: Dualization using function g}

4: P=MinTr(˜Bd−(S)); {Computation of the exact minimal transversals of ˜Bd−(S)}
5: ˜Bd+(S)=P ; {Computation of the approximate positive border}
6: return ˜Bd−(S) and ˜Bd+(S);

Example 4. Let us take the example of Table 1 with minsup=3, Bd+(S) = {A,
BC, CE, CH, FH}, and let us compute the approximate borders with FIBAD.

Step 1:H= Bd+(S) = {A, BC, CE, CH, FH}= {BCDEFGH, ADEFGH,
ABDFGH, ABDEFG, ABCDEG}

Steps 2 and 3: ˜Bd−(S) = ˜MinTr(H) = MinTr(HR). Let us assume that this

computation provides the following result: ˜Bd−(S) = {D,E,G,AF,AH,BF,BH}.
Step 4: P = MinTr(˜Bd−(S)) = MinTr({D,E,G,AF,AH,BF,BH}) =

{ABDEG, DEFGH}

Frequent Itemset Border Approximation by Dualization 11

Step 5: ˜Bd+(S) = P = {ABDEG, DEFGH} = {CFH,ABC}.
We can remark that A, B, C and BC are frequent itemsets and here ABC

is considered as a frequent itemset. CFH is not frequent (its support is equal to
2) but it is almost frequent. These two itemsets can be interesting for applica-
tions like document recommendation. For instance, without our approach, FH
is frequent and CFH is not frequent. The item C is potentially interesting. If
the items are documents, with our approach, the item C can be recommended
to a user.

In short, the distinctiveness of the FIBAD’s theoretical foundations is the
approximate dualization where the new approximate function f̃ is defined to
compute the approximate negative border from the exact positive one. From a
methodological point of view, the approximate function is defined as a sequence
of two subfunctions: (1) reduction of the hypergraph formed by the comple-
ments of the itemsets of the exact positive border (Step 2 of Algorithm 1) and
(2) computation of the exact minimal transversals of the reduced hypergraph
(Step 3 of Algorithm 1). Thus, the resulted transversals are the approximate
minimal transversals of the initial hypergraph. They correspond to the approxi-
mate negative border as the input hypergraph is formed by the complements of
the itemsets of the exact positive border. Afterwards, the approximate positive
border is computed from the approximate negative border by an exact function
g. In the remainder of this paper, the sequence of the two subfunctions is called
AMTHR and is detailed in the next section.

It should be noted that the function f̃ can be supported by any other func-
tions that compute approximate minimal transversals. The use of each alterna-
tive functions, instead of AMTHR, leads to a new strategy for computing ap-
proximate borders using dualization. In this paper, the function g is unchanged
and its experimental section is dedicated to the comparaison of our proposal
with other alternative strategies.

5 Computation of Approximate Minimal Transversals

We propose the method AMTHR to compute the approximate minimal hyper-
graph transversals (Steps 2 and 3 of Algorithm 1). This method is based on a
new algorithm that reduces the initial hypergraph. Our goal is to compute the
minimal transversals on the reduced hypergraph which is smaller than the ini-
tial one. The proposed algorithm of reduction is specially designed to compute
minimal transversals. It exploits the fact that the hyperedges formed by the
complements of the itemsets of the positive border, strongly intersect (i.e. the
average degree of a vertex is high). For instance, in Example 4, this hypergraph
is: {BCDEFGH, ADEFGH, ABDFGH, ABDEFG, ABCDEG}. The pro-
posed method is composed of two steps: (1) Reduction of the hypergraph and
(2) Computation of the (exact) minimal transversals of the reduced hypergraph.
At the end, the minimal transversals obtained from the reduced hypergraph are
declared as the approximate minimal transversals of the initial hypergraph.

12 N. Durand and M. Quafafou

5.1 Reduction of the Hypergraph

The reduction method is based on both the intersections of the hyperedges and
the degree of each vertex. The representative graph [6] (also called ”line-graph”)
of the hypergraph is thus generated. Let us recall that the representative graph
of the hypergraph H is a graph whose vertices represent the hyperedges of H
and two vertices are adjacent if and only if the corresponding hyperedges in
H intersect. In our algorithm, we add values to the edges of the representative
graph.

Algorithm 2 presents the reduction of a hypergraph H. This algorithm is
composed of three steps: (1) Computation of the degree of each vertex in H
(lines 1-3), (2) Generation of the valued representative graph of H (lines 4-9),
and (3) Generation of the reduced hypergraph from the valued representative
graph (lines 10-17).

Algorithm 2 HR (Hypergraph Reduction)

Require: a hypergraph H=(V , E) where |V |=n and |E|=m
Ensure: the reduced hypergraph HR
1: for all v ∈ V do
2: Compute degH(v)
3: end for
4: V ′ ← {v′i} i = 1, . . . ,m; {each v′i ∈ V ′ represents ei ∈ E}
5: E′ ← {};
6: for all v′i ∩ v′j 6= ∅ do
7: E′ ← E′ ∪ {(v′i, v′j)};
8: w(v′i,v

′
j)
←

∑
v∈{ψ−1(v′i)∩ψ

−1(v′j)}
degH(v);

9: end for
10: VR ← {};
11: ER ← {};
12: while E′ 6= ∅ do
13: Select e′max = (v′maxi, v

′maxj) having the maximal weight value
14: VR ← VR ∪ {ψ−1(v′maxi) ∩ ψ−1(v′maxj)};
15: ER ← ER ∪ {{ψ−1(v′maxi) ∩ ψ−1(v′maxj)}};
16: Delete the edges e′ ∈ E′ where v′maxi or v′maxj is present
17: end while
18: return HR;

Valued Representative Graph Generation (lines 1-9). Let be H = (V,E)
a hypergraph (|V | = n and |E| = m). The algorithm constructs a valued graph
G=(V ′, E′) where V ′ = {v′i} (i = 1, . . . ,m) and E′ = {e′k} (k = 1, . . . , l). A
vertex v′i represents a hyperedge ei from H. Let be ψ : E → V ′ the bijective
function that associates a hyperedge ei to a vertex v′i. A hyperedge between v′i
and v′j shows that the intersection between the hyperedges ψ−1(v′i) and ψ−1(v′j)

Frequent Itemset Border Approximation by Dualization 13

(ei and ej from H) is not empty. The weight of an edge is based on the degree
of each vertex in the corresponding intersection.

To evaluate the weight of a generated edge, we use the degree of each vertex
from the initial hypergraph. The idea is that a vertex very present has a good
chance to be in a minimal transversal. This expresses a ”degree” of transversality.
If the degree of a vertex is equal to the number of hyperedges then this vertex is
a minimal tranversal. Let us note that this heuristic is used by several algorithms
that compute transversals [1, 36].

The weight of an edge e′k = (v′i, v
′
j), noted we′k , is the sum of the degree

of the vertices present in the intersection which has led to create this edge (see
(1)).

we′k =
∑

v∈{ψ−1(v′i)∩ψ−1(v′j)}

degH(v). (1)

Generation of the Reduced Hypergraph (lines 10-17). After the creation
of the valued representative graph, the algorithm performs a selection of edges
with a greedy approach. It selects the edge having the higher weight value while
there are edges left in the valued representative graph G. Each selected edge is
transformed to a hyperedge of the reduced hypergraph. This hyperedge contains
the vertices from H corresponding to the intersection of the two vertices of the
edge.

We obtain, at the end, a set of hyperedges corresponding to the reduced
hypergraph HR=(VR,ER). Let us remark that if several edges have the same
weight, the first edge found is selected.

Example 5. Let us consider the example of Table 1 as a hypergraph H (6 hyper-
edges, 8 vertices). The transactions are the hyperedges ek and the items are
the vertices vi. First, the degree of each vertex is evaluated: occur[A] = 3,
occur[B] = 3, occur[C] = 5, occur[D] = 1, occur[E] = 4, occur[F] = 3,
occur[G] = 2 and occur[H] = 4. Then, the intersections between the hyper-
edges are computed. For instance, ψ−1(v′1) ∩ ψ−1(v′3) = e1 ∩ e3 = {A,C,E}.
The sum of the numbers of occurrences of A, C and E is equals to 12. This
is the weight of the edge (v′1, v

′
3) generated in G. The adjacency matrix of the

generated valued graph is:

v′1 v
′
2 v
′
3 v
′
4 v
′
5 v
′
6

v′1 0 11 12 3 5 9
v′2 11 0 9 0 8 12
v′3 12 9 0 7 9 13
v′4 3 0 7 0 7 7
v′5 5 8 9 7 0 15
v′6 9 12 13 7 15 0

The edge (v′5, v′6) is selected because its weight is maximal (i.e., 15). The
edges where v′5 or v′6 are present, are deleted. Thus, we have VR = {B, C, F,

14 N. Durand and M. Quafafou

H} and ER = {{B, C, F, H}}). The adjacency matrix of the remaining valued
graph is:

v′1 v
′
2 v
′
3 v
′
4 v
′
5 v
′
6

v′1 0 11 12 3 0 0
v′2 11 0 9 0 0 0
v′3 12 9 0 7 0 0
v′4 3 0 7 0 0 0
v′5 0 0 0 0 0 0
v′6 0 0 0 0 0 0

The next selected edge is (v′1, v′3). After the deletion of the edges where v′1
or v′3 are present, there are no remaining edges and the algorithm ends. The
reduced hypergraph is HR = (VR, ER) where VR = {A, B, C, E, F, H} and
ER = {{A, C, E}, {B, C, F, H}}). There are 6 vertices (instead of 8) and 2
hyperedges (instead of 6).

Remarks. Algorithm 2 can be implemented in time O(m3) where m is the
number of hyperedges of the initial hypergraph. Let us remark that the selection
of the edge having the maximal weight value (line 13) can be changed to the
selection the first edge of the list of all edges, if the algorithm performs a quicksort
of this list according to the weight before line 12. In the worst case, there are
(m2−m)

2 hyperedges in the reduced hypergraph. Let us remark that we could also
compute min(HR) because there are no consequences on the next step, ie., the
computation of minimal transversals (see Proposition 1).

5.2 Minimal Transversal Computation

The last step is the computation of the (exact) minimal transversals of the
reduced hypergraph. These transversals correspond to the approximate minimal
transversals of the initial hypergraph:

˜MinTr(H) = MinTr(HR).

Example 6. Let us continue Example 5. The minimal transversals ofHR are: {C,
AB, AF , AH, BE, EF , EH}. We consider them as the approximate minimal
transversals of H. Let us remark that the (exact) minimal transversals of H are:
{AB, AC, CD, CF , CH, EF , EH, GH, AFG, BDE}.
Let us note that an approximate minimal transversal is not necessarily a subset
of an exact minimal transversal, for instance AH.

6 Experiments

As noted at the end of Sect. 4, the function f̃ proposed in FIBAD can be sup-
ported by any other functions that compute approximate minimal transversals.

Frequent Itemset Border Approximation by Dualization 15

In these experiments, we evaluate our dualization-based method that computes
approximate borders by using AMTHR. How much this latter is efficient, i.e.,
the quality of the computed borders? In answering this question, we compute
the distance between the computed approximate borders and the exact ones. We
also ask the following question: How much FIBAD is sensitive to AMTHR?
To reply to this question, we replace AMTHR with other methods that com-
pute approximate minimal transversals. In practice, we consider two alternative
strategies based respectively on the δ-MTminer [35] and Staccato [1] algorithms.
Finally, we compare our dualization-based method with the CartesianContour
algorithm [25] which computes directly, without dualization, the cover of Bd+(S)
that corresponds to an approximate positive border. All the experiments have
been performed on a Intel Xeon X5560 2.8 GHz with 16GB of memory. The
implementations have been developed in JAVA.

6.1 Data and Protocol

Data. Four data sets have been used: Mushroom, Chess, Connect and Kosarak.
They have been downloaded from the FIMI web site3. Mushroom contains data
on 23 species of gilled mushrooms. Chess contains some strategies for chess
sets. Connect contains strategies for the game of connect-4. Kosarak contains
anonymized click-stream data of a hungarian on-line news portal.

Table 2. Data sets used in the experiments.

Data set |T | |I| Avg. |ti| Gouda & Zaki Flouvat et al.

Mushroom 8,124 119 23.0 type 4 type II
Chess 3,196 75 37.0 type 1 type I

Connect 67,557 129 43.0 type 2 type II
Kosarak 990,002 41,270 8.1 type 3 type III

These data sets (see Table 2) have been chosen to cover the different types
of existing data sets according to two classifications: Gouda & Zaki [20] and
Flouvat et al. [17]. The classification proposed by Gouda & Zaki [20] (types 1,
2 , 3 et 4) is based on the density and on the distribution of the positive border
according to the size of the itemsets and the value of the minimum support
threshold. Let us note that a data set is dense when it produces long itemsets
for high values of the minimum support threshold. The classification proposed
by Flouvat et al. [17] (types I, II et III) studies both the positive border and
the negative border. Type I corresponds to data sets having long itemsets in the
two borders and most of the itemsets in the two borders have approximately the
same size. Type II corresponds to data sets having long itemsets in the positive
border and the itemsets of the negative border are much smaller than those of
the positive border. Type III is a special case of type I: the itemset size in the two

3 Frequent Itemset Mining Implementations, http://fimi.ua.ac.be/data/

16 N. Durand and M. Quafafou

borders is very close for very low minimal support values. Type III captures the
notion of sparseness. Type I and Type II correspond to dense data sets. Chess
and Connect are dense data sets. Kosarak is a sparse data set. Let us remark
that Mushroom is special: Flouvat et al. classify it in Type II (as Connect) but
Gouda & Zaki classify it in an other type, Type 4. Mushroom is between dense
data sets and sparse data sets.

Protocol. For each data set and for some minimum support threshold values,
we adopt the following protocol:

1) Exact border computation:
The exact positive border Bd+(S) is the input of the evaluated methods.
Both the exact positive and negative borders, Bd+(S) and Bd−(S), will be
used to evaluate the precision of the resulted approximate borders. The more
an approximate border is close to the exact one, the more its precision is
high. We compute Bd+(S) using the IBE algorithm [37]. Afterwards, we
compute Bd−(S) from Bd+(S) according to Property 1.

2) Approximate border computation:

Firstly, we compute ˜Bd−(S) and ˜Bd+(S) from Bd+(S) by dualization using
AMTHR. Next, this computation is re-done twice by replacing AMTHR by
the δ-MTminer algorithm [35] and the Staccato algorithm [1], respectively.

3) Direct computation of approximate positive border:
We compute the cover of Bd+(S) using the CartesianContour algorithm
[25]. This cover corresponds to an approximate positive border.

4) Evaluation of the quality of the computed borders.

In this experiments, we use the Border-Diff algorithm [12] to compute
exact minimal transversals when it is needed. Alternatively, we can replace this
algorithm by any other one which computes exact minimal transversals without
however any change of the resulted borders.

For δ-MTminer (see Sect. 3), the best results have been obtained with δ set
to 1, so we have selected this value. Let us recall that for Staccato (see Sect. 3),
the more λ is high, the more Staccato is close to the exact solution. Nevertheless,
the more λ is high, the more the execution time is high. Thus, we have chosen
the highest values of λ before being impracticable: λ=0.8 for Mushroom, λ=0.65
for Chess, λ=0.7 for Connect, and λ=0.95 for Kosarak. CartesianContour (de-
veloped in C++) has been downloaded from the web page of one of the authors4.
There is no need to set the number of itemsets of the computed borders, and
the exact positive border is given as input (see Sect. 3).

Some statistics are computed: the number of itemsets of the computed border,
the average size of the itemsets of the computed border, and the distance between
the set of the itemsets of the computed border and the set of itemsets of the
exact border.

4 http://www.cs.kent.edu/∼lliu/sourceCode.html

Frequent Itemset Border Approximation by Dualization 17

To evaluate the distance between two borders, we have used the distance of
Karonski & Palka [26] based on the Hausdorff distance. The cosine distance (see
(2)) has been chosen to compute the distance between two elements (i.e., two
itemsets). The distance D between two set of itemsets X and Y is defined in (3).

d(X,Y) = 1− |X ∩ Y |√
|X| × |Y |

. (2)

D(X ,Y) =
1

2
{h(X ,Y), h(Y,X)}

where h(X ,Y) = max
X∈X

{min
Y ∈Y

d(X,Y)}.
(3)

Example 7. Let us consider Example 4 (see Sect. 4). The distance between

Bd−(S) and ˜Bd−(S) is equal to 0.395 (1
2 (0.29 + 0.5)). The distance between

Bd+(S) and ˜Bd+(S) is equal to 0.385 (1
2 (0.18 + 0.59)).

Let us recall that our main goal is to produce approximate borders smaller
than exact borders, while having the lowest values of the distance to the exact
borders.

6.2 Results and Discussion

Hypergraph Reduction. Table 3 presents the hypergraphs and the transver-
sals computed by FIBAD. Let us recall that for an experiment (a data set and
a minsup value) the computed hypergraph, noted H = (V , E), correspond to
the complement of the itemsets of the positive border (V ⊆ I and E = Bd+(S)).
The reduced hypergraph of H, noted HR, is computed with Algorithm 2 (HR
= HR(H)). For each data sets and minsup values, we have the number of hy-
peredges of H (|E|), the number of vertices of H (|V |), the average degree of a
vertex (degH(v)), the number of minimal transversals of H (|MinTr(H)|), the
number of hyperedges of min(HR) (|ER|), the number of vertices of min(HR)
(|VR|) and the number of minimal tranversals of HR (|MinTr(HR|). In order to
better show the impact of the reduction, we consider here min(HR) instead of
HR. The computation of min(HR) has no consequences on the computation of
minimal transversals (see Proposition 1).

We can observe that the generated hypergraphs H strongly intersect, i.e., the
average degree of a vertex is close to the number of hyperedges. These results
confirm the observation made at the beginning of Sect. 5.

The number of vertices is almost the same in the initial hypergraph and the
reduced hypergraph. The number of hyperedges of the reduced hypergraph is
much lower than the number of hyperedges of the initial hypergraph. For in-
stance, on Chess with minsup equals to 50%, there are 3,351 hyperedges instead

of 11,463. The ”space savings” (i.e., 1− |ER|
|E|) is equal to 70.7%. In average, over

all the data sets, the space savings is equal to 63%.
We can also see that, in general, the number of minimal transversals of the re-

duced hypergraph is lower than the number of minimal transversals of the initial

18 N. Durand and M. Quafafou

Table 3. Computed hypergraphs and transversals.

Initial hypergraph Reduced hypergraph

Data set Minsup |E| |V | degH(v) |MinTr| |ER| |VR| |MinTr|
(%) (avg.) (H) (min(HR)) (min(HR)) (HR)

Mushroom 25 105 115 100.1 652 47 115 581
20 158 115 150.4 1,012 63 115 879
15 321 115 303.8 1,816 118 115 1,478
10 558 118 525.1 3,103 235 118 3,125
5 1,452 118 1,347.3 9,034 580 118 8,801
3 2,627 118 2,414.1 16,361 1,075 118 15,674
2 3,761 118 3,422.6 23,208 1,600 118 21,571

Chess 80 226 66 200.1 398 73 66 284
75 489 74 437.3 742 155 73 446
70 898 74 796.1 1,318 273 73 794
65 1,779 74 1,568.7 2,644 594 73 1,713
60 3,374 74 2,949.3 4,793 1,017 74 2,809
55 6,261 74 5,429.4 8,435 1,955 73 4,943
50 11,463 74 9,875.5 15,224 3,351 74 8,864

Connect 80 676 127 611.8 975 203 127 594
75 961 127 861.6 1,317 292 127 797
70 1,220 127 1,083.2 1,672 374 127 989
65 1,588 127 1,400.1 2,196 467 127 1,289
60 2,104 127 1,849.3 2,937 657 127 1,758
55 2,836 127 2,481.1 3,859 827 127 2,145
50 3,748 127 3,259.2 5,041 1,072 127 2,871
45 4,720 127 4,079.1 6,364 1,448 127 3,747
40 6,213 127 5,342.9 8,358 1,887 127 4,735

Kosarak 5 8 218 7.9 240 4 218 234
4 13 218 12.8 268 5 218 244
3 17 294 16.8 380 7 294 365
2 30 490 29.8 780 15 490 759
1 88 987 87.7 2,298 41 987 2,241

0.5 305 2,952 304.6 14,791 146 2,952 14,524
0.4 468 2,952 467.4 25,082 228 2,952 24,938
0.3 814 3,804 813.2 51,770 394 3,804 51,567

hypergraph. This is not always true. For instance, on Mushroom with minsup
equals to 10%, there are 3,103 minimal transversals for H and 3,125 for HR.
Let us take an example to illustrate this point. The minimal transversals of the
hypergraph {ABC,ABD,ABE,ABF,ABG} are {A,B,CDEFG}. There are
3 minimal transversals. Now, let us consider the hypergraph {AC,ABD,BG},
there are 4 minimal transversals ({AB,AG,BC,CDG}).

The hypergraph reduction is efficient in view of the space saving. Let us recall,
that the hyperedges of the reduced hypergraph are selected using a heuristic
which favors the search of approximate minimal transversals (see Sect. 5). Thus,
our algorithm reduces the hypergraph while keeping the most important parts
to find approximate minimal transversals.

Frequent Itemset Border Approximation by Dualization 19

Approximate Negative Borders. Figures 3, 4, 5 and 6 present, for each
data sets, (a) the number of itemsets of the computed negative borders, (b) the
distance between the computed negative borders and the exact negative borders,
(c) the average size of an itemset of the computed negative borders, and (d) the
execution time, according to the minsup value.

We can observe that the cardinality of ˜Bd−(S) is lower than the cardinality

of Bd−(S) for each data sets. The itemsets of ˜Bd−(S) are shorter than the

itemsets of Bd−(S). On Mushroom and Kosarak, the cardinality of ˜Bd−(S)
produced by AMTHR is very close to the cardinality of Bd−(S). The generated
itemsets with AMTHR are a little shorter than the itemsets of the exact borders.
For 1-MTminer, the cardinality of ˜Bd−(S) is the smallest on Mushroom and
Kosarak. Staccato has generated the shortest itemsets on Mushroom but they are
numerous. The itemsets produced by 1-MTminer and Staccato are very short
on Kosarak. On Chess and Connect, AMTHR and 1-MTminer have produced
a similar number of itemsets. These itemsets have a very close average size. We
can remark that Staccato has produced a very small number of itemsets, and
the average size of the itemsets is very small, on Chess and Connect.

Regarding the distance (between ˜Bd−(S) and Bd−(S)), AMTHR is not
the best but it is close to the best algorithm for each data sets. Staccato has
obtained the closest borders on Mushroom and Kosarak. This can be explained
by the fact that λ has been set to high values for these data sets. This was
not possible for Chess and Connect (dense data sets) and this explains why
Staccato has the worst results on these data sets. 1-MTminer has produced the
closest borders on Chess and Connect. These data sets are dense and they have
many long itemsets in the positive borders (see Sect. 6.1). Let us remember that
δ-MTminer produces δ-minimal transversals: minimal transversals which can
miss at most δ hyperedges (see Sect. 3). δ-MTminer does not control where are
the missed hyperedges. On dense data sets, this is not a problem because the
possibilities to miss a hyperedge are few many. Let us also note that δ-MTminer
is particularly fast on dense data sets.

Concerning the execution time to compute the approximate negative borders,
Staccato is the slowest and 1-MTminer is the fastest. AMTHR is relatively fast
on Mushroom and Kosarak but not on Chess and Connect.

We can conclude that Staccato and 1-MTminer are the best to compute˜Bd−(S) respectively on sparse and dense data sets. Nevertheless, AMTHR is
close to the best algorithm for each data sets. We can also note that AMTHR
is not sensitive to the type of data sets, contrary to the other algorithms. Only
the execution time varies (it is higher on dense data sets).

Approximate Positive Borders. Figures 7, 8, 9 and 10 present, for each
data sets, (a) the number of itemsets of the computed positive borders, (b) the
distance between the computed positive borders and the exact positive borders,
(c) the average size of an itemset of the computed positive borders, and (d) the
execution time, according to the minsup value.

20 N. Durand and M. Quafafou

The number of itemsets of ˜Bd+(S) with AMTHR is the lowest on Mush-
room. On the other data sets, Staccato has generated the lowest number of
itemsets. 1-MTminer have produced more itemsets than AMTHR, except for

Kosarak. The itemsets of ˜Bd+(S) are longer than the itemsets of Bd+(S). They
are the longest with Staccato or AMTHR on each data sets.

AMTHR has obtained the closest ˜Bd+(S) to Bd+(S) on all the data sets.
On Connect, 1-MTminer has also obtained good results. On Kosarak, Staccato
and 1-MTminer have produced bad results. This can be explained by the small

number of itemsets of ˜Bd−(S) and these itemsets are too short. The transition

to ˜Bd+(S) produces too few itemsets and these itemsets are too long. The other
bad results can be explained by the same remark.

The itemsets of ˜Bd+(S) are longer than the itemsets ofBd+(S) andAMTHR
has obtained low distance values. We can say that the approximate positive bor-
ders generated by AMTHR contain some itemsets with new items, while being
close to the itemsets of the exact positive border. These new items could be
interesting for some applications like document recommendation.

Regarding the execution time, on Mushroom, Chess and Connect, 1-MTminer
is the slowest and Staccato is the fastest. On Kosarak, 1-MTminer is the fastest
and Staccato is the slowest. The execution time of AMTHR is not the best but
still correct.

We can conclude that AMTHR is the best to compute ˜Bd+(S). The dis-
tances are the lowest, the number is reduced, and the execution time is correct.

We explain these results by the characteristics of ˜Bd−(S) produced by AMTHR.

We have previously seen that the cardinality of ˜Bd−(S) is a little lower than the

cardinality of Bd−(S), and the itemsets of ˜Bd−(S) are a little shorter than the

itemsets of Bd−(S). The transition to ˜Bd+(S) produces some itemsets longer
than the itemsets of Bd+(S) while being close to Bd+(S). The other algorithms
have not done that.

Table 4. Global results obtained on all the computed approximate borders.

Method Avg. distance Avg. number of itemsets Avg. time (sec.)

AMTHR 0.323 3342.6 15.05
1-MTminer 0.384 2191.1 1.53
Staccato 0.452 1989.4 41.63

Border-Diff - 4492.1 28.88

Global results. Table 4 presents the average distance, the average number of
itemsets, and the average execution time over all the computed borders of all
the data sets. The results obtained by the computation of the exact borders
by dualization using Border-Diff , are presented at the last line of the table.

Frequent Itemset Border Approximation by Dualization 21

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25

#
it

em
se

ts

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(a) Number of itemsets according to
minsup (%)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25

A
v

g
.

si
ze

 o
f

an
 i

te
m

se
t

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(c) Avg. size of an itemset according to
minsup (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

D
is

ta
n

ce

minsup

1-MTminer
Staccato
AMTHR

(b) Distance to Bd−(S) according to
minsup (%)

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25

T
im

e
(s

)

minsup

1-MTminer
Staccato
AMTHR

(d) Execution time (in sec) according to
minsup (%)

Fig. 3. Negative borders computed on Mushroom

We can observe that AMTHR has obtained the lowest average distance, and
an average number of itemsets smaller than the average number of itemsets of
the exact borders. The average execution time is correct. We can conclude that
AMTHR is the best of the used methods in overall. Moreover, we have observed
that AMTHR is robust according to the different types of data sets, contrary to
1-MTminer which fails on sparse data sets and Staccato which does not produce
good results on dense data sets. Let us remark that we have used Border-Diff
to compute the exact minimal transversals of the reduced hypergraph (Step 3
of Algorithm 1). We have also used it for the computation of the approximate
positive border (Step 4 of Algorithm 1). This is possible to use another more
efficient algorithm, for instance one of the two algorithms presented in [32], in
order to decrease the execution time.

FIBAD vs. CartesianContour. Table 5 presents the average distance, the
average number of itemsets, and the average execution time over several approx-
imate positive borders computed by FIBAD and CartesianContour. Indeed,

22 N. Durand and M. Quafafou

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 50 55 60 65 70 75 80

#
it

em
se

ts

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(a) Number of itemsets according to
minsup (%)

 1

 2

 3

 4

 5

 6

 7

 50 55 60 65 70 75 80

A
v
g
.
si

ze
 o

f
an

 i
te

m
se

t

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(c) Avg. size of a itemset according to
minsup (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 55 60 65 70 75 80

D
is

ta
n

ce

minsup

1-MTminer
Staccato
AMTHR

(b) Distance to Bd−(S) according to
minsup (%)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 50 55 60 65 70 75 80

T
im

e
(s

)

minsup

1-MTminer
Staccato
AMTHR

(d) Execution time (in sec) according to
minsup (%)

Fig. 4. Negative borders computed on Chess

Table 5. FIBAD vs. CartesianContour.

Approach Avg. distance Avg. number of itemsets Avg. time (sec.)

FIBAD 0.289 286.6 9.67
CartesianContour 0.283 606.2 49.31

CartesianContour has not been able to compute the approximate positive bor-
ders on Chess (minsup < 70%), Connect (minsup < 75%) and Kosarak (minsup
< 1%). 17 of the 31 positive borders have been computed. Thus, the values
presented in Table 5 have been computed only on these borders. This is why
CartesianContour is not present in the previous results and discussion.

We observe that the average distances are very close. Nevertheless, the av-
erage number of itemsets of the approximate positive borders is the lowest with
FIBAD (for information, there are 728.7 itemsets in average in the 17 exact
positive borders). We also see that FIBAD is faster than CartesianContour.
We can conclude that FIBAD is better than CartesianContour to generate

Frequent Itemset Border Approximation by Dualization 23

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 40 45 50 55 60 65 70 75 80

#
it

em
se

ts

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(a) Number of itemsets according to
minsup (%)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 40 45 50 55 60 65 70 75 80

A
v

g
.

si
ze

 o
f

an
 i

te
m

se
t

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(c) Avg. size of an itemset according to
minsup (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 40 45 50 55 60 65 70 75 80

D
is

ta
n

ce

minsup

1-MTminer
Staccato
AMTHR

(b) Distance to Bd−(S) according to
minsup (%)

 0

 20

 40

 60

 80

 100

 120

 40 45 50 55 60 65 70 75 80

T
im

e
(s

)

minsup

1-MTminer
Staccato
AMTHR

(d) Execution time (in sec) according to
minsup (%)

Fig. 5. Negative borders computed on Connect

approximate positive borders. Moreover, CartesianContour has some problems
with dense data sets, and the minsup value can not be low.

7 Conclusion

This paper deals with the problem of approximate borders computed by dual-
ization. At the same time, this is a challenging theoretical problem which may
play a valuable role in a wide range of applications. To achieve this goal, we
introduced here the FIBAD approach leveraging dualization and computation
of approximate minimal transversals of hypergraphs. Its originality comes from
a new function we have defined to compute approximate negative borders. For
this purpose, we start by reducing the initial hypergraph and, then, we compute
its exact minimal transversals. This processing is implemented by the function
AMTHR and used by FIBAD as an approximate dualization. To evaluate our
approximate dualization method, we replaced AMTHR with other methods
that compute approximate minimal transversals. In particular, we considered

24 N. Durand and M. Quafafou

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

#
it

em
se

ts

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(a) Number of itemsets according to
minsup (%)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v

g
.

si
ze

 o
f

an
 i

te
m

se
t

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(c) Avg. size of an itemset according to
minsup (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
is

ta
n

ce

minsup

1-MTminer
Staccato
AMTHR

(b) Distance to Bd−(S) according to
minsup (%)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

)

minsup

1-MTminer
Staccato
AMTHR

(d) Execution time (in sec) according to
minsup (%)

Fig. 6. Negative borders computed on Kosarak

two alternative methods based on the δ-MTminer and Staccato algorithms,
respectively. We also compared our method with CartesianContour that com-
putes directly, without dualization, the approximate borders. The experimental
results have showed that our method outperforms the other methods as it pro-
duces borders which have the highest quality. It produces an approximate posi-
tive border smaller than the exact positive border, while keeping a low distance
with the exact border. Through these experiments, we have observed that our
approach is robust according to the different types of data sets. We can note
that for sparse data sets, it is particularly efficient. This point is very interesting
for future applications on the Web where most of the constructed data sets are
sparse and very large (for instance, data from a web server log file). We have also
seen that the proposed approach is able to find potentially interesting items for
some applications like document recommendation, for instance. In the future, we
will develop a recommendation system using the approximate positive borders
generated by FIBAD. In that way, we will able to evaluate the quality of the
generated borders in an applicative context.

Frequent Itemset Border Approximation by Dualization 25

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25

#
it

em
se

ts

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(a) Number of itemsets according to
minsup (%)

 6

 7

 8

 9

 10

 11

 12

 13

 0 5 10 15 20 25

A
v

g
.

si
ze

 o
f

an
 i

te
m

se
t

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(c) Avg. size of an itemset according to
minsup (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

D
is

ta
n

ce

minsup

1-MTminer
Staccato
AMTHR

(b) Distance to Bd+(S) according to
minsup (%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

T
im

e
(s

)

minsup

1-MTminer
Staccato
AMTHR

(d) Execution time (in sec) according to
minsup (%)

Fig. 7. Positive borders computed on Mushroom

26 N. Durand and M. Quafafou

 0

 2000

 4000

 6000

 8000

 10000

 12000

 50 55 60 65 70 75 80

#
it

em
se

ts

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(a) Number of itemsets according to
minsup (%)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 50 55 60 65 70 75 80

A
v

g
.

si
ze

 o
f

an
 i

te
m

se
t

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(c) Avg. size of an itemset according to
minsup (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50 55 60 65 70 75 80

D
is

ta
n

ce

minsup

1-MTminer
Staccato
AMTHR

(b) Distance to Bd+(S) according to
minsup (%)

 0

 2

 4

 6

 8

 10

 12

 50 55 60 65 70 75 80

T
im

e
(s

)

minsup

1-MTminer
Staccato
AMTHR

(d) Execution time (in sec) according to
minsup (%)

Fig. 8. Positive borders computed on Chess

Frequent Itemset Border Approximation by Dualization 27

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 40 45 50 55 60 65 70 75 80

#
it

em
se

ts

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(a) Number of itemsets according to
minsup (%)

 10

 15

 20

 25

 30

 35

 40

 40 45 50 55 60 65 70 75 80

A
v

g
.

si
ze

 o
f

an
 i

te
m

se
t

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(c) Avg. size of an itemset according to
minsup (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 40 45 50 55 60 65 70 75 80

D
is

ta
n

ce

minsup

1-MTminer
Staccato
AMTHR

(b) Distance to Bd+(S) according to
minsup (%)

 0

 1

 2

 3

 4

 5

 6

 7

 40 45 50 55 60 65 70 75 80

T
im

e
(s

)

minsup

1-MTminer
Staccato
AMTHR

(d) Execution time (in sec) according to
minsup (%)

Fig. 9. Positive borders computed on Connect

28 N. Durand and M. Quafafou

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

#
it

em
se

ts

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(a) Number of itemsets according to
minsup (%)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v

g
.

si
ze

 o
f

an
 i

te
m

se
t

minsup

1-MTminer
Staccato
AMTHR

Border-Diff

(c) Avg. size of an itemset according to
minsup (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
is

ta
n

ce

minsup

1-MTminer
Staccato
AMTHR

(b) Distance to Bd+(S) according to
minsup (%)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

)

minsup

1-MTminer
Staccato
AMTHR

(d) Execution time (in sec) according to
minsup (%)

Fig. 10. Positive borders computed on Kosarak

References

1. Abreu, R., van Gemund, A.: A Low-Cost Approximate Minimal Hitting Set Al-
gorithm and its Application to Model-Based Diagnosis. In: Proc. 8h Symposium
on Abstraction, Reformulation and Approximation (SARA’09). Lake Arrowhead,
CA, USA (July 2009)

2. Afrati, F., Gionis, A., Mannila, H.: Approximating a Collection of Frequent Sets.
In: Proc. 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data mining. pp. 12–19. Seattle, WA, USA (August 2004)

3. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of
Items in Large Database. ACM SIGMOD International Conference on Management
of Data pp. 207–216 (May 1993)

4. Bailey, J., Manoukian, T., Ramamohanarao, K.: A Fast Algorithm for Computing
Hypergraph Transversals and its Application in Mining Emerging Patterns. In:
Proc. 3rd IEEE International Conference on Data Mining (ICDM’03). pp. 485–
488. Melbourne, Florida, USA (November 2003)

5. Bayardo, R.: Efficiently Mining Long Patterns From Databases. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data. pp. 85–93.
Seattle (June 1998)

Frequent Itemset Border Approximation by Dualization 29

6. Berge, C.: Hypergraphs : Combinatorics of Finite Sets, vol. 45. North Holland
Mathematical Library (1989)

7. Boley, M.: On Approximating Minimum Infrequent and Maximum Frequent Sets.
In: Proc. 10th International Conference on Discovery Science (DS’07). pp. 68–77.
Sendai, Japan (October 2007)

8. Boulicaut, J.F., Bykowski, A., Rigotti, R.: Free-sets : a Condensed Representation
of Boolean Data for the Approximation of Frequency Queries. Data Mining and
Knowledge Discovery 7(1), 5–22 (2003)

9. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent Itemset Al-
gorithm for Transactional Databases. In: Proc. International Conference on Data
Engineering (ICDE’01). pp. 443–452. Heidelberg, Germany (2001)

10. De Marchi, F., Petit, J.: Zigzag: a new algorithm for mining large inclusion depen-
dencies in database. In: Proc. 3rd IEEE International Conference on Data Mining
(ICDM’03). pp. 27–34. Melbourne, Florida, USA (November 2003)

11. Dong, G., Li, J.: Efficient Mining of Emerging Patterns: Discovering Trends and
Differences. In: Proc. 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining Knowledge Discovery and Data Mining (SIGKDD’99).
pp. 43–52. San Diego, USA (August 1999)

12. Dong, G., Li, J.: Mining Border Descriptions of Emerging Patterns from Dataset-
Pairs. Knowledge and Information Systems 8(2), 178–202 (2005)

13. Ducournau, A., Bretto, A., Rital, S., Laget, B.: A Reductive Approach to Hy-
pergraph Clustering: An Application to Image Segmentation. Pattern Recognition
45(7), 2788–2803 (2012)

14. Durand, N., Crémilleux, B.: ECCLAT: a New Approach of Clusters Discovery in
Categorical Data. In: Proc. 22nd SGAI International Conference on Knowledge
Based Systems and Applied Artificial Intelligence (ES’02). pp. 177–190. Cam-
bridge, UK (December 2002)

15. Durand, N., Quafafou, M.: Approximation of Frequent Itemset Border by Comput-
ing Approximate Minimal Hypergraph Transversals. In: Proc. 16th International
Conference on Data Warehousing and Knowledge Discovery (DaWak’14). pp. 357–
368. Munich, Germany (September 2014)

16. Eiter, T., Gottlob, G.: Hypergraph Transversal Computation and Related Prob-
lems in Logic and AI. In: Proc. 8th European Conference on Logics in Artificial
Intelligence (JELIA’02). pp. 549–564 (2002)

17. Flouvat, F., De Marchi, F., Petit, J.M.: A new classification of datasets for frequent
itemsets. Intelligent Information Systems 34, 1–19 (2010)

18. Flouvat, F., De Marchi, F., Petit, J.: ABS: Adaptive Borders Search of frequent
itemsets. In: Proc. IEEE ICDM Workshop on Frequent Itemset Mining Implemen-
tations (FIMI’04). Brighton, UK (November 2004)

19. Fredman, M.L., Khachiyan, L.: On the Complexity of Dualization of Monotone
Disjunctive Normal Forms. Algorithms 21(3), 618–628 (1996)

20. Gouda, K., Zaki, M.J.: GenMax: An Efficient Algorithm for Mining Maximal Fre-
quent Itemsets. Data Mining and Knowledge Discovery 11, 1–20 (2005)

21. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharma, R.S.:
Discovering All Most Specific Sentences. ACM Transactions on Database Systems
28(2), 140–174 (2003)

22. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Mining and Knowledge Discovery 15, 55–86 (2007)

23. Hasan, M., Zaki, M.J.: MUSK: Uniform Sampling of k Maximal Patterns. In: SIAM
Data Mining Conference (SDM’09). pp. 650–661. Sparks, Nevada, USA (2009)

30 N. Durand and M. Quafafou

24. Hébert, C., Bretto, A., Crémilleux, B.: A data mining formalization to improve
hypergraph transversal computation. Fundamenta Informaticae, IOS Press 80(4),
415–433 (2007)

25. Jin, R., Xiang, Y., Liu, L.: Cartesian Contour: a Concise Representation for a
Collection of Frequent Sets. In: Proc. 15th International Conference on Knowledge
Discovery and Data Mining (KDD’09). pp. 417–425. Paris, France (June 2009)

26. Karonski, M., Palka, Z.: One standard Marczewski-Steinhaus outdistances between
hypergraphs. Zastosowania Matematyki Applicationes Mathematicae 16(1), 47–57
(1977)

27. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel Hypergraph Par-
titioning: Applications in VLSI Domain. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 7(1), 69–79 (1999)

28. Kavvadias, D., Stavropoulos, E.: An Efficient Algorithm for the Transversal Hy-
pergraph Generation. Graph Algorithms and Applications 9(2), 239–264 (2005)

29. Lin, D.I., Kedem, Z.M.: Pincer-Search: A New Algorithm for Discovering the Max-
imum Frequent Sets. In: Proc. International Conference on Extending Database
Technology (EDBT’98). pp. 105–119. Valencia, Spain (1998)

30. Mannila, H., Toivonen, H.: Levelwise Search and Borders of Theories in Knowledge
Discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

31. Moens, S., Goethals, B.: Randomly Sampling Maximal Itemsets. In: Proc. ACM
SIGKDD Workshop on Interactive Data Exploration and Analytics (IDEA’13). pp.
79–86. Chicago, Illinois, USA (2013)

32. Murakami, K., Uno, T.: Efficient Algorithms for Dualizing Large-Scale Hyper-
graphs. Discrete Applied Mathematics 170, 83–94 (2014)

33. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association
Rules Using Closed Itemset Lattices. Information Systems 24(1), 25–46, Elsevier
(1999)

34. Ramamohanarao, K., Bailey, J., Fan, H.: Efficient Mining of Contrast Patterns
and Their Applications to Classification. In: Proc. 3rd International Conference on
Intelligent Sensing and Information Processing (ICISIP’05). pp. 39–47. Bangalore,
India (December 2005)

35. Rioult, F., Zanuttini, B., Crémilleux, B.: Nonredundant Generalized Rules and
Their Impact in Classification. Advances in Intelligent Information Systems, Series:
Studies in Computational Intelligence 265, 3–25 (2010)

36. Ruchkys, D.P., Song, S.W.: A Parallel Approximation Hitting Set Algorithm for
Gene Expression Analysis. In: Proc. 14th Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD’02). pp. 75–81. Washington, DC,
USA (October 2002)

37. Satoh, K., Uno, T.: Enumerating Maximal Frequent Sets Using Irredundant Du-
alization. In: Proc. 6th International Conference on Discovery Science (DS 2003).
pp. 256–268. Sapporo, Japan (October 2003)

38. Vinterbo, S., Øhrn, A.: Minimal Approximate Hitting Sets and Rule Templates.
Approximate Reasoning 25, 123–143 (2000)

39. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: Mining Itemsets that Compress.
Data Mining and Knowledge Discovery 23(1) (2011)

40. Yang, G.: The Complexity of Mining Maximal Frequent Itemsets and Maximal
Frequent Patterns. In: Proc. International Conference on Knowledge Discovery in
Databases (KDD’04). pp. 344–353. Seattle, WA, USA (2004)

41. Zhu, F., Yan, X., Han, J., Yu, P.S., Cheng, H.: Mining Colossal Frequent Pat-
terns by Core Pattern Fusion. In: Proc. 23rd International Conference on Data
Engineering (ICDE’07). pp. 706–715. Istanbul, Turkey (April 2007)

