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Abstract

Aim: The characterization of trait–environment relationships over broad-scale gradients is a critical

goal for ecology and biogeography. This implies the merging of plot and trait databases to assess

community-level trait-based statistics. Potential shortcomings and limitations of this approach are

that: (i) species traits are not measured where the community is sampled and (ii) the availability of

trait data varies considerably across species and plots. Here we address the effect of trait data rep-

resentativeness [the sampling effort per species and per plot] on the accuracy of (i) species-level

and (ii) community-level trait estimates and (iii) the consequences for the shape and strength of

trait–environment relationships across communities.

Innovation: We combined information existing in databases of vegetation plots and plant traits to

estimate community-weighted means [CWMs] of four key traits [specific leaf area, plant height,

seed mass and leaf nitrogen content per dry mass] in permanent grasslands at a country-wide

The authors Benjamin Borgy and Cyrille Violle contributed equally to this work.

Global Ecol Biogeogr. 2017;26:729–739. wileyonlinelibrary.com/journal/geb VC 2017 JohnWiley & Sons Ltd | 729

Received: 13 February 2014 | Revised: 12 January 2016 | Accepted: 10 February 2016

DOI: 10.1111/geb.12573

http://orcid.org/0000-0002-9062-2721
http://orcid.org/0000-0002-9392-5154
http://orcid.org/0000-0001-8776-4705


scale. We propose a generic approach for systematic sensitivity analyses based on random sub-

sampling and data reduction to address the representativeness of incomplete and heterogeneous

trait information when exploring trait–environment relationships across communities.

Main conclusions: The accuracy of the CWMs was little affected by the number of individual trait

values per species [NIV] but strongly affected by the cover proportion of species with available

trait values [PCover]. A PCover above 80% was required for all four traits studied to obtain an estima-

tion bias below 5%. Our approach therefore provides more conservative criteria than previously

proposed. Restrictive criteria on both NIV and PCover primarily excluded communities in harsh envi-

ronments, and such reduction of the sampled gradient weakened trait–environment relationships.

These findings advocate systematic measurement campaigns in natural environments to increase

species coverage in global trait databases, with special emphasis on species occurring in under-

sampled and harsh environmental conditions.

K E YWORD S

community functional structure, community-weighted mean [CWM], global database, plant trait,

trait sampling, vegetation plot

1 | INTRODUCTION

A growing body of evidence suggests that understanding both the

effects of environmental factors on vegetation and how vegetation

affects ecosystem properties requires a specific focus on the functional

structure of plant communities (Diaz et al., 2007; Enquist et al., 2015;

Garnier & Navas, 2012; Lavorel, 2013; Mason & De Bello, 2013),

defined by the distribution of trait values within these communities. A

wealth of metrics have been developed to describe this distribution

(De Bello, Carmona, Mason, Sebastia, & Leps, 2013; Mouchet, Vill�eger,

Mason, & Mouillot, 2010; Schleuter, Daufresne, Massol, & Arguillier,

2010; Taudiere & Violle, 2016; Violle et al., 2012; Weiher, 2010), which

essentially capture two complementary facets of functional structure:

the community average trait value and trait dissimilarity among coexist-

ing individuals. Among these metrics, the trait mean calculated for all

species in a community weighted by species abundances [the

community-weighted mean, hereafter CWM] (Garnier et al., 2004;

Violle et al., 2007) appears in many aspects as a key descriptor of com-

munity functional structure. First, several reports have shown that

trait–environment relationships are stronger when species abundances

are taken into account [reviewed in Garnier, Navas, & Grigulis (2016)],

suggesting a better adequacy between trait values and environment

for the dominant species (Cingolani, Cabido, Gurvich, Renison, & Díaz,

2007). Second, consistent with the ‘mass ratio’ hypothesis, which states

that the traits of species affect ecosystem properties in proportion to

their local biomass (Grime, 1998), the CWMs of several core vegetative

traits have been shown to be consistently associated with several key

ecosystem processes (e.g., Diaz et al., 2007; Garnier & Navas, 2012;

Lavorel, 2013).

The constant improvement of plant trait databases now offers

opportunities to explore large-scale spatial patterns of plant functions,

a primary objective of the emerging field of functional biogeography

(Violle, Reich, Pacala, Enquist, & Kattge, 2014). A first generation of

functional biogeography studies has used average species trait values

for all species occurring within the same geographical unit [usually a

grid cell]. This approach gives the same weight to all species present

[or expected to be present] in the defined spatial unit (e.g., Swenson

et al., 2012). However, following our arguments above, a more func-

tional approach to biogeography should combine species abundance

taken from vegetation plots with trait data. Here, we address a number

of issues that will be common to forthcoming functional biogeography

analyses—if conducted across large scales—in which: (i) available plant

traits have not been measured where the plant community was

sampled and (ii) the plant community composition includes species for

which no trait data are available. Thus, the main problem to overcome

is that of missing data in the species-by-trait matrix of the different

vegetation plots (Pakeman, 2014). More specifically, we will be con-

fronted with an insufficient number of individual trait measurements to

properly estimate a species’ mean trait value [MTV] (Hulshof &

Swenson, 2010; Sandel et al., 2015; Violle, Borgy, & Choler, 2015) and

the heterogeneous availability of vegetation plots and trait data along

the environmental gradient of interest. Both can affect the estimation

of CWM and the potential to identify a trait–environment relationship.

In this context, the equation classically given to calculate a CWM

(Violle et al., 2007) for a given trait

CWM5
X

i

piTi; (1)

where pi is the relative abundance of species i in the community and Ti

is the trait value of species i observed in the plot, needs to be replaced

by

CWM5

X
i
pi
XNIVi

j51
ðtij=NIViÞ

PCover
8NIVi � 1; (2)

where pi is the relative abundance of species i in the community, NIV is

the number of individual values of the trait under scrutiny in the data-

base for species i, tij is the value j of a given trait of species i in the

database and PCover is, for a given community, the proportion

730 | BORGY ET AL.



[cumulative relative abundance] of all species for which a trait value is

available in the database.

In this study, we examine the reliability of predictions from a global

plant trait database to assess community-level traits and their sensitiv-

ity to environmental variation by addressing three questions:

1. What is the sensitivity of species-level trait estimates to the num-

ber of available measurements per species [NIV] in the database

and how well do these species trait estimates match locally meas-

ured trait values [at both species and community levels].

2. What is the impact of NIV and of the proportion of species with

available trait data [PCover] on the accuracy of CWM estimates?

3. To what extent may the constraints on trait data availability blur

relationships between CWM and climate in a real dataset?

Our study draws upon the combined analysis of two large databases

covering the diversity of permanent grasslands in France. The first one

consists of a dataset of around 50,000 vegetation plots combined into

a single database, the DivGrass vegetation plot database (Violle, Choler,

et al., 2015). The second is the TRY database, recognized as the main

resource for plant functional traits worldwide (Kattge et al., 2011). For

the first two questions, we considered four functionally relevant and

well-studied traits: specific leaf area [SLA], plant height [height], seed

mass [SM] and leaf nitrogen content per dry mass [LNC]. For the third

question, we focused on the CWM of SLA and its variation along a gra-

dient of growing degree days [GDD].

2 | MATERIALS AND METHODS

2.1 | Vegetation data

A dataset of 51,486 vegetation plots from French permanent grass-

lands [FPGs] was created using multiple data sources [see Table S1 in

the Supporting Information online], combined into a data repository,

the DivGrass database (Violle, Choler, et al., 2015). The data consist of

visually estimated relative cover of all species present in plots using a

six-level abundance scale: 0%–1%, 1%–5%, 5%–25%, 25%–50%, 50%–

75% and 75%–100%. We used the median of each class to derive a

percentage cover for each species, i.e., 0.5%, 3%, 15%, 37.5%, 62.5%

and 87.5%, respectively.

We combined the European Corine Land Cover database (Euro-

pean Environment Agency, 2006) and the Registre Parcellaire Graphi-

que to map the distribution of FPGs at 5-km resolution (Violle, Choler,

et al., 2015). This map was used to select 26,586 plots [51.6% of the

total] that occurred within grid cells covered by at least 20% perma-

nent grassland. In regions where grasslands are relatively scarce, we

noticed that the limited number of available vegetation plots often cor-

respond to specialized micro-habitats [e.g., meadows on calcareous

outcrops, wet grasslands] that are not captured by macroclimatic

variables.

Species names from the different datasets were harmonized using

the TaxRef4 national taxonomic referential database [Mus�eum National

d’Histoire Naturelle, https://inpn.mnhn.fr/programme/referentiel-taxo-

nomique-taxref]. To merge the taxonomy from vegetation plots and

the trait database [TRY, https://www.try-db.org/], all infraspecific ranks

[subspecies, variety, etc.] were replaced by their corresponding specific

rank. The final dataset included 3,589 vascular plant species.

2.2 | Trait data

We extracted individual values for SLA [m2 kg21], LNC [mg g21], SM

[mg] and height [m] from the TRY database (Kattge et al., 2011), which

contains plant trait data collected worldwide. Trait data from artificial

conditions [e.g., greenhouses, growth chambers] were not retained for

this analysis. For a given trait and a given species with more than three

values we discarded values if their deviation from the species’ mean

was two times higher than the standard deviation of that species’ trait

distribution. We ended up with 17.4%, 14.2%, 55.2% and 30.2% of

species with available traits for SLA, LNC, SM and height, respectively.

The mean number of individual trait values [i.e., NIV] per species was

5.71, 5.66, 3.63 and 3.35 for SLA, LNC, SM and height, respectively.

2.2.1 | Species-level comparison

We compared species mean traits obtained from the TRY database

with species mean traits derived from a database of local measure-

ments, the DivHerbe database (Gardarin et al., 2014). This latter data-

base includes 100 vegetation plots and trait measurements on 180

species covering a large range of climate and soil conditions within

France, from subalpine to Mediterranean grasslands.

2.2.2 | Community-level comparison

We compared on-site CWM values of the 100 DivHerbe plots with

CWM values calculated using local species abundances of the Div-

Herbe plots and species MTVs taken from TRY. For each comparison,

Spearman rank correlation tests were performed to test whether rank-

ing was conserved between datasets (Cordlandwehr et al., 2013; Kaza-

kou et al., 2014; Violle, Choler, et al., 2015). Additionally, paired

Wilcoxon signed rank tests were performed to test whether distribu-

tions were different between both datasets.

2.3 | Climate data

To relate CWM to climate, we used the AURELHY [Analyse Utilisant

le RElief pour l’HYdrom�et�eorologie] gridded dataset of M�et�eo

France (Benichou & Le Breton, 1986). Monthly mean temperature

over the period 1961–1990 was daily interpolated and we calcu-

lated the number of GDD above 58C, considered as a threshold for

temperate grassland plant growth. The resolution of the climate grid

cell was 5 km, which is in the same order of magnitude as the uncer-

tainty of the location of most of the vegetation plots. To derive

trait–climate relationships, we considered only grid cells containing

at least three plots. An averaged CWM for each trait was calculated

for each climate grid cell.
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2.4 | Sensitivity of species mean trait estimates to NIV

We analysed the impact of the NIV value available in TRY on the esti-

mation of species MTVs. Only herbaceous species with NIV�50 were

selected for this analysis, leading to 30, 8, 19 and 23 species for SLA,

LNC, SM and height, respectively. For each species, 50 individual val-

ues were randomly selected and averaged to estimate a species’ MTV

[MTV50]. We chose NIV5 50 as a compromise between a sufficient

number of examined species and the robustness of the sensitivity anal-

ysis. Then, we varied NIV between 1 and 49 to calculate MTVNIV, and

the MTV50 error was calculated as [MTVNIV – MTV50]/MTV50. This

random subsampling was performed 10 times for a given NIV value

and a given species [Fig. S1]. Results were averaged across all species

for each NIV value. This procedure was repeated 100 times giving a

total of 1,000 simulations per NIV level. We calculated the NIV corre-

sponding to a MTV50 with an error smaller than 20%, 10% and 5% for

at least 95% of these simulations.

2.5 | Sensitivity of CWMs to measurement intensity
in trait databases [NIV] and PCover

Species with a NIV�10 were selected to ensure a sufficient number

of plots for the sensitivity analysis. For a given plot, the cover propor-

tion [total cumulative percentage of relative abundance] represented

by all the species for which trait data were available was defined as

PCover. For the sensitivity analysis, only plots for which PCover was

�95% were selected.

For each trait, we analysed the sensitivity of CWM to PCover and

NIV using 1,000 random subsamplings. For each simulation, 10 individ-

ual trait values were randomly drawn for each species and the CWM

was calculated by using species relative abundances [pi] and their

MTVs [Equation 2]. These CWMs were used as reference values. Then

we varied NIV between 1 and 10 for each species and calculated

CWMNIV by using 10%–100% of occurring species [in 10% incre-

ments]. The error was defined as [CWMNIV – CWM]/CWM. This ran-

dom subsampling allows us to assess the error of the calculated trait at

community level with independent variation of NIV and PCover [Fig. S2].

2.6 | Sensitivity of the climate–CWMSLA relationship
to NIV and PCover

We finally focused on the reliability of climate–CWM relationships

using SLA, the trait for which sufficient information [measurement

intensity and data coverage] was available. We first analysed the

impact of data selection criteria [variation in NIV and PCover] on the size

of the dataset [the total number of vegetation plots and total number

of grid cells for which the number of plots is at least three] and on the

proportion of the climate gradient [i.e., GDD] covered. To that end, we

first varied the minimum NIV between 1 and 10 and minimum PCover

between 10% and 100% [10% increments]. Next, according to the pre-

liminary results of sensitivity of CWM to data selection, we analysed

the CWMSLA–GDD relationship for two distinct data selection criteria:

highly restrictive [NIV�10 and PCover�90%) and moderately restric-

tive [NIV�2 and PCover�60%].

3 | RESULTS

3.1 | Sensitivity of species mean trait estimates to NIV

For all traits, the ranking of species mean traits was consistent between

the TRY database and the local DivHerbe database, with the Spearman

correlation ranging from .51 to .92 [Figure 1a]. Distributions were not

significantly different for SLA [V52711, p value5 .11] and height

[V54536, p value5 .58].

Figure 2 shows the effect of NIV [between 1 and 49] on the esti-

mation of species mean SLA, LNC, SM and height using trait data from

the TRY database. The availability of only one individual value

[NIV51] led to a maximum estimation error of 50% [positive or nega-

tive]. An error below 20% requires a minimum NIV of 7, 7, 8 and 15

for SLA, LNC, SM and height, respectively. To reach an error below

5%, the corresponding NIVs were 35, 36, 38 and 44. Table S2 summa-

rizes the NIV availability per species and trait and the minimum NIV

required for each error threshold.

3.2 | Sensitivity of CWM to NIV and PCover

For all traits, the ranking of CWM was consistent between on-site

measurements of the plots from the DivHerbe database and CWM cal-

culated for the same plots but using trait values from the TRY data-

base, with the Spearman correlation ranging from .53 to .95 [Figure

1b]. Distributions were not significantly different for SM and height

[Figure 1b].

The analysis of the combined effect of NIV and PCover on CWM

estimation errors revealed a predominant effect of PCover for the four

studied traits [Figure 3]. For all the traits, the impact of NIV was only

noticeable for very low values. In our case study, when NIV52, an

error on CWM estimation below 10% requires a trait coverage per plot

[PCover] of 53%, 76%, 94% and 100% for SLA, LNC, SM and height,

respectively [Figure 3]. Based on this result, we focused on SLA only in

the following to test the sensitivity of climate–trait relationships to NIV

and PCover.

3.3 | Sensitivity of climate–CWMSLA relationships to

NIV and PCover

We examined the extent to which uncertainties in CWMSLA affect the

performance of a linear regression model between CWMSLA and GDD.

Figure 4 provides a comprehensive assessment of data reduction in

terms of number of plots, number of grid cells and extent of the GDD

gradient when varying the threshold values for NIV and Pcover.

A model using NIV�2 and PCover�60% was implemented with

1,686 grid cells representing 17,215 vegetation plots and showed an

intercept of 14.36 [95% CI 13.8–14.9], a slope of 14.33 [95% CI

13.18–15.47] and an adjusted R2 of .26 [Figure 5a]. This data subset

covered 85% of the GDD gradient corresponding to the whole dataset.

An example of the same bivariate plot using more restrictive criteria

[NIV�10 and PCover�90%] resulted in a smaller dataset with 488 grid

cells representing 3,261 vegetation plots and in a restricted gradient of

GDD [63% of the whole gradient] [Figure 5b]. In this restrictive case,
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the model performance was diminished and the intercept of the model

significantly differed from the previous case (intercept517.5 [95% CI

16.3–18.6]).

4 | DISCUSSION

Our study has investigated the impact of both the number of individual

values used to calculate a species’ MTV [NIV; i.e., measurement inten-

sity; Sandel et al., 2015], and the cumulated cover proportion of spe-

cies included in the calculation of a CWM [PCover] on the accuracy of

estimates of species mean traits and CWM, and on CWM–climate rela-

tionships. We find that although a large NIV is necessary to estimate

accurately a species’ MTV, the accuracy of CWM is only weakly

affected by NIV but strongly by PCover. The PCover needed to minimize

the error on estimation of CWM varies among traits, which challenges

the unique PCover580% threshold largely used in functional ecology

studies (Pakeman & Quested, 2007). For SLA, for example, accepting a

CWM estimation error of 10% allows the required PCover to be reduced

to 60% with an NIV of at least two without affecting the CWM–envi-

ronment relationship. In the following, we discuss in more detail the

effect of data representativeness [measurement intensity and species

coverage] on the accuracy of (i) species-level and (ii) community-level

mean trait estimates and (iii) the consequences for the shape and

strength of community-level trait–environment relationships.

4.1 | Sensitivity of trait means at species level

Extracting MTVs per species from regional and global databases neces-

sarily leads to challenging issues when applying them in a more local

context. A first issue is the effect of intraspecific variability (Albert,

Grassein, Schurr, Vieilledent, & Violle, 2011; Baraloto et al., 2010). Con-

sistent with previous studies showing the robustness of interspecific

differences to intraspecific variability (Cordlandwehr et al., 2013;

Kazakou et al., 2014; Violle, Choler, et al., 2015), we found that the

interspecific ranking for MTVs from TRY or from local measurements

was conserved for the four studied traits. Nevertheless the two data-

sets were overall significantly different for LNC and SM, showing a sys-

tematic bias. This difference between the two datasets for LNC

confirms that [leaf] chemical traits are more variable than structural

traits, most probably due to their dependence on local soil nutrient

availability (Kazakou et al., 2014). The difference between the two

datasets is more surprising for SM since it is generally considered to be

one of the least variable traits within species (Harper, Lovell, & Moore,

1970; Kazakou et al., 2014). However, these differences seem to be

explained by a few outliers which could potentially be associated with

measurement errors, most probably in the TRY database.

A second aspect in using MTVs from global databases is the hetero-

geneous number of available NIVs per species in such datasets (Sandel

et al., 2015). For instance, for SLA, NIV varies from 1 to 647 in TRY. Our

test of the sensibility of species MTVs to NIV reveals that an accurate

estimate [5% of estimation error] requires an NIV of at least 35 for the

FIGURE 1 Species-level and community-level trait measurements: comparisons between on-site trait values and trait values extracted
from the TRY database. (a) A species-level comparison. Each dot corresponds to the mean trait value of a given species extracted from the
local DivHerbe dataset [y-axis] or from the TRY database [x-axis]. Analyses included 114, 93, 138 and 138 species found in both datasets
for specific leaf area [SLA, m2 kg21], leaf nitrogen content per dry mass [LNC, mg g21], seed mass [SM, mg] and height [m] respectively. (b)
A community-level comparison. Each dot corresponds to the community-weighted mean [CWM] of traits of a DivHerbe vegetation plot

using local [on-site] trait measurements [y-axis] or local species abundances and trait values extracted from TRY [x-axis] [n5100 plots]. The
line represents the 1:1 line. Spearman correlation coefficients [q and p values] between the two datasets and results of the paired Wilcoxon
tests [V and p values] are given [***p< .001; **p< .01; *p< .05; ns, not significant]. Scales were logged for SM
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four studied traits [Figure 2]. This condition is not fulfilled for most spe-

cies in current trait databases (Sandel et al., 2015). For instance, only ca.

3% of species possess at least 35 SLA observations in the TRY database

(Sandel et al., 2015), the [currently] largest database of plant traits glob-

ally. On the other hand, our results suggest that a 20% error on species

MTVs requires NIVs between NIV57 [SLA] and NIV515 [height].

From the perspective of comparative ecology, a core question is

our ability to discriminate species based on their phenotypic features

(Albert et al., 2011; Garnier et al., 2001; Keddy, 1992). In that case, the

consequences of assessment errors of trait means may depend on the

range of trait values covered among species. If individual species’ values

are predicted with 20% error, this seems far less problematic for SM,

which varies by many orders of magnitude among species [4.5 orders of

magnitude in our study], than predicting LNC, which varies far less

widely among species [a 1.7 order of magnitude variation in our study].

To examine this idea more deeply, we extended the numerical simula-

tions provided in Figure 2 to test our ability to discriminate pairs of spe-

cies along the gradient of measurement intensity [from NIV51 to

NIV550] [Fig. S3]. With a 20% estimation error on trait means, the

probability of discriminating two species varies between .70 for LNC

and .98 for SM [Fig. S3]. This result supports the idea that the conse-

quences of uncertainty on species trait means depend on species and

trait coverages, as previously envisioned (Albert et al., 2011). Given that

the DivGrass database covers the range of herbaceous grassland spe-

cies occurring in France, those consequences may be less pronounced

in functional biogeography exercises using a global coverage and/or

both woody and non-woody species; conversely they may be more

severe in local and ecosystem-specific studies. Overall, such sensitivity

analyses need to be applied to other systems and using a more system-

atic comparison of rare and widespread species given a severe bias

towards widespread species [more often measured] in current trait

databases (Violle, Borgy, et al., 2015; Violle, Choler, et al., 2015).

FIGURE 2 Impact of the number of individual values [NIV] on the estimates of species mean trait values using the TRY database. For each
trait, the figure shows the mean error [%] in the estimation of mean trait value of species as a function of NIV randomly drawn [varying
between 1 and 49] available in TRY. The reference mean trait value was estimated with 50 individual values taken in the TRY database.
Black dashed lines represent maximum error, while light [dark] grey shapes represent 95% [50%] confidence intervals. Continuous, dashed
and dotted vertical lines represent 5%, 10% and 20% of error, respectively. n represents the number of species used in the analysis

734 | BORGY ET AL.



4.2 | Sensitivity of CWMs to NIV and PCover

Regardless of the sensitivity of individual species’ estimates to NIV, the

CWMs of SLA, LNC, SM and height were estimated with an error <5%

for NIV>5 and PCover close to 80%, 90%, 100% and 100%, respec-

tively [Figure 3]. A threshold PCover of 80% is in line with previous

work evaluating the sampling effort required in the field for an accurate

estimation of CWM (Pakeman & Quested, 2007). However, higher

thresholds for the other traits highlight the importance of running

more sensitivity analyses in the future and preclude the use of a unique

threshold of 80%. Our study goes further by showing that even when

a very low NIV of around two is retained, estimation of CWM remains

relatively accurate [<20% error depending on the traits] even at much

lower PCover values. Nevertheless, a particular effort needs to be made

for the measurement of rare species, which are still under-represented

in trait databases (Violle, Borgy, et al., 2015; Violle, Choler, et al., 2015).

This is all the more important as the omission of rare species can

strongly affect other metrics of functional diversity (Pakeman, 2014).

The trade-off observed between NIV and PCover is not a trivial issue

because these two variables are dependent: increasing the minimum

NIV necessarily decreases PCover [Figure 6]. In our study, the predomi-

nant role of PCover for CWM estimations suggests that, as long as intra-

specific trait variability is lower than interspecific trait variability—which

seems to be the case for several traits investigated at large scales (Kattge

et al., 2011; Kazakou et al., 2014) as theoretically expected (Albert et al.,

2011)—it seems to be preferable to favour PCover over NIV. In the case

of traits showing high intraspecific variability and/or in studies consider-

ing a more restricted environmental gradient, we hypothesize that

reducing NIV will have a larger effect on estimates of CWM.

The questions we address are of relevance in field studies: How

many species should be covered with trait measurements in each com-

munity [PCover] of a study area? How many individuals should be meas-

ured to capture the trait variation of each species in the study area

[NIV]? As stated in the Introduction, Equation 1 assumes a single trait

value for each species in the calculation of CWM. Even in case of traits

measured in a single field study, this value is most often a mean of

measured values of several individuals from different plots (see, e.g.,

Bernard-Verdier et al., 2012). We proposed Equation 2 for a more sys-

tematic sensitivity analysis of CWM with regard to data quality and

FIGURE 3 Impact of the number of individual trait values per species [NIV] in the TRY database and of the community-level cover propor-
tion [PCover] of species for which trait values were available in TRY on the estimation of community weighted means [CWMs]. The figure
shows the error [%] in the estimation of CWM for several individual values used in the calculation of species mean and several cover pro-
portions for which mean trait values of species were known [PCover, %] for vegetation plots for which PCover was greater than or equal to
95% and for which occurring species had at least 10 individual trait values in TRY. Mean errors over the plots are represented by a grey
shade gradient [lighter grey error of 0%, darker grey error of 25%]. Thresholds of 5%, 10% and 20% of mean error are denoted by red con-
tinuous lines. See Fig. S2 for details
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FIGURE 4 Effect of dataset selection criteria (i.e., minimum number of individual trait values per species [NIV] and community-level cover
proportion [PCover] required) on the dataset size and gradient representativeness: (a) number of vegetation plots, (b) number of pixels and
(c) total covered climate [GDD] gradient

FIGURE 5 Impact of the dataset selection criteria on the growing degree day [GDD] gradient coverage and on the relationship between
community-weighted mean for specific leaf area [CWMSLA] and GDD at the climate grid-cell level. Both datasets were reduced to pixels
with at least three vegetation plots. n represents the number of pixels. (a) The dataset was reduced to species with at least two individual
values in TRY and plots with PCover�60%. In (b) the dataset was reduced to species with at least 10 individual values [NIV] in TRY and to
plots with PCover�90%. The GDD gradient was normalized between 0 and 1. Boxplots represent the pixel distribution over the GDD gradi-
ent [maximum, mean and first and third quantiles]. Continuous black lines represent linear regressions
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coverage, even in local studies. In that case, NIV represents the number

of individuals of a species where each individual is from the same study

area [different plots or even a single plot], probably measured by the

same researcher and with the same methodology. We prefigure that

the overall relationships found in this study still hold for field studies

even if the variation in trait values is smaller.

4.3 | Sensitivity of CWM–climate relationships

to NIV and PCover

The results of this study indicate that the use of an incomplete trait

dataset has implications for the ability to detect significant shifts in

community functional structure along environmental gradients. This

issue has been largely overlooked in the recent literature on “functional

biogeography” (Lamanna et al., 2014; �Símov�a et al., 2015; Swenson &

Enquist, 2007; Swenson & Weiser, 2010; Swenson et al., 2012). Our

pilot study quantifies the effect of incomplete trait data on the relation-

ship between CWMSLA and GDD in temperate grasslands. It shows

that setting a constraining high threshold for either [or both] NIV and

PCover (i) strongly reduces the width of the GDD gradient covered by

the CWMSLA estimates and (ii) tends to reduce the significance of the

CWMSLA–GDD relationship [Figure 5]. In our study, the reduced num-

ber of CWMSLA in the low range of the GDD gradient mainly drove

this effect of reduced significance. Given that the central parts of cli-

mate ranges are often well sampled while sampling is scarce in the mar-

gins, this calls for an intensification of sampling efforts of vegetation

plots and traits at the extreme of the investigated climate gradients

even if the area covered by these climate conditions is relatively small.

We here provide a generic approach for systematic sensitivity

analyses to trade off between the magnitude of CWM error and the

amount of available information. Overall, our findings highlight the

trade-off between (i) the accuracy of estimates for CWM traits requir-

ing high NIV and PCover and (ii) the ability to detect general trends of

CWMs along a climate gradient requiring a large set of vegetation plots

and, hence, more liberal criteria for NIV and PCover. We conclude that

threshold values for NIV and PCover and trade-offs between NIV and

PCover represent a critical feature of any functional biogeographical

analysis with, often necessarily, limited data availability. In the case

FIGURE 6 Trade-off between number of individual trait values per species [NIV] and the community-level cover proportion [PCover] across
the whole dataset. Increasing the minimum NIV required for all species belonging to a vegetation plot reduces, on average, the PCover of
this plot, for the four studied traits
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study of permanent grasslands, PCover was the parameter with the

greatest effect on CWM estimates and we consider this to be an argu-

ment for increasing species coverage in global trait databases. In the

context of functional biogeography, a particular effort has to be made

for those species occurring in under-sampled and harsh environmental

conditions.
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