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The approach F IBAD is introduced with the purpose of computing approximate borders of frequent itemsets by leveraging dualization and computation of approximate minimal transversals of hypergraphs. The distinctiveness of the F IBAD's theoretical foundations is the approximate dualization where a new function f is defined to compute the approximate negative border. From a methodological point of view, the function f is implemented by the method AM T HR that consists of a reduction of the hypergraph and a computation of its minimal transversals. For evaluation purposes, we study the sensibility of F IBAD to AM T HR by replacing this latter by two other algorithms that compute approximate minimal transversals. We also compare our approximate dualization-based method with an existing approach that computes directly, without dualization, the approximate borders. The experimental results show that our method outperforms the other methods as it produces borders that have the highest quality.

Introduction

The discovery of frequent itemsets was initiated by Agrawal et al. [START_REF] Agrawal | Mining Association Rules between Sets of Items in Large Database[END_REF]. This research field has quickly become an important task of data mining. The problem is to find the sets of items (i.e. attribute values) that appear together in at least a certain number of transactions (i.e. objects) recorded in a database. These sets of items are called frequent itemsets. In that regard, other types of itemsets have been proposed, for instance, closed itemsets [START_REF] Pasquier | Efficient Mining of Association Rules Using Closed Itemset Lattices[END_REF], free itemsets [START_REF] Boulicaut | Free-sets : a Condensed Representation of Boolean Data for the Approximation of Frequency Queries[END_REF] and emerging itemsets [START_REF] Dong | Efficient Mining of Emerging Patterns: Discovering Trends and Differences[END_REF]. Even more important, such itemsets play a key role in the generation of association rules [START_REF] Agrawal | Mining Association Rules between Sets of Items in Large Database[END_REF], supervised classification [START_REF] Ramamohanarao | Efficient Mining of Contrast Patterns and Their Applications to Classification[END_REF], clustering [START_REF] Durand | ECCLAT: a New Approach of Clusters Discovery in Categorical Data[END_REF] and are useful in a broad of range of application fields [START_REF] Han | Frequent pattern mining: current status and future directions[END_REF].

Two issues are important in the discovery of frequent itemsets: (1) the reduction of the search space due to combinatorial explosion and (2) the reduction of the number of generated itemsets to improve efficiency. In this paper, we consider only the second point, with a focus on the set of maximal frequent itemsets corresponding to a subset of frequent closed itemsets [START_REF] Pasquier | Efficient Mining of Association Rules Using Closed Itemset Lattices[END_REF]. The maximal frequent itemsets represent a reduced collection of frequent itemsets, but they are not considered as a condensed representation contrary to the frequent closed itemsets. Indeed, the regeneration of all the frequent itemsets is possible from the maximal frequent itemsets but the database must be read to compute the frequencies. The problem of mining maximal frequent itemsets is NP-hard [START_REF] Yang | The Complexity of Mining Maximal Frequent Itemsets and Maximal Frequent Patterns[END_REF]. The algorithms discovering these itemsets are, for instance, M axM iner [START_REF] Bayardo | Efficiently Mining Long Patterns From Databases[END_REF], P incer-Search [START_REF] Lin | Pincer-Search: A New Algorithm for Discovering the Maximum Frequent Sets[END_REF], M AF IA [START_REF] Burdick | MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases[END_REF], GenM ax [START_REF] Gouda | GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets[END_REF], Dualize&Advance [START_REF] Gunopulos | Discovering All Most Specific Sentences[END_REF], IBE [START_REF] Satoh | Enumerating Maximal Frequent Sets Using Irredundant Dualization[END_REF] and ABS [START_REF] Flouvat | ABS: Adaptive Borders Search of frequent itemsets[END_REF]. Maximal frequent itemsets are used a lot in recommendation systems where long itemsets describe trends. For example, a list of movies (i.e., a maximal itemset) that many people like can be used as recommendations for other users that share a large overlap of movies with this list.

The maximal frequent itemsets and the minimal infrequent itemsets correspond respectively to the positive border and the negative border of the set of frequent itemsets [START_REF] Mannila | Levelwise Search and Borders of Theories in Knowledge Discovery[END_REF]. These two borders are linked together by the computation of minimal hypergraph transversals (also called "minimal hitting sets") [START_REF] Mannila | Levelwise Search and Borders of Theories in Knowledge Discovery[END_REF][START_REF] De Marchi | Zigzag: a new algorithm for mining large inclusion dependencies in database[END_REF]. Thus, it is possible to switch to a border from the other one. This is called dualization. Algorithms like Dualize&Advance [START_REF] Gunopulos | Discovering All Most Specific Sentences[END_REF], IBE [START_REF] Satoh | Enumerating Maximal Frequent Sets Using Irredundant Dualization[END_REF] and ABS [START_REF] Flouvat | ABS: Adaptive Borders Search of frequent itemsets[END_REF] use dualization to discover maximal frequent itemsets. Indeed, Dualize&Advance computes the maximal frequent itemsets one by one, IBE is an improvement of the previous algorithm as it avoids the redundant frequency checks, and ABS starts computing the positive border and uses an adaptative strategy to decide when it is interesting to switch to the other border. Let us remark that the number of itemsets of the borders can be huge.

This paper extends our previous work in [START_REF] Durand | Approximation of Frequent Itemset Border by Computing Approximate Minimal Hypergraph Transversals[END_REF]. We propose the approach F IBAD1 with the purpose of computing approximate borders of frequent itemsets by leveraging dualization and computation of approximate minimal transversals of hypergraphs. The aim is to reduce the size of borders. The originality of the proposed approach comes from a new fonction we have defined to compute approximate negative borders. From a methodological point of view, the function is implemented by the method AM T HR2 that consists of a reduction of the hypergraph and a computation of its minimal transversals. Next, the approximate positive borders are computed from the approximate negative borders by an exact function. To the best of our knowledge, this is the first time that such approach is proposed leveraging dualization and border approximation. For evaluation purposes, we conduce experiments realized on different data sets, and evaluated the quality of the computed approximate borders by using the distance between the computed approximate borders and the exact ones. Morevover, we study the sensibility of F IBAD to AM T HR. For this, we replace AM T HR with two other methods that compute approximate minimal transversals. We also compare our dualization-based method with an existing approach which computes directly, without dualization, the approximate positive borders.

The rest of the paper is organized as follows. Section 2 defines notations and basic notions necessary for understanding the paper. Related works are discussed in Sect. [START_REF] Agrawal | Mining Association Rules between Sets of Items in Large Database[END_REF]. The proposed approach is detailed in Sect. [START_REF] Bailey | A Fast Algorithm for Computing Hypergraph Transversals and its Application in Mining Emerging Patterns[END_REF]. Section 5 presents our method that computes approximate minimal transversals. The experiments and the results are presented in Sect. [START_REF] Berge | Hypergraphs : Combinatorics of Finite Sets[END_REF]. We conclude and present some future work in Sect. 7.

Preliminaries

Let D = (T , I, R) be a data mining context, T a set of transactions, I a set of items (denoted by capital letters), and R ⊆ T × I is a binary relation between transactions and items. Each couple (t, i) ∈ R denotes the fact that the transaction t is related to the item i. A transactional database is a finite and nonempty multi-set of transactions. Table 1 provides an example of a transactional database consisting of 6 transactions (each one identified by its "Id") and 8 items (denoted A . . . H). 

Id Items t1 A C E G t2 B C E G t3 A C E H t4 A D F H t5 B C F H t6 B C E F H
An itemset is a subset of I (note that we use a string notation for sets, e.g., AB for {A, B}). The complement of an itemset X (according to I) is noted X. A transaction t supports an itemset X iff ∀i ∈ X, (t, i) ∈ R. An itemset X is frequent if the number of transactions which support it, is greater than (or is equal to) a minimum threshold value, noted minsup. The set of all-frequent itemsets, noted S, is presented in Definition 1.

Definition 1 (Set of all-frequent itemsets).

Let D = (T , I, R) be a data mining context and minsup be the minimum threshold value. The set of all-frequent itemsets, noted S, is:

S = {X ⊆ I, |{t ∈ T , ∀i ∈ X (t, i) ∈ R}| ≥ minsup}.
The notion of frequent itemset border was introduced by Mannila & Toivonen in [START_REF] Mannila | Levelwise Search and Borders of Theories in Knowledge Discovery[END_REF] (see Definition 2). The borders can be visualized by using the itemset lattice, i.e., the partial order naturally defined on the powerset of I (see Fig. 1). The itemset lattice represents the complete search space. Bd

+ (S) = {X ∈ S | ∀Y ⊃ X, Y / ∈ S}. Bd -(S) = {X ∈ 2 I \ S | ∀Y ⊂ X, Y ∈ S}.
Example 1. Let us take the example of Before the presentation of the relationship between the positive border and the negative border of frequent itemsets, we need to introduce the notion of hypergraph (see Definition 3), the notion of simple hypergraph (see Definition 4) and the notion of minimal transversals of a hypergraph (see Definition 5) [START_REF] Berge | Hypergraphs : Combinatorics of Finite Sets[END_REF].

Definition 3 (Hypergraph and degree of a vertex).

A hypergraph H = (V , E) is composed of a set V of vertices and a set E of hyperedges [START_REF] Berge | Hypergraphs : Combinatorics of Finite Sets[END_REF]. Each hyperedge e ∈ E is a set of vertices included or equal to V . The degree of a vertex v in H, denoted deg H (v), is the number of hyperedges of H containing v. Definition 4 (Simple hypergraph and minimal hyperedges). Let H=(V , E) be a hypergraph. H is simple if for every pair e i , e j ∈ E, e j ⊆ e i ⇒ j = i. min(H) is the set of minimal hyperedges of H w.r.t. set inclusion, i.e., min(H) = {e i ∈ E|(∀e j ∈ E, i = j, e j ⊆ e i ) : e j = e i )}. The hypergraph min(H) is simple.

Definition 5 (Transversal and minimal transversal).

Let H be a hypergraph and τ be a set of vertices (τ ⊆ V ). τ is a transversal of H if it intersects all the hyperedges of H. A transversal is also called a "hitting set". The set of all the transversals of 1 as a hypergraph H. The transactions are the hyperedges and the items are the vertices (see Fig. 2). Here, min(H) = {t 1 , t 2 , t 3 , t 4 , t 5 }. The set of vertices BC is not a transversal. ABC is a transversal but is not minimal (by removing B, it remains a transversal). AC and EF are minimal transversals. The set of all minimal transversals of H is {AB, AC, CD, CF, CH, EF, EH, GH, AF G, BDE}.

H is T r(H) = {τ ⊆ V | ∀e i ∈ E, τ ∩ e i = ∅}. A transversal τ of H is minimal if no proper subset is a transversal of H. The set of all minimal transversals of H is noted M inT r(H).
The computation of the negative border from the positive border and vice versa are presented in Property 1 [START_REF] Mannila | Levelwise Search and Borders of Theories in Knowledge Discovery[END_REF] and Property 2 [START_REF] De Marchi | Zigzag: a new algorithm for mining large inclusion dependencies in database[END_REF]. The term dualization refers to the use of the two previous properties to compute the negative border from the positive border, and vice versa.

Due to the exponential size of the search space, the size of the borders can be huge according to minsup. In this paper, we propose an approach to approximate the borders and to reduce their size. In this way, the exploitation of the itemsets of the borders will be easier. The next section presents the related works and positions our propositions.

3 Related Works

Approximation of the Frequent Itemset Border

The approximation of both positive and negative borders of frequent itemsets has been examined on the basis algorithmic dimension [START_REF] Boley | On Approximating Minimum Infrequent and Maximum Frequent Sets[END_REF]. At first, the computation of the approximate borders is performed directly from the data. In fact, it was shown that there is no algorithm of approximation to compute the positive border with a reasonable approximation factor. Furthermore, the computation of the negative border can be approximated by a greedy algorithm in polynomial time.

Numerous methods have been proposed to reduce the number of itemsets of the positive border. In [START_REF] Hasan | MUSK: Uniform Sampling of k Maximal Patterns[END_REF], the authors have proposed an algorithm to obtain k representative itemsets by uniformly sampling from the pool of all maximal frequent itemsets (i.e., the positive border). They have used a variant of Markov Chain Monte Carlo algorithm. The algorithm simulates a random walk over the frequent itemset partial order graph with a prescribed transition probability matrix, whose values are computed locally during the simulation. In [START_REF] Moens | Randomly Sampling Maximal Itemsets[END_REF], the authors have studied the problem of randomly sampling maximal itemsets without explicit enumeration of the complete itemset search space. They have employed a simple random walk that only allows additions of singletons to the current set untill a maximal itemset is found. An approximation measure, given as input of the algorithm, is used to guide the search for maximal frequent itemsets to different parts of the output space.

In [START_REF] Afrati | Approximating a Collection of Frequent Sets[END_REF], the approximation of a collection of frequent itemsets by the k best covering sets has been studied. The proposed algorithm input is the whole collection of the frequent itemsets or the positive border. The authors have explained the difficulties to use a greedy algorithm to obtain k covering sets belonging to the initial collection. In [START_REF] Zhu | Mining Colossal Frequent Patterns by Core Pattern Fusion[END_REF], the authors have proposed the notion of colossal frequent itemsets. Some small frequent itemsets (defined as core itemsets) are fused into colossal itemsets by taking leaps in the itemset search space. The fusion process is designed to give an approximation to the colossal frequent itemsets. The maximal number of colossal itemsets to discover is given as input. In [START_REF] Jin | Cartesian Contour: a Concise Representation for a Collection of Frequent Sets[END_REF], the authors have proposed a concise representation for a collection of frequent itemsets, called cartesian contour, based on the cartesian product. They have linked the computation of the cartesian contour into a generalized minimum biclique cover problem and they have designed an approximate algorithm with bound. This algorithm takes in input the set of all maximal frequent itemsets and produces a cover. Let us remark that, with this approach, there is no need to set the number of itemsets, contrary to the previous presented works.

Other approaches exist to reduce the number of itemsets but the link with maximal frequent itemsets is not direct. In [START_REF] Vreeken | Krimp: Mining Itemsets that Compress[END_REF], the authors have used the Minimum Description Length (MDL) principle: the best set of itemsets is that set that compresses the database best. A post-treatment step would be needed to obtain maximal itemsets.

Our approach computes an approximate border from a border given as input. In that respect, other algorithms presented in [START_REF] Afrati | Approximating a Collection of Frequent Sets[END_REF] and [START_REF] Jin | Cartesian Contour: a Concise Representation for a Collection of Frequent Sets[END_REF] have borders as input. Nevertheless, we do not try to find some covering sets, but our primary goal is to approximate the border that may contains itemsets, which are not necessarily belong to the initial collection. Our approach has the advantage to generate both the approximate positive border and the corresponding approximate negative border. We have an understanding mapping between the exact border and the approximate border. Consequently, we have the possibility to use several other strategies to approximate borders (see Sect. 4). Moreover, contrary to the most of the previous presented works, we do not need to fix the size of the searched borders.

Approximate Minimal Transversals

The computation of minimal transversals is a central point in hypergraph theory [START_REF] Berge | Hypergraphs : Combinatorics of Finite Sets[END_REF] and represents a NP-hard problem. The algorithms that address this need have been developed by different communities like graph theory [START_REF] Berge | Hypergraphs : Combinatorics of Finite Sets[END_REF][START_REF] Kavvadias | An Efficient Algorithm for the Transversal Hypergraph Generation[END_REF], logic [START_REF] Fredman | On the Complexity of Dualization of Monotone Disjunctive Normal Forms[END_REF][START_REF] Eiter | Hypergraph Transversal Computation and Related Problems in Logic and AI[END_REF] and data mining [START_REF] Dong | Mining Border Descriptions of Emerging Patterns from Dataset-Pairs[END_REF][START_REF] Bailey | A Fast Algorithm for Computing Hypergraph Transversals and its Application in Mining Emerging Patterns[END_REF][START_REF] Hébert | A data mining formalization to improve hypergraph transversal computation[END_REF]. Some works approximate the minimal transversals in order to obtain several ones or only one [START_REF] Ruchkys | A Parallel Approximation Hitting Set Algorithm for Gene Expression Analysis[END_REF]. Some works are based on an evolutionary computation [START_REF] Vinterbo | Minimal Approximate Hitting Sets and Rule Templates[END_REF] where the transversality and the minimality are transcribed both in a fitness function.

In [START_REF] Abreu | A Low-Cost Approximate Minimal Hitting Set Algorithm and its Application to Model-Based Diagnosis[END_REF], the Staccato algorithm computes low-cost approximate minimal transversals with a depth-first search strategy. It has been designed for model-based diagnosis. We have adapted Staccato in order to compute approximated minimal transversals in general and to use it in the experiments (see Sect. 6). The adaptation consists of defining the Staccato's cost function using properties of vertices belonging to the hypergraph (i.e., their degrees). This adaptation allows the definition of vertex's cost. The algorithm sorts the vertices according to their cost value in decreasing order. This vertex ranking is exploited to guide the search. At each selection step, only the first λ (%) vertices of the remaining hypergraph are used. For instance, the algorithm starts by selecting the vertex having the highest cost value. Then, it selects the vertex having the highest cost value in the hypergraph formed by the hyperedges not intersected yet. Etc. The more the λ value is high, the more the result is close to the set of all minimal transversals.

The algorithm presented in [START_REF] Rioult | Nonredundant Generalized Rules and Their Impact in Classification[END_REF], that we call δ-M T miner in reference to M T miner [START_REF] Hébert | A data mining formalization to improve hypergraph transversal computation[END_REF], produces minimal transversals which can miss at most δ hyperedges. It uses a breadth-first search strategy and several itemset discovery techniques (candidate generation, anti-monotone constraint, . . . ). The search space corresponds to the lattice of all subsets of items (i.e., the vertices). The transactions correspond to the hyperedges. The algorithm uses the notion of "anti-support", where the anti-support of an itemset is the number of transactions having no item in common with this itemset. If the anti-support of an itemset is equals to 0 then this itemset is a transversal. The minimality is achieved by using free itemsets [START_REF] Boulicaut | Free-sets : a Condensed Representation of Boolean Data for the Approximation of Frequency Queries[END_REF]. A δ-minimal transversal is a free itemset having an anti-support lower than or equals to δ. Let us note that δ-M T miner is especially efficient on dense hypergraphs (i.e., hypergraphs which strongly intersect).

Staccato and δ-M T miner present two approaches to compute approximate minimal transversals. Alternatively, we propose a method that performs a hypergraph reduction and then computes the minimal transversals of the reduced hypergraph. These transversals are considered as the approximate minimal transversals of the initial hypergraph. The number of missed hyperedges is free, contrary to δ-M T miner. Moreover, using our method, there are no parameters to set in advance.

Hypergraph Reduction

The classical approaches to reduce a hypergraph are edge and hyperedge coarsening [START_REF] Karypis | Multilevel Hypergraph Partitioning: Applications in VLSI Domain[END_REF]. In the edge coarsening approach, pairs of vertices that are present in the same hyperedges are selected to group the vertices. On the contrary, in the hyperedge coarsening approach, a set of independent hyperedges is selected and the vertices that belong to individual hyperedges are contracted together. The hyperedges are initially sorted, and they are visited according to the resulted order. Variants of these two approaches exist. For more information, we refer the reader to [START_REF] Karypis | Multilevel Hypergraph Partitioning: Applications in VLSI Domain[END_REF]. Recently, in [START_REF] Ducournau | A Reductive Approach to Hypergraph Clustering: An Application to Image Segmentation[END_REF], two algorithms of hypergraph reduction have been proposed. The first algorithm, called HR-IH, uses hyperedge intersections. Whereas, the second algorithm, called HR-M ST , uses minimum spanning tree. The hypergraph reduction is a step of the proposed hypergraph clustering method which is applied to image segmentation.

Our hypergraph reduction algorithm uses, as HR-IH, the hyperedge intersections. Nevertheless, only the step of computation of hyperedge intersections is in common. In fact, HR-IH computes a cover of the set of hyperedge intersections and our algorithm selects the most interesting intersections according to a heuristic for finding minimal transversals.

Proposed Approach of Border Approximation

The F IBAD approach is introduced with the purpose of computing approximate borders by dualization. Let f and g be the functions that allow to compute respectively the negative border from the positive border and vice versa:

f : 2 I → 2 I x → M inT r(x) g : 2 I → 2 I x → M inT r(x)
The following diagram allow us to visualize the dualizations between the positive and negative borders:

Bd + (S) f * * Bd -(S) g j j
The principle of F IBAD is to replace the function f by a function f which performs an approximate computation of the negative border. We define the following new function f that uses an approximate minimal transversals computation, noted M inT r:

f : 2 I → 2 I x → M inT r(x)
From the positive border, the function f computes an approximate negative border, noted Bd -(S) (see Definition 6).

Definition 6 (Approximate negative border). Let Bd + (S) be a positive border of frequent itemsets. The approximate negative border, noted Bd -(S), is defined as follows:

Bd -(S) = f (Bd + (S)) = M inT r(Bd + (S)).
The return to a positive border (via the function g) allows to obtain an approximate positive border, noted Bd + (S) (see Definition 7).

Definition 7 (Approximate positive border). Let Bd -(S) be an approximate negative border of frequent itemsets. The approximate positive border, noted Bd + (S), is defined as follows:

Bd + (S) = g( Bd -(S)) = M inT r( Bd -(S)).
From the positive border, the proposed approach produces the approximate negative border Bd -(S) and the corresponding approximate positive border Bd + (S). The following diagram presents all the dualization process:

Bd + (S) Bd + (S) f * * Bd -(S) g j j
Let us remark that we still have an exact dualization between the two approximated borders:

Bd + (S) f * * Bd -(S) g j j
In order to give a general overview of F IBAD, we introduce Algorithm 1 by noting that its main Steps 2 and 3 are treatments considered in the next section. Next, we illustrate F IBAD with Example 4. Example 4. Let us take the example of Table 1 with minsup=3, Bd + (S) = {A, BC, CE, CH, F H}, and let us compute the approximate borders with F IBAD.

Algorithm 1 General overview of FIBAD

Step 1:

H = Bd + (S) = {A, BC, CE, CH, F H} = {BCDEF GH, ADEF GH, ABDF GH, ABDEF G, ABCDEG}
Steps 2 and 3:

Bd -(S) = M inT r(H) = M inT r(H R ).
Let us assume that this computation provides the following result: Bd -(S) = {D, E, G, AF, AH, BF, BH}.

Step 4:

P = M inT r( Bd -(S)) = M inT r({D, E, G, AF, AH, BF, BH}) = {ABDEG, DEF GH}
Step 5: Bd + (S) = P = {ABDEG, DEF GH} = {CF H, ABC}. We can remark that A, B, C and BC are frequent itemsets and here ABC is considered as a frequent itemset. CF H is not frequent (its support is equal to 2) but it is almost frequent. These two itemsets can be interesting for applications like document recommendation. For instance, without our approach, F H is frequent and CF H is not frequent. The item C is potentially interesting. If the items are documents, with our approach, the item C can be recommended to a user.

In short, the distinctiveness of the F IBAD's theoretical foundations is the approximate dualization where the new approximate function f is defined to compute the approximate negative border from the exact positive one. From a methodological point of view, the approximate function is defined as a sequence of two subfunctions: (1) reduction of the hypergraph formed by the complements of the itemsets of the exact positive border (Step 2 of Algorithm 1) and ( 2) computation of the exact minimal transversals of the reduced hypergraph (Step 3 of Algorithm 1). Thus, the resulted transversals are the approximate minimal transversals of the initial hypergraph. They correspond to the approximate negative border as the input hypergraph is formed by the complements of the itemsets of the exact positive border. Afterwards, the approximate positive border is computed from the approximate negative border by an exact function g. In the remainder of this paper, the sequence of the two subfunctions is called AM T HR and is detailed in the next section.

It should be noted that the function f can be supported by any other functions that compute approximate minimal transversals. The use of each alternative functions, instead of AM T HR, leads to a new strategy for computing approximate borders using dualization. In this paper, the function g is unchanged and its experimental section is dedicated to the comparaison of our proposal with other alternative strategies.

Computation of Approximate Minimal Transversals

We propose the method AM T HR to compute the approximate minimal hypergraph transversals (Steps 2 and 3 of Algorithm 1). This method is based on a new algorithm that reduces the initial hypergraph. Our goal is to compute the minimal transversals on the reduced hypergraph which is smaller than the initial one. The proposed algorithm of reduction is specially designed to compute minimal transversals. It exploits the fact that the hyperedges formed by the complements of the itemsets of the positive border, strongly intersect (i.e. the average degree of a vertex is high). For instance, in Example 4, this hypergraph is: {BCDEF GH, ADEF GH, ABDF GH, ABDEF G, ABCDEG}. The proposed method is composed of two steps: (1) Reduction of the hypergraph and (2) Computation of the (exact) minimal transversals of the reduced hypergraph. At the end, the minimal transversals obtained from the reduced hypergraph are declared as the approximate minimal transversals of the initial hypergraph.

Reduction of the Hypergraph

The reduction method is based on both the intersections of the hyperedges and the degree of each vertex. The representative graph [START_REF] Berge | Hypergraphs : Combinatorics of Finite Sets[END_REF] (also called "line-graph") of the hypergraph is thus generated. Let us recall that the representative graph of the hypergraph H is a graph whose vertices represent the hyperedges of H and two vertices are adjacent if and only if the corresponding hyperedges in H intersect. In our algorithm, we add values to the edges of the representative graph.

Algorithm 2 presents the reduction of a hypergraph H. This algorithm is composed of three steps: (1) Computation of the degree of each vertex in H (lines 1-3), ( 2 Select e max = (v maxi, v maxj) having the maximal weight value 14:

for all v ∈ V do 2: Compute degH(v) 3: end for 4: V ← {v i } i = 1, . . . , m; {each v i ∈ V represents ei ∈ E} 5: E ← {}; 6: for all v i ∩ v j = ∅ do 7: E ← E ∪ {(v i , v j )}; 8: w (v i ,v j ) ← v∈{ψ -1 (v i )∩ψ -1 (v j )} degH ( 
VR ← VR ∪ {ψ -1 (v maxi) ∩ ψ -1 (v maxj)}; 15: ER ← ER ∪ {{ψ -1 (v maxi) ∩ ψ -1 (v maxj)}}; 16:
Delete the edges e ∈ E where v maxi or v maxj is present 17: end while 18: return HR;

Valued Representative Graph Generation (lines 1-9). Let be H = (V, E) a hypergraph (|V | = n and |E| = m). The algorithm constructs a valued graph G=(V , E ) where V = {v i } (i = 1, . . . , m) and E = {e k } (k = 1, . . . , l). A vertex v i represents a hyperedge e i from H. Let be ψ : E → V the bijective function that associates a hyperedge e i to a vertex v i . A hyperedge between v i and v j shows that the intersection between the hyperedges ψ -1 (v i ) and ψ -1 (v j ) (e i and e j from H) is not empty. The weight of an edge is based on the degree of each vertex in the corresponding intersection.

To evaluate the weight of a generated edge, we use the degree of each vertex from the initial hypergraph. The idea is that a vertex very present has a good chance to be in a minimal transversal. This expresses a "degree" of transversality. If the degree of a vertex is equal to the number of hyperedges then this vertex is a minimal tranversal. Let us note that this heuristic is used by several algorithms that compute transversals [START_REF] Abreu | A Low-Cost Approximate Minimal Hitting Set Algorithm and its Application to Model-Based Diagnosis[END_REF][START_REF] Ruchkys | A Parallel Approximation Hitting Set Algorithm for Gene Expression Analysis[END_REF].

The weight of an edge e k = (v i , v j ), noted w e k , is the sum of the degree of the vertices present in the intersection which has led to create this edge (see [START_REF] Abreu | A Low-Cost Approximate Minimal Hitting Set Algorithm and its Application to Model-Based Diagnosis[END_REF]).

w e k = v∈{ψ -1 (v i )∩ψ -1 (v j )} deg H (v).
(

) 1 
Generation of the Reduced Hypergraph (lines 10-17). After the creation of the valued representative graph, the algorithm performs a selection of edges with a greedy approach. It selects the edge having the higher weight value while there are edges left in the valued representative graph G. Each selected edge is transformed to a hyperedge of the reduced hypergraph. This hyperedge contains the vertices from H corresponding to the intersection of the two vertices of the edge.

We obtain, at the end, a set of hyperedges corresponding to the reduced hypergraph H R =(V R ,E R ). Let us remark that if several edges have the same weight, the first edge found is selected. The sum of the numbers of occurrences of A, C and E is equals to 12. This is the weight of the edge (v 1 , v 3 ) generated in G. The adjacency matrix of the generated valued graph is: The edge (v 5 , v 6 ) is selected because its weight is maximal (i.e., 15). The edges where v 5 or v 6 are present, are deleted. Thus, we have V R = {B, C, F, H} and E R = {{B, C, F, H}}). The adjacency matrix of the remaining valued graph is:

v 1 v 2 v 3 v 4 v 5 v 6              
v 1 v 2 v 3 v 4 v 5 v 6              
v 1 0 11 12 3 0 0 v 2 11 0 9 0 0 0 v 3 12 9 0 7 0 0 v 4 3 0 7 0 0 0 v 5 0 0 0 0 0 0 v 6 0 0 0 0 0 0 The next selected edge is (v 1 , v 3 ). After the deletion of the edges where v 1 or v 3 are present, there are no remaining edges and the algorithm ends. The reduced hypergraph is H R = (V R , E R ) where V R = {A, B, C, E, F, H} and E R = {{A, C, E}, {B, C, F, H}}). There are 6 vertices (instead of 8) and 2 hyperedges (instead of 6).

Remarks. Algorithm 2 can be implemented in time O(m 3 ) where m is the number of hyperedges of the initial hypergraph. Let us remark that the selection of the edge having the maximal weight value (line 13) can be changed to the selection the first edge of the list of all edges, if the algorithm performs a quicksort of this list according to the weight before line 12. In the worst case, there are

(m 2 -m) 2
hyperedges in the reduced hypergraph. Let us remark that we could also compute min(H R ) because there are no consequences on the next step, ie., the computation of minimal transversals (see Proposition 1).

Minimal Transversal Computation

The last step is the computation of the (exact) minimal transversals of the reduced hypergraph. These transversals correspond to the approximate minimal transversals of the initial hypergraph:

M inT r(H) = M inT r(H R ).
Example 6. Let us continue Example 5. The minimal transversals of H R are: {C, AB, AF , AH, BE, EF , EH}. We consider them as the approximate minimal transversals of H. Let us remark that the (exact) minimal transversals of H are: {AB, AC, CD, CF , CH, EF , EH, GH, AF G, BDE}. Let us note that an approximate minimal transversal is not necessarily a subset of an exact minimal transversal, for instance AH.

Experiments

As noted at the end of Sect. 4, the function f proposed in F IBAD can be supported by any other functions that compute approximate minimal transversals.

In these experiments, we evaluate our dualization-based method that computes approximate borders by using AM T HR. How much this latter is efficient, i.e., the quality of the computed borders? In answering this question, we compute the distance between the computed approximate borders and the exact ones. We also ask the following question: How much F IBAD is sensitive to AM T HR? To reply to this question, we replace AM T HR with other methods that compute approximate minimal transversals. In practice, we consider two alternative strategies based respectively on the δ-M T miner [START_REF] Rioult | Nonredundant Generalized Rules and Their Impact in Classification[END_REF] and Staccato [START_REF] Abreu | A Low-Cost Approximate Minimal Hitting Set Algorithm and its Application to Model-Based Diagnosis[END_REF] algorithms. Finally, we compare our dualization-based method with the CartesianContour algorithm [START_REF] Jin | Cartesian Contour: a Concise Representation for a Collection of Frequent Sets[END_REF] which computes directly, without dualization, the cover of Bd + (S) that corresponds to an approximate positive border. All the experiments have been performed on a Intel Xeon X5560 2.8 GHz with 16GB of memory. The implementations have been developed in JAVA.

Data and Protocol

Data. Four data sets have been used: Mushroom, Chess, Connect and Kosarak. They have been downloaded from the FIMI web site3 . Mushroom contains data on 23 species of gilled mushrooms. Chess contains some strategies for chess sets. Connect contains strategies for the game of connect-4. Kosarak contains anonymized click-stream data of a hungarian on-line news portal. These data sets (see Table 2) have been chosen to cover the different types of existing data sets according to two classifications: Gouda & Zaki [START_REF] Gouda | GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets[END_REF] and Flouvat et al. [START_REF] Flouvat | A new classification of datasets for frequent itemsets[END_REF]. The classification proposed by Gouda & Zaki [START_REF] Gouda | GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets[END_REF] (types 1, 2 , 3 et 4) is based on the density and on the distribution of the positive border according to the size of the itemsets and the value of the minimum support threshold. Let us note that a data set is dense when it produces long itemsets for high values of the minimum support threshold. The classification proposed by Flouvat et al. [START_REF] Flouvat | A new classification of datasets for frequent itemsets[END_REF] (types I, II et III) studies both the positive border and the negative border. Type I corresponds to data sets having long itemsets in the two borders and most of the itemsets in the two borders have approximately the same size. Type II corresponds to data sets having long itemsets in the positive border and the itemsets of the negative border are much smaller than those of the positive border. Type III is a special case of type I: the itemset size in the two Protocol. For each data set and for some minimum support threshold values, we adopt the following protocol:

1) Exact border computation:

The exact positive border Bd + (S) is the input of the evaluated methods.

Both the exact positive and negative borders, Bd + (S) and Bd -(S), will be used to evaluate the precision of the resulted approximate borders. The more an approximate border is close to the exact one, the more its precision is high. We compute Bd + (S) using the IBE algorithm [START_REF] Satoh | Enumerating Maximal Frequent Sets Using Irredundant Dualization[END_REF]. Afterwards, we compute Bd -(S) from Bd + (S) according to Property 1.

2) Approximate border computation:

Firstly, we compute Bd -(S) and Bd + (S) from Bd + (S) by dualization using AM T HR. Next, this computation is re-done twice by replacing AM T HR by the δ-M T miner algorithm [START_REF] Rioult | Nonredundant Generalized Rules and Their Impact in Classification[END_REF] and the Staccato algorithm [START_REF] Abreu | A Low-Cost Approximate Minimal Hitting Set Algorithm and its Application to Model-Based Diagnosis[END_REF], respectively.

3) Direct computation of approximate positive border:

We compute the cover of Bd + (S) using the CartesianContour algorithm [START_REF] Jin | Cartesian Contour: a Concise Representation for a Collection of Frequent Sets[END_REF]. This cover corresponds to an approximate positive border. 4) Evaluation of the quality of the computed borders.

In this experiments, we use the Border-Dif f algorithm [START_REF] Dong | Mining Border Descriptions of Emerging Patterns from Dataset-Pairs[END_REF] to compute exact minimal transversals when it is needed. Alternatively, we can replace this algorithm by any other one which computes exact minimal transversals without however any change of the resulted borders.

For δ-M T miner (see Sect. 3), the best results have been obtained with δ set to 1, so we have selected this value. Let us recall that for Staccato (see Sect. 3), the more λ is high, the more Staccato is close to the exact solution. Nevertheless, the more λ is high, the more the execution time is high. Thus, we have chosen the highest values of λ before being impracticable: λ=0.8 for Mushroom, λ=0.65 for Chess, λ=0.7 for Connect, and λ=0.95 for Kosarak. CartesianContour (developed in C++) has been downloaded from the web page of one of the authors 4 . There is no need to set the number of itemsets of the computed borders, and the exact positive border is given as input (see Sect. 3). Some statistics are computed: the number of itemsets of the computed border, the average size of the itemsets of the computed border, and the distance between the set of the itemsets of the computed border and the set of itemsets of the exact border.

To evaluate the distance between two borders, we have used the distance of Karonski & Palka [START_REF] Karonski | One standard Marczewski-Steinhaus outdistances between hypergraphs[END_REF] based on the Hausdorff distance. The cosine distance (see ( 2)) has been chosen to compute the distance between two elements (i.e., two itemsets). The distance D between two set of itemsets X and Y is defined in [START_REF] Agrawal | Mining Association Rules between Sets of Items in Large Database[END_REF].

d(X, Y ) = 1 - |X ∩ Y | |X| × |Y | . (2) D(X , Y) = 1 2 {h(X , Y), h(Y, X )} where h(X , Y) = max X∈X {min Y ∈Y d(X, Y )}. ( 3 
)
Example 7. Let us consider Example 4 (see Sect. 4). The distance between Bd -(S) and Bd -(S) is equal to 0.395 ( 1 2 (0.29 + 0.5)). The distance between Bd + (S) and Bd + (S) is equal to 0.385 ( 12 (0.18 + 0.59)). Let us recall that our main goal is to produce approximate borders smaller than exact borders, while having the lowest values of the distance to the exact borders.

Results and Discussion

Hypergraph Reduction. Table 3 presents We can observe that the generated hypergraphs H strongly intersect, i.e., the average degree of a vertex is close to the number of hyperedges. These results confirm the observation made at the beginning of Sect. 5.

The number of vertices is almost the same in the initial hypergraph and the reduced hypergraph. The number of hyperedges of the reduced hypergraph is much lower than the number of hyperedges of the initial hypergraph. For instance, on Chess with minsup equals to 50%, there are 3,351 hyperedges instead of 11,463. The "space savings" (i.e., 1

-|E R |
|E| ) is equal to 70.7%. In average, over all the data sets, the space savings is equal to 63%.

We can also see that, in general, the number of minimal transversals of the reduced hypergraph is lower than the number of minimal transversals of the initial The hypergraph reduction is efficient in view of the space saving. Let us recall, that the hyperedges of the reduced hypergraph are selected using a heuristic which favors the search of approximate minimal transversals (see Sect. 5). Thus, our algorithm reduces the hypergraph while keeping the most important parts to find approximate minimal transversals.

Approximate Negative Borders. Figures 3,4, 5 and 6 present, for each data sets, (a) the number of itemsets of the computed negative borders, (b) the distance between the computed negative borders and the exact negative borders, (c) the average size of an itemset of the computed negative borders, and (d) the execution time, according to the minsup value.

We can observe that the cardinality of Bd -(S) is lower than the cardinality of Bd -(S) for each data sets. The itemsets of Bd -(S) are shorter than the itemsets of Bd -(S). On Mushroom and Kosarak, the cardinality of Bd -(S) produced by AM T HR is very close to the cardinality of Bd -(S). The generated itemsets with AM T HR are a little shorter than the itemsets of the exact borders. For 1-M T miner, the cardinality of Bd -(S) is the smallest on Mushroom and Kosarak. Staccato has generated the shortest itemsets on Mushroom but they are numerous. The itemsets produced by 1-M T miner and Staccato are very short on Kosarak. On Chess and Connect, AM T HR and 1-M T miner have produced a similar number of itemsets. These itemsets have a very close average size. We can remark that Staccato has produced a very small number of itemsets, and the average size of the itemsets is very small, on Chess and Connect.

Regarding the distance (between Bd -(S) and Bd -(S)), AM T HR is not the best but it is close to the best algorithm for each data sets. Staccato has obtained the closest borders on Mushroom and Kosarak. This can be explained by the fact that λ has been set to high values for these data sets. This was not possible for Chess and Connect (dense data sets) and this explains why Staccato has the worst results on these data sets. 1-M T miner has produced the closest borders on Chess and Connect. These data sets are dense and they have many long itemsets in the positive borders (see Sect. 6.1). Let us remember that δ-M T miner produces δ-minimal transversals: minimal transversals which can miss at most δ hyperedges (see Sect. 3). δ-M T miner does not control where are the missed hyperedges. On dense data sets, this is not a problem because the possibilities to miss a hyperedge are few many. Let us also note that δ-M T miner is particularly fast on dense data sets.

Concerning the execution time to compute the approximate negative borders, Staccato is the slowest and 1-M T miner is the fastest. AM T HR is relatively fast on Mushroom and Kosarak but not on Chess and Connect.

We can conclude that Staccato and 1-M T miner are the best to compute Bd -(S) respectively on sparse and dense data sets. Nevertheless, AM T HR is close to the best algorithm for each data sets. We can also note that AM T HR is not sensitive to the type of data sets, contrary to the other algorithms. Only the execution time varies (it is higher on dense data sets). The number of itemsets of Bd + (S) with AM T HR is the lowest on Mushroom. On the other data sets, Staccato has generated the lowest number of itemsets. 1-M T miner have produced more itemsets than AM T HR, except for Kosarak. The itemsets of Bd + (S) are longer than the itemsets of Bd + (S). They are the longest with Staccato or AM T HR on each data sets.

Approximate Positive Borders.

AM T HR has obtained the closest Bd + (S) to Bd + (S) on all the data sets. On Connect, 1-M T miner has also obtained good results. On Kosarak, Staccato and 1-M T miner have produced bad results. This can be explained by the small number of itemsets of Bd -(S) and these itemsets are too short. The transition to Bd + (S) produces too few itemsets and these itemsets are too long. The other bad results can be explained by the same remark.

The itemsets of Bd + (S) are longer than the itemsets of Bd + (S) and AM T HR has obtained low distance values. We can say that the approximate positive borders generated by AM T HR contain some itemsets with new items, while being close to the itemsets of the exact positive border. These new items could be interesting for some applications like document recommendation.

Regarding the execution time, on Mushroom, Chess and Connect, 1-M T miner is the slowest and Staccato is the fastest. On Kosarak, 1-M T miner is the fastest and Staccato is the slowest. The execution time of AM T HR is not the best but still correct.

We can conclude that AM T HR is the best to compute Bd + (S). The distances are the lowest, the number is reduced, and the execution time is correct. We explain these results by the characteristics of Bd -(S) produced by AM T HR. We have previously seen that the cardinality of Bd -(S) is a little lower than the cardinality of Bd -(S), and the itemsets of Bd -(S) are a little shorter than the itemsets of Bd -(S). The transition to Bd + (S) produces some itemsets longer than the itemsets of Bd + (S) while being close to Bd + (S). The other algorithms have not done that. Global results. Table 4 presents the average distance, the average number of itemsets, and the average execution time over all the computed borders of all the data sets. The results obtained by the computation of the exact borders by dualization using Border-Dif f , are presented at the last line of the table. We can observe that AM T HR has obtained the lowest average distance, and an average number of itemsets smaller than the average number of itemsets of the exact borders. The average execution time is correct. We can conclude that AM T HR is the best of the used methods in overall. Moreover, we have observed that AM T HR is robust according to the different types of data sets, contrary to 1-M T miner which fails on sparse data sets and Staccato which does not produce good results on dense data sets. Let us remark that we have used Border-Dif f to compute the exact minimal transversals of the reduced hypergraph (Step 3 of Algorithm 1). We have also used it for the computation of the approximate positive border (Step 4 of Algorithm 1). This is possible to use another more efficient algorithm, for instance one of the two algorithms presented in [START_REF] Murakami | Efficient Algorithms for Dualizing Large-Scale Hypergraphs[END_REF], in order to decrease the execution time.

FIBAD vs. CartesianContour. CartesianContour has not been able to compute the approximate positive borders on Chess (minsup < 70%), Connect (minsup < 75%) and Kosarak (minsup < 1%). 17 of the 31 positive borders have been computed. Thus, the values presented in Table 5 have been computed only on these borders. This is why CartesianContour is not present in the previous results and discussion. We observe that the average distances are very close. Nevertheless, the average number of itemsets of the approximate positive borders is the lowest with F IBAD (for information, there are 728.7 itemsets in average in the 17 exact positive borders). We also see that F IBAD is faster than CartesianContour. We can conclude that F IBAD is better than CartesianContour to generate 

Conclusion

This paper deals with the problem of approximate borders computed by dualization. At the same time, this is a challenging theoretical problem which may play a valuable role in a wide range of applications. To achieve this goal, we introduced here the F IBAD approach leveraging dualization and computation of approximate minimal transversals of hypergraphs. Its originality comes from a new function we have defined to compute approximate negative borders. For this purpose, we start by reducing the initial hypergraph and, then, we compute its exact minimal transversals. This processing is implemented by the function AM T HR and used by F IBAD as an approximate dualization. To evaluate our approximate dualization method, we replaced AM T HR with other methods that compute approximate minimal transversals. In particular, we considered two alternative methods based on the T miner and Staccato algorithms, respectively. We also compared our method with CartesianContour that computes directly, without dualization, the approximate borders. The experimental results have showed that our method outperforms the other methods as it produces borders which have the highest quality. It produces an approximate positive border smaller than the exact positive border, while keeping a low distance with the exact border. Through these experiments, we have observed that our approach is robust according to the different types of data sets. We can note that for sparse data sets, it is particularly efficient. This point is very interesting for future applications on the Web where most of the constructed data sets are sparse and very large (for instance, data from a web server log file). We have also seen that the proposed approach is able to find potentially interesting items for some applications like document recommendation, for instance. In the future, we will develop a recommendation system using the approximate positive borders generated by F IBAD. In that way, we will able to evaluate the quality of the generated borders in an applicative context. 
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 1 Fig. 1. Lattice of all subsets of items of I

  The following Proposition 1 results from the definition of the minimal transversals of a hypergraph. Considering a hypergraph H, the minimal transversals of H are the same as the minimal transversals of the set of minimal hyperedges of H[START_REF] Kavvadias | An Efficient Algorithm for the Transversal Hypergraph Generation[END_REF].Proposition 1. Let H=(V , E) be a hypergraph. Then, M inT r(H) is a simple hypergraph and M inT r(H) = M inT r(min(H)).

Fig. 2 .

 2 Fig.2. The hypergraph from the example of Table1

Property 1 (Example 3 .

 13 Negative border and minimal transversals) Bd -(S) = M inT r(Bd + (S)) where Bd + (S) is the hypergraph formed by the items of I (i.e. the vertices) and the complements of the itemsets of the positive border of S (i.e. the hyperedges). Property 2 (Positive border and minimal transversals) Bd + (S) = M inT r(Bd -(S)) where Bd -(S) is the hypergraph formed by the items of I (i.e. the vertices) and the itemsets of the negative border of S (i.e. the hyperedges). Let us compute Bd -(S) from Bd + (S) with our running example. Bd -(S) = M inT r(Bd + (S)) = M inT r({A, BC, CE, CH, F H}) = M inT r({BCDEF GH, ADEF GH, ABDF GH, ABDEF G, ABCDEG}) = {D, G, AB, AC, AE, AF, AH, BE, BF, BH, CF, EF, EH}. Let us compute Bd + (S) from Bd -(S). Bd + (S) = M inT r(Bd -(S)) = M inT r({D, G, AB, AC, AE, AF, AH, BE, BF, BH, CF, EF, EH}) = {BCDEF GH, ADEF GH, ABDF GH, ABDEF G, ABCDEG} = {A, BC, CE, CH, F H}.

  Require: a positive border of frequent itemsets, Bd + (S) Ensure: the approximate negative and positive borders, Bd -(S) and Bd + (S) {Steps 1, 2 and 3: Dualization using function f } 1: H=Bd + (S); {Computation of the hypergraph from Bd + (S)} 2: HR=HR(H); {Reduction of the hypergraph H} 3: Bd -(S)= M inT r(H)=M inT r(HR) {Computation of the approximate negative border ; The approximate minimal transversals of H are the exact minimal transversals of HR} {Step 4 and 5: Dualization using function g} 4: P =M inT r( Bd -(S)); {Computation of the exact minimal transversals of Bd -(S)} 5: Bd + (S)=P ; {Computation of the approximate positive border} 6: return Bd -(S) and Bd + (S);

  ) Generation of the valued representative graph of H (lines 4-9), and (3) Generation of the reduced hypergraph from the valued representative graph (lines 10-17). Algorithm 2 HR (Hypergraph Reduction) Require: a hypergraph H=(V , E) where |V |=n and |E|=m Ensure: the reduced hypergraph HR 1:

v); 9 : end for 10 :

 910 VR ← {}; 11: ER ← {}; 12: while E = ∅ do 13:

Example 5 .

 5 Let us consider the example of Table1 asa hypergraph H (6 hyperedges, 8 vertices). The transactions are the hyperedges e k and the items are the vertices v i . First, the degree of each vertex is evaluated: occur[A] = 3, occur[B] = 3, occur[C] = 5, occur[D] = 1, occur[E] = 4, occur[F ] = 3, occur[G] = 2 and occur[H] = 4. Then, the intersections between the hyperedges are computed. For instance, ψ -1 (v 1 ) ∩ ψ -1 (v 3 ) = e 1 ∩ e 3 = {A, C, E}.

  borders is very close for very low minimal support values. Type III captures the notion of sparseness. Type I and Type II correspond to dense data sets. Chess and Connect are dense data sets. Kosarak is a sparse data set. Let us remark that Mushroom is special: Flouvat et al. classify it in Type II (as Connect) but Gouda & Zaki classify it in an other type, Type 4. Mushroom is between dense data sets and sparse data sets.

  the hypergraphs and the transversals computed by F IBAD. Let us recall that for an experiment (a data set and a minsup value) the computed hypergraph, noted H = (V , E), correspond to the complement of the itemsets of the positive border (V ⊆ I and E = Bd + (S)). The reduced hypergraph of H, noted H R , is computed with Algorithm 2 (H R = HR(H)). For each data sets and minsup values, we have the number of hyperedges of H (|E|), the number of vertices of H (|V |), the average degree of a vertex (deg H (v)), the number of minimal transversals of H (|M inT r(H)|), the number of hyperedges of min(H R ) (|E R |), the number of vertices of min(H R ) (|V R |) and the number of minimal tranversals of H R (|M inT r(H R |). In order to better show the impact of the reduction, we consider here min(H R ) instead of H R . The computation of min(H R ) has no consequences on the computation of minimal transversals (see Proposition 1).

  Figures 7,[START_REF] Boulicaut | Free-sets : a Condensed Representation of Boolean Data for the Approximation of Frequency Queries[END_REF], 9 and 10 present, for each data sets, (a) the number of itemsets of the computed positive borders, (b) the distance between the computed positive borders and the exact positive borders, (c) the average size of an itemset of the computed positive borders, and (d) the execution time, according to the minsup value.
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 3 Fig. 3. Negative borders computed on Mushroom
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 4 Fig. 4. Negative borders computed on Chess
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 5 Fig. 5. Negative borders computed on Connect
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 6 Fig. 6. Negative borders computed on Kosarak
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 78910 Fig. 7. Positive borders computed on Mushroom
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 1 Example of transactional database.
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Table 2 .

 2 Data sets used in the experiments.

	Data set	|T |	|I| Avg. |ti| Gouda & Zaki Flouvat et al.
	Mushroom 8,124	119	23.0	type 4	type II
	Chess	3,196	75	37.0	type 1	type I
	Connect 67,557	129	43.0	type 2	type II
	Kosarak 990,002 41,270	8.1	type 3	type III

Table 3 .

 3 Computed hypergraphs and transversals. This is not always true. For instance, on Mushroom with minsup equals to 10%, there are 3,103 minimal transversals for H and 3,125 for H R . Let us take an example to illustrate this point. The minimal transversals of the hypergraph {ABC, ABD, ABE, ABF, ABG} are {A, B, CDEF G}. There are 3 minimal transversals. Now, let us consider the hypergraph {AC, ABD, BG}, there are 4 minimal transversals ({AB, AG, BC, CDG}).

				Initial hypergraph		Reduced hypergraph	
	Data set Minsup	|E|	|V | degH(v) |M inT r|	|ER|	|VR| |M inT r|
		(%)			(avg.)	(H) (min(HR)) (min(HR))	(HR)
	Mushroom	25	105	115	100.1	652	47	115	581
		20	158	115	150.4	1,012	63	115	879
		15	321	115	303.8	1,816	118	115	1,478
		10	558	118	525.1	3,103	235	118	3,125
		5 1,452	118 1,347.3	9,034	580	118	8,801
		3 2,627	118 2,414.1 16,361	1,075	118 15,674
		2 3,761	118 3,422.6 23,208	1,600	118 21,571
	Chess	80	226	66	200.1	398	73	66	284
		75	489	74	437.3	742	155	73	446
		70	898	74	796.1	1,318	273	73	794
		65 1,779	74 1,568.7	2,644	594	73	1,713
		60 3,374	74 2,949.3	4,793	1,017	74	2,809
		55 6,261	74 5,429.4	8,435	1,955	73	4,943
		50 11,463	74 9,875.5 15,224	3,351	74	8,864
	Connect	80	676	127	611.8	975	203	127	594
		75	961	127	861.6	1,317	292	127	797
		70 1,220	127 1,083.2	1,672	374	127	989
		65 1,588	127 1,400.1	2,196	467	127	1,289
		60 2,104	127 1,849.3	2,937	657	127	1,758
		55 2,836	127 2,481.1	3,859	827	127	2,145
		50 3,748	127 3,259.2	5,041	1,072	127	2,871
		45 4,720	127 4,079.1	6,364	1,448	127	3,747
		40 6,213	127 5,342.9	8,358	1,887	127	4,735
	Kosarak	5	8	218	7.9	240	4	218	234
		4	13	218	12.8	268	5	218	244
		3	17	294	16.8	380	7	294	365
		2	30	490	29.8	780	15	490	759
		1	88	987	87.7	2,298	41	987	2,241
		0.5	305 2,952	304.6 14,791	146	2,952 14,524
		0.4	468 2,952	467.4 25,082	228	2,952 24,938
		0.3	814 3,804	813.2 51,770	394	3,804 51,567
	hypergraph.								

Table 4 .

 4 Global results obtained on all the computed approximate borders.

	Method	Avg. distance Avg. number of itemsets Avg. time (sec.)
	AM T HR	0.323	3342.6	15.05
	1-M T miner	0.384	2191.1	1.53
	Staccato	0.452	1989.4	41.63
	Border-Dif f	-	4492.1	28.88

  Table 5 presents the average distance, the average number of itemsets, and the average execution time over several approximate positive borders computed by F IBAD and CartesianContour. Indeed,
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Table 5 .

 5 F IBAD vs. CartesianContour.

	Approach	Avg. distance Avg. number of itemsets Avg. time (sec.)
	F IBAD	0.289	286.6	9.67
	CartesianContour	0.283	606.2	49.31

Frequent Itemset Border Approximation by Dualization

Approximate Minimal Transversals by Hypergraph Reduction

Frequent Itemset Mining Implementations, http://fimi.ua.ac.be/data/

http://www.cs.kent.edu/∼lliu/sourceCode.html