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Abstract

With CPU times 2 to 3 orders of magnitude smaller than classical shallow water-based mod-
els, the shallow water equations with porosity are a promising tool for large-scale modelling of
urban �oods. In this paper, a new model formulation called the Dual Integral Porosity (DIP)
model is presented and examined analytically and computationally with a series of benchmark
tests. The DIP model is established from an integral mass and momentum balance whereby both
porosity and �ow variables are de�ned separately for control volumes and boundaries, and a clos-
ure scheme is introduced to link control volume- and boundary-based �ow variables. Previously
developed Integral Porosity (IP) models were limited to a single set of �ow variables. A new tran-
sient momentum dissipation model is also introduced to account for the e�ects of sub-grid scale
wave action on porosity model solutions, e�ects which are validated by �ne-grid solutions of the
classical shallow-water equations and shown to be important for achieving similarity in dam-break
solutions. One-dimensional numerical test cases show that the proposed DIP model outperforms
the IP model, with signi�cantly improved wave propagation speeds, water depths and discharge
calculations. A two-dimensional �eld scale test case shows that the DIP model performs better
than the IP model in mapping the �oods extent and is slightly better in reproducing the anisotropy
of the �ow �eld when momentum dissipation parameters are calibrated.

1 Introduction

Since their inception in the nineteen-nineties [10], shallow water models with porosity have arisen
as a promising formalism for the inclusion of subgrid-scale topographical and geometric features [9,
4] in two-dimensional �ow simulations. Their usefulness to tackle urban �ood modelling has been
illustrated by a number of applications, with reported CPU acceleration factors of two to three orders
of magnitude compared to usual two-dimensional models solving the shallow water equations [20,
15, 22, 24, 29, 32, 26]. The shallow water equations with porosity have also motivated a number of
numerical developments [7, 8, 11, 20, 24].

The �rst versions of shallow water models with porosity for simulating urban �oods incorporated
a single porosity [20, 21]. Although the discretization of geometry-induced source terms in the Single
Porosity (SP) model is more complex than for the usual shallow water equations [8, 11, 20, 24], the
wave propagation speeds are identical. At the time the �rst �nite volume discretization of the SP model
was published [20], it did not fully account for the e�ect of �ow path obstruction by the buildings in
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addition to the storage e�ect. It was thus proposed that two di�erent porosities should be used: a
domain-based porosity to account for mass and momentum storage and a boundary-based, connectivity
porosity to account for mass and momentum transport [24]. An eigenvalue analysis of the resulting
system showed that wave propagation speeds [24] (and the behaviour of the �ow solutions) should be
signi�cantly di�erent from those of the SP model. However, no practical guidelines could be provided
to infer the connectivity porosity from the urban geometry. Independently from this research, the
Integral Porosity (IP) model was proposed almost at the same time and published shortly afterwards
[29]. The two key issues brought to the fore by [29] are that (i) the SP model is based on the implicit
assumption that the Reference Elementary Volume (REV) [6] exists in the urban environment, (ii) the
SP formalism is essentially isotropic. The IP model allows these two drawbacks to be eliminated
because the integral formulation makes the connectivity porosity a local, directional, and deterministic
descriptor based on the intersection of the computational mesh with �ow obstructions, and the storage
porosity is also given deterministically. This limited the need for calibration to directional building
drag parameters to achieve closure in �eld-scale applications, whereas SP modelling studies had also
examined the calibration of porosity [32]. Recently, an IP model that accounts for depth-dependent
porosity has been developed as a framework for both subgrid topographic variability and blockage
features such as buildings [26].

A one-dimensional analysis of the wave propagation speeds of the di�erential form of the IP model
equations [18] con�rms that the IP model structure is similar to the di�erential formulation proposed
in [24]. Nevertheless, numerical experiments reported in a recent publication [27] and in the present
paper show that the wave propagation speeds and discharge predictions in the IP model are signi�cantly
di�erent from those in re�ned wave propagation simulations. The wave propagation speeds are the
eigenvalues of the Jacobian matrix of the �ux vector with respect to the conserved variable vector.
Consequently, erroneous wave speeds usually re�ect erroneous mass and/or momentum �ux models.
In this paper, the introduction of a dual set of �ow variables corresponding to integrals over cells and
boundaries, and a closure scheme which links the two solutions through the dual porosity de�nition, is
shown to resolve this problem. The resulting Dual Integral Porosity (DIP) model supports a signi�cant
improvement in accuracy in veri�cation test cases, and shows advantages compared to the IP model
in a �eld-scale test problem.

The remainder of the paper is organised as follows. Section 2 presents the DIP formalism along
with the domain-boundary closure model and a modi�cation of the momentum �uxes to account for
transient momentum dissipation which cannot be modelled like friction with a sink term. Section 3
presents the veri�cation of the DIP model in idealized con�gurations where analytical solutions are
known, as well as comparisons to SP and IP models. Section 4 presents a two-dimensional �eld scale test
where the practical utility and versatility of the model is validated, i.e., ability to control anisotropic
solutions through calibrated parameters. Sections 5 and 6 are devoted to a discussion and conclusions,
respectively.

2 Integral porosity shallow water models

2.1 Original formulation

The conservation form of the model is obtained from a mass and momentum balance applied to a
shallow water domain Ω with boundary Γ. The domain is partitioned into two regions: a solid region
occupied by buildings, and a water region. Mass and momentum conservation leads to [29]:

∂t

ˆ
Ω

εhdΩ +

ˆ
Γ

εq.ndΓ = 0 (1a)

∂t

ˆ
Ω

εqdΩ +

ˆ
Γ

ε
[
(u.n)q +

g

2
h2n

]
dΓ =

ˆ
Ω

εsΩdΩ +

ˆ
Γ

εsΓdΓ (1b)

q = hu =

[
hu
hv

]
, sΓ =

g

2
h2
η0
n (1c)
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sΩ = −g (h− hη0
)∇zb −

(
cbD + cfD

)
|u|u (1d)

where n is the normal unit vector, q and u are respectively the unit discharge and �ow velocity
vectors, sΩ and sΓ are respectively the domain and boundary source terms, h is the water depth, u
and v are respectively the x− and y−velocities, zb is the bottom level, ε is the porosity indicator
(equal to 0 in the solid areas and 1 in the water region), η0 is the average free surface elevation over
the domain Ω, hη0 = η0 − zb, cbD and cfD are respectively the drag coe�cients for the building and
bottom friction-induced stresses. The porosity over the sets Ω,Γ is de�ned as

φS ≡
´
Sw

dS´
S

dS
=

ˆ
S

ε (x, y) dS, S = Ω,Γ (2)

As stressed in [29], the water storage porosity φΩ and the water conveyance porosity φΓ are di�erent in
the general case. By de�nition, φΓ scales transport capacity and should be taken smaller than φΩ. The
di�erence φΩ − φΓ thus represents an estimate for the fraction of the domain that does not contribute
to transport. The constraint φΓ ≤ φΩ is further substantiated by a wave propagation speed analysis,
see Section 2.5.

Although questionable when a Reference Elementary Volume does not exist [29], the di�erential
form of the equations for this model allows the behaviour of the solutions to be analysed. In the limit
of an in�nitesimal control volume Ω, using the divergence theorem leads to a system in the form [24]

∂t (φΩh) +∇ · (φΓq) = 0 (3a)

∂t (φΩq) +∇ · (φΓF) = φΩsΩ +∇ · (φΓsΓ) (3b)

F =

[
hu2 + g

2h
2 huv

huv hv2 + g
2h

2

]
= u⊗ u +

g

2
h2I (3c)

where I is the identity matrix. The wave propagation speeds in the one-dimensional con�guration are
the eigenvalues of the system [18, 24]:

λ1 =
φΓ

φΩ
(u− c) , λ2 =

φΓ

φΩ
u, λ3 =

φΓ

φΩ
(u+ c) , c = (gh)

1
2 (4)

This system is hyperbolic. Its eigenvalues are those of the classical shallow water equations, multiplied
by the ratio φΓ

φΩ
. The particular case φΓ = φΩ yields the wave propagation speeds of the classical Saint

Venant equations. This property is used in �nite volume discretizations of the single porosity equations
to derive approximate Riemann solvers [8, 11, 20]. If the mesh is designed such that φΓ > φΩ, the wave
propagation speeds are larger than those of the classical shallow water equations. Such a behaviour is
non-physical.

2.2 Dual integral porosity model formulation

The DIP model overcomes ambiguity in the de�nition of the �uid velocity, u, at domain boundaries
(versus within domain boundaries) with the introduction of dual �ow variables (uΩ,uΓ) and substitu-
tion into equations (1a-b) as follows,

∂t

ˆ
Ω

εhΩdΩ +

ˆ
Γ

εqΓ.ndΓ = 0 (5a)

∂t

ˆ
Ω

εqΩdΩ +

ˆ
Γ

ε
[
(uΓ.n)qΓ +

g

2
h2

Γn
]

dΓ =

ˆ
Ω

εsΩdΩ +

ˆ
Γ

εsΓdΓ (5b)

For the number of equations to match the number of unknowns, a closure model is needed between
the domain-averaged variable vector uΩ and the boundary-averaged variable vector uΓ.
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Closure model for the unit discharge. Consider an elemental boundary segment dΓ = [AB]
(Figure 1). Typically, [AB] is the edge of a computational cell in a �nite volume or �nite element
discretization. The total discharge across [AB] is

QAB = φΓqΓ.ndΓ (6)

Consider now the segment [A′B′], obtained by shifting [AB] into the domain Ω. For an in�nitesimal
shift, the discharge across [A′B′] is equal to the discharge across [AB]. It must be computed using the
areal porosity φΩ because the segment is located within the domain

QA′B′ = φΩqΩ.n dΓ (7)

Figure 1: Closure model for the unit discharge. De�nition sketch.

Continuity requires that QAB = QA′B′ . This leads to the su�cient condition

qΓ =
φΩ

φΓ
qΩ ⇔ uΓ =

φΩ

φΓ

h

hΓ
uΩ (8)

Note that modifying only the normal component of the �ow velocity would su�ce to satisfy continuity.
However, doing so would make the direction of qΓ arti�cially dependent on the direction of the interface.
Therefore, both the normal and tangent unit discharges are modi�ed by the same factor. With this
correction, the mass �ux across the boundary veri�es

ˆ
Γ

φΓqΓ.n dΓ =

ˆ
Γ

φΩqΩ.ndΓ (9)

Closure model for the water depth. Substituting the closure model (8) into the expression for
the momentum �ux leads to

ˆ
Γ

φΓ (uΓ.n)qΓ dΓ =
φ2

Ω

φΓ

ˆ
Γ

hΩ

hΓ
(uΩ.n)qΩ dΓ (10)

A model must be proposed for the ratio hΩ

hΓ
in the momentum equation. The simplest possible model,

hΓ = hΩ, is retained. It is based on the assumption that building-induced �ow obstruction has
negligible e�ects on the free surface elevation and that the reduction in the �ow cross-sectional area
is fully balanced with an increase in the �ow velocity. This is a reasonable approximation for small
values of the Froude number, based on gradually varied �ow theory, and experiments have shown that
supercritical (high Froude) �ow impinging on clusters of buildings causes upstream shock waves that
surround buildings by locally subcritical (low Froude) �ow [33]. The expression for the momentum
�ux becomes ˆ

Γ

φΓ (uΓ.n)qΓ dΓ =
φ2

Ω

φΓ

ˆ
Γ

(uΩ.n)qΩ dΓ (11)
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2.3 Accounting for transient momentum dissipation

Solving the frictionless shallow water equations over street networks with a constant street width in
the presence of piecewise constant initial and/or boundary conditions is shown in [15] to yield solutions
with an almost perfectly self-similar (x, t) behaviour. The waves in the solution are seen to propagate
at a constant speed, making the solution at the scale of the street spacinperiod dependen on the ratio
x/t. The self-similarity of the solutions is not exact in that a street network with �xed width and
spacing is not invariant when the x−coordinate is transformed, but self-similarity is observed for the
solutions averaged on the scale of a building block. Two such examples are presented in [15]. The �rst
deals with the propagation of a �ood bore into an idealized urban network. The second consists of
an urban dambreak problem. As illustrated by Section 3, the numerical solutions obtained by solving
the frictionless shallow water equations on a �ne grid cannot be reproduced by a porosity model that
does not incorporate a momentum dissipation mechanism of some kind. Using the proposed DIP
model without friction will lead to wrongly estimated wave propagation speeds, water depths and �ow
velocities, especially in the case of positive waves (rising water levels).

An explanation for this behaviour was introduced in [15]: when a positive wave propagates into a
built area (Figure 2), multiple wave re�ections occur against the building walls and generate moving
bores (Figure 2, top). The wave re�ections generate reactions to the hydrostatic pressure forces from
the building walls. In Figure 2, the reaction from wall W2 is larger than that from wall W1 because the
re�ected bore is deeper (Figure 2, bottom). In the same way, the reaction from wall W4 is larger than
that from wall W3. The resulting force is opposed to the average �ow velocity and thus contributes
to dissipate momentum. Steady state �ow and decreasing water levels do not generate bores and
no signi�cant dissipation occurs due to wave re�ection. This mechanism was con�rmed in [15] by
a detailed inspection of the water depth, velocity and hydraulic head �elds in the re�ned shallow
water simulations. Although the dissipation is not instantaneous in reality, it is assumed to occur on
a time scale smaller than or of the same order of magnitude as the time scale needed by the wave
to travel between two successive building rows. The assumption of instantaneous dissipation is thus
a convenient approximation. The tests presented in Section 3 indicate that the proposed model is
reasonably accurate even when the �ow is supercritical.

A

B

W
1

W
2

W
3

W
4

A B

Figure 2: Propagation of a positive wave into a built area. Top: plan view of wave propagation and
bore re�ection. Bottom: side view along transect [AB]. The dashed line indicates the initial water
level.

Classical head loss models that are direct functions of the �ow velocity are well-known to not allow
for self-similar solutions in the case of piecewise constant initial/boundary value problems, and thus
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cannot reproduce the losses from subgrid-scale bores described above. The only possibility to retain
the self-similar character of the solutions is for the momentum dissipation model to be divergence-
free. In other words, the governing equations must consist only in a modi�cation of the momentum
�ux and/or the conserved variable (e.g. by introducing a so-called rigidity, or inertia matrix). The
proposed momentum dissipation model satis�es this condition. It is derived from that proposed in
the multiple porosity model [15] under the so-called Local Equilibrium Assumption (LEA). Consider
again a positive wave entering the averaging volume shown in Figure 2. Within an in�nitesimal time
interval dt, the total momentum in the averaging volume is subjected to a positive variation φΩdqΩ,
and if the fraction of transported momentum that is dissipated in dead zones is de�ned by µ ∈ [0, 1],
the net variation in the average momentum over the averaging volume is thus (1− µ)φΩdqΩ. This is
equivalent to multiplying the divergence of the momentum �uxes by a factor (1− µ) ≤ 1. When the
averaging volume is subjected to a zero or negative variation (momentum and volume are withdrawn),
no dissipation occurs. Consequently, the above correction is applied only for a rising water depth, that
is, when ∂th > 0, or equivalently when the divergence of the �ow �eld is negative ∇ · q < 0.

The anisotropic character of most urban layouts calls for generalizing the proposed momentum
dissipation term in the form of a second-order tensor:

D =

[
µxx µxy
µyx µyy

]
= B

[
µ1 0
0 µ2

]
B−1dqΩ, B =

[
cos θ1 cos θ2

sin θ1 sin θ2

]
(12)

where θ1 and θ2 are the angles of the principal directions of the urban layout with the x−axis. Note
that this does not necessarily result in a symmetric tensor. The in�nitesimal momentum variation
becomes

(I−D)φΩdqΩ (13)

2.4 Anisotropic building drag model

The proposed model also incorporates an improvement to the building drag force model. Although
deemed of secondary importance compared to the closure and the momentum dissipation models
presented in Subsections 2.2-3, the revised building drag model allows the accuracy of integral porosity
models to be increased further. This is illustrated by the computational examples in Section 4. The
building drag model originally implemented in the IP formulation [29] uses the following momentum
source term (equation (1d)

sbD = −CbD |u|u (14)

Firstly, the source term be made depth-dependent. For a given �ow velocity, building drag force can be
expected to be proportional to the contact surface between the water and the buildings. The contact
surface being proportional to the water depth, it is proposed that the source term be scaled by the
water depth. Secondly, many urban street networks are observed to exhibit anisotropy, thus motivating
a tensor-based description of the building drag terms. The following formula is thus proposed

sbD = −Cb
D

h

href
|u|u, Cb

D =

[
CbD,xx CbD,xy
CbD,yx CbD,yy

]
(15)

where Cb
D is a drag coe�cient tensor and href is a reference water depth used for scaling purposes. In

what follows, href is set to 1m.

2.5 Final formulation and numerical procedure

Incorporating the new closure model, the momentum dissipation terms and the revised building drag
model into the mass and momentum balances lead to the following set of governing equations

∂tv +

ˆ
Γ

MFn dΓ =

ˆ
Ω

εs′ΩdΩ +

ˆ
Γ

εs′ΓdΓ (16a)
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v ≡ φΩ

 h
hu
hv

 , F ≡ φΓ

 βhu βhv
β2hu2 + g

2
h2 β2huv

β2huv β2hv2 + g
2
h2

 , M ≡

 1 0 0
0 1− µxx −µxy
0 −µyx 1− µyy

 (16b)

β ≡
φΩ

φΓ
(16c)

s′Ω =

 0

g (h− hη0 )S0,x − cfD |u|u
g (h− hη0 )S0,y − cfD |u| v

−
 0 0
CbD,xx CbD,xy
CbD,yx CbD,yy

 h

href
|u|u (16d)

s′Γ =
g

2
h2
η0

 0
nx
ny

 (16e)

where nx and ny are respectively the x− and y−components of the normal unit vector to the boundary,
S0,x = −∂xzb and S0,y = −∂yzb are respectively the x− and y−bottom slopes. Note that the bottom
friction term originally proposed in [29] is used in the DIP model too for the sake of model comparison.

The equations are discretized using an explicit �nite volume approach [8, 11, 15, 20, 29]. The
frictionless part of the equations and the friction-induced source terms are solved sequentially using a
time splitting procedure.

Frictionless terms. The frictionless part of the equations is �rst solved as

v
n+1/2
i = vni +

∆t

Ai

∑
j∈N(i)

LijMiFij .nij + ∆t
∑

j∈N(i)

SΓ,ijnij (17a)

S = Lij

 0 0
sΓ,ij 0

0 sΓ,ij

 (17b)

sΓ,ij ≡ −g
[
φΩ,i − φΓ,ij

2
h2
i + φΓ,ij

max
(
0, ηi − zb,j

)
+ ηi − zb,i

2
max

(
0,min

(
ηi, zb,j

)
− zb,i

)]
(17c)

where the subscript i is the cell number, the superscript n denotes the time level, N (i) is the set of
neighbouring cells for the cell i, Ai is the plan view area of the cell i, Lij and nij are respectively
the length and normal unit vector of the interface between the cells i and j, ∆t is the computational
time step. The �ow variables in equations (17a-17b) are cell-averaged quantities and should bear the
subscript Ω. It is omitted in the notation for the sake of clarity. The discretized source term SΓ,ij

accounts for the variations in the porosity and bottom levels across the interface. It thus incorporates
the discretization of the source term sΓ and the contribution of the bottom slope in sΩ, as detailed in
[11].

Friction terms. The solution is updated to account for the friction term using time splitting with
an exact solution [15]. The �ow variables are �rst rotated into the coordinates formed by the principal
directions of the building drag tensor. In this coordinate system, the equations become

∂tφΩ

 h
hu1

hu2

 = −φΩ


0(

cfD + CbD,1
h
href

)
|u|u1(

cfD + CbD,2
h
href

)
|u|u2

 (18)

where the subscripts 1 and 2 denote the component of the velocity along the wo principal directions.
Simplifying by φΩ leads to

∂thup = −
(
cfD + CbD,p

h

href

)
|u|up, p = 1, 2 (19)

Under the assumption of small time steps, the equation is linearised into

∂t (hup)i = −
(
cfD + CbD,p

h

href

)
|uni |up, p = 1, 2 (20)
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with analytical solution
hn+1
i = h

n+1/2
i (21a)

(hup)
n+1
i = exp

[
−
(
cfD + CbD,p

h

href

)
|uni |∆t

]
(hup)

n+1/2
i (21b)

Remark on �ux computation. The reader's attention is drawn to the computation of the �uxes
in (17a). The �nite volume implementations presented in the literature [11, 8, 15, 20, 29] use Riemann
solvers to compute the �ux tensor F. Noticing that the �ux tensor in (??) can be rewritten as

F ≡ φΓ

 hU hV
hU2 + g

2h
2 hUV

hUV hV 2 + g
2h

2

 , [ U
V

]
≡ β

[
u
v

]
(22)

the structure of the �ux tensor is identical to that of the classical two-dimensional shallow water
equations. It stems as an obvious consequence that the �uxes can be computed using any standard
Riemann solver for the classical 2D shallow water equation, by de�ning the left and right states of the
Riemann problem as

vL ≡ φΩ,L

 hL
βLhLuL
βLhLvL

 , vR ≡ φΩ,L

 hR
βRhRuR
βRhRvR

 (23)

where φΩ,S (S = L,R) denotes φΩ on the side S of the interface.
The discretization (17a) being explicit, it is subjected to a stability constraint based on the CFL of

the fastest waves. The CFL condition for an unstructured grid is given in [31] and will not be recalled
here. The formulas for the wave propagation speeds are derived in the next section.

2.6 Eigenvalue analysis

For the sake of clarity, the one-directional analysis of the equations is presented. The �ux vector f
is thus the �rst column of the �ux tensor F. Retaining only the conservation part of the equations,
applying the integral form (5a, 5b, 11) to an in�nitesimal control volume, applying the divergence
theorem under the assumption of continuous and di�erentiable solutions leads to a system in the form

∂tv + ∂x (Mf) = 0 (24a)

v ≡ φΩ

 h
hu
hv

 , f ≡ φΩ

 hu
(1− µ)βhu2 + (1− µ) g

2βh
2

(1− µ)βhuv

 = φΩ

 hu
ηhu2 + η

β2
g
2h

2

ηhuv

 (24b)

where η ≡ (1− µ)β. It is interesting to notice that only the storage porosity φΩ appears in the
continuity equation (in contrast with the original IP model). This makes the new continuity equation
consistent with that derived by De�na [9]. Table 1 summarizes the various available formulations for
u and f , the corresponding Jacobian matrices A and their eigenvalues λ in the one-dimensional case.
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Model v f A
λ

Shallow

water

 h
hu
hv

  h
hu2 + g

2h
2

huv


 0 1 0
c2 − u2 2u 0
−uv v u

 λ1 = u− c
λ2 = u
λ3 = u+ c

Single

porosity
φ

 h
hu
hv

 φ

 h
hu2 + g

2h
2

huv


 0 1 0
c2 − u2 2u 0
−uv v u

 λ1 = u− c
λ2 = u
λ3 = u+ c

Integral

porosity
φΩ

 h
hu
hv

 φΓ

 h
hu2 + g

2h
2

huv

 1
β

 0 1 0
c2 − u2 2u 0
−uv v u

 λ1 = 1
β (u− c)

λ2 = 1
β u

λ3 = 1
β (u+ c)

Dual

integral

porosity

φΩ

 h
hu
hv

 φΩ

 hu
ηhu2 + η

β2
g
2h

2

ηhuv


 0 1 0

η

β2 c
2 − ηu2 2ηu 0

−ηuv ηv ηu

 λ1 = ηu− c′
λ2 = ηu
λ3 = ηu+ c′

Table 1: Summary of the various formulations. For the sake of conciseness, only the one-dimensional version is presented.

Note: c ≡ (gh)1/2, c′ ≡ η
1
2

[
(η − 1)u2 + c2

β2

] 1
2 .

The present dual formulation implicitly rules out the con�guration φΓ > φΩ. Assuming φΓ > φΩ

induces β < 1, which leaves room for situations where η < 1. Then combinations (c, u) exist such
that (η − 1)u2 + c2

β2 < 0 and the λ1 and λ3 are complex, inducing a loss of hyperbolicity and making
the initial value problem ill-posed. This is a strong point in favour of the modi�ed model in that
meaningless porosity con�gurations are ruled out by assumption. Note that this is not the case with
the IP model, that allows for β < 1, although such a situation is non-physical (see Section 2.1).

3 Veri�cation Test Cases

3.1 Positive Wave

The purpose of this test case is to verify the DIP model formulation including the transient dissipa-
tion model proposed in the previous section. It in inspired from [15]. A periodic, orthogonal street
network is generated (Figure 3, left). The spatial period in the longitudinal and transverse direction
are respectively L and 2L, with L = 100m. The street width is W = 50m in both directions. The
bottom is horizontal, friction is assumed negligible. The initial and boundary conditions are

v (x, 0) = [h0, 0, 0]
T ∀x > 0 (25a)

[hu, hv]
T

(0, t) = [qb, 0] ∀t > 0 (25b)

where h0 and qb are respectively the initial water depth and boundary unit discharge. A positive wave
is generated by setting qb = 1m2s−1 with h0 = 1m. The two-dimensional frictionless shallow water
equations are solved numerically over a 2.5m×2.5m computational grid (Figure 3, right). Symmetry
considerations allow a complete solution to be obtained by meshing only half a period in the transverse
direction, 0 ≤ y ≤ L. When solving the porosity-based shallow water equations, a much coarser
computational grid is used, with cell widths (∆x,∆y) = (20m, 100m).
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Simulation (i) (ii) (iii) (iv) (v)
Model SW IP DIP DIP DIP
CbD NA 0 (F) 0 (F) 0.01 (C) 0 (F)
µxx NA NA 0 (F) 0 (F) 0.156 (C)

Table 2: Propagation of a positive wave. Overview of simulations. (C): parameter is calibrated; (F):
parameter is �xed; (NA): Not Applicable because the parameter does not exist in the model.

x

L

2L

W

W

y

Figure 3: Propagation of a positive wave into an idealized urban area. Left: de�nition sketch for
the street network. Right: bird's eye view of the free surface elevation computed at t = 600s over a
2.5m×2.5m computational grid.

Figure 4 shows side views of the free surface elevation pro�les computed at t = 300s and t = 600s.
Several simulations are carried out (Table 2): (i) the classical shallow water model on the 2.5m square
grid, (ii) the IP model [29] without friction (CbD = 0), (iii) the DIP model with

(
µxx, C

b
D

)
= (0, 0), (iv)

DIP with
(
µxx, C

b
D

)
= (0, 0.01) and (v) DIP with

(
µxx, C

b
D

)
= (0.156, 0). Simulation (i) is considered

as the reference simulation. The value CbD = 0.01 used in Simulation (iv) is the numerical value for
which the propagation speed of the centre of the bore is approximated best. The value µxx = 0.156
in Simulation (v) was calibrated to best reproduce both the average bore wave propagation speed and
the water level at the model boundary. Note that, in the reference Simulation (i), the water level
oscillates about an average value that is almost constant with x. The midpoint of the bore is located
at x = 710m for t = 300s and x = 1400m for t = 600s. This con�rms the self-similar character of the
reference solution at the scale of the network period (L = 100m).

10



 

 1

 1.1

 1.2

 1.3

 0  1000  2000

h (m)

x (m)

t = 300s

(i) Reference
(ii) IP model, CDb=0

(iii) DIP model, mu=0, CDb=0

 1

 1.1

 1.2

 1.3

 0  1000  2000

h (m)

x (m)

t = 300s

(i) Reference
(iv) DIP model, mu=0, CDb=0.01
(v) DIP model, mu=0.156, CDb=0

 1

 1.1

 1.2

 1.3

 0  1000  2000

h (m)

x (m)

t = 600s

(i) Reference
(ii) IP model, CDb=0

(iii) DIP model, mu=0, CDb=0

 1

 1.1

 1.2

 1.3

 0  1000  2000

h (m)

x (m)

t = 600s

(i) Reference
(iv) DIP model, mu=0, CDb=0.01
(v) DIP model, mu=0.156, CDb=0

Figure 4: Propagation of a positive wave into an idealized urban network. Side views of the free surface
pro�les computed at t = 300s and t = 600s.

As expected from the wave speed analysis, the IP model yields a signi�cantly underestimated wave
propagation speed, even when the head loss is assumed zero (CbD = 0). As a result, the positive wave
in Simulation (ii) is slower and the free surface elevation is higher than the reference case, Simulation
(i). Increasing CbD would only slow down the wave propagation speed even more and is therefore
not an option. The DIP model without transient dissipation (Simulation (iii)), in contrast, yields a
slightly overestimated wave speed and a subsequently slightly underestimated free surface elevation.
In Simulation (iv), tuning the building drag coe�cient CbD improves prediction of the bore speed but
destroys the self-similar character of the �ow solution, with a sloping free surface and a time-dependent
free surface elevation at the boundary. Only Simulation (v) predicts the bore speed and boundary water
level accurately while preserving the self-similar character of the solution.

3.2 Negative Wave

The purpose of this test is to validate the absence of transient momentum dissipation when ∂th < 0,
as formulated in the DIP model. The physical layout and initial/boundary conditions are identical to
those in Section 3.2, with the exception that qb = −0.5m2s−1 in order to create a negative wave. The
following simulations are carried out (Table 3): (i) the reference simulation whereby the classical 2D
shallow water equations are solved on the 2.5m×2.5m re�ned grid, (ii) IP simulation without building
drag (CbD = 0), (iii) DIP with

(
µxx, C

b
D

)
= (0.156, 0), where the momentum dissipation tensor D is

activated regardless of the sign of ∂th, (iv) DIP with a drag parametrization for building resistance
but without transient dissipation

(
µxx, C

b
D

)
= (0, 0.01), and (v) DIP with the momentum dissipation

tensor active for only ∂th > 0 (i.e., proposed model formulation). Note that ∂th ≤ 0 in this test case,
so momentum dissipation has no e�ect on the �uxes. The values µxx = 0.156 and CbD = 0.01 are used
in this test case because they appeared as the best �tting values in the previous test. Note that in
Simulation (i), the locally dropping water level next to the left boundary is due to boundary e�ects
and should be disregarded.
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Simulation (i) (ii) (iii) (iv) (v)
Model SW IP DIP DIP DIP
CbD (NA 0 (F) 0 (F) 0.01 (C) 0 (F)
µxx NA NA 0.156 (C) 0 NA

Table 3: Propagation of a negative wave.Overview of simulations. (C): parameter is calibrated; (F):
parameter is �xed; (NA): Not Applicable because the parameter does not exist in the model.
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Figure 5: Propagation of a negative wave into an idealized urban network. Side views of the free
surface pro�les computed at t = 300s and t = 600s.

As in the positive wave test case, the IP model (ii) yields signi�cantly underestimated wave propaga-
tion speeds. Consequently, the boundary value for the free surface elevation is underestimated. Simu-
lation (iii) shows that when dissipation is added to the DIP model for ∂th ≤ 0, wave speeds and water
levels are also underestimated in the region of constant state behind the wave. In Simulation (iv),
the presence of a non-zero source term on the right-hand side of the momentum equation destroys the
self-similar character of the solution. The water depth at the boundary decreases with time as a result
of the increasing length over which friction occurs. The proposed DIP model formulation (Simulation
(v)) is the only one where the self-similar character of the solution is preserved and the water levels
and average location of the negative wave are accurately predicted. Comparing Simulations (iii) and
(v) con�rms that the proposed momentum dissipation model should be triggered only when the water
level decreases.

Although Simulation (v) allows the average propagation speed of the negative wave to be estimated
accurately, it fails to represent correctly the spreading of the wave. This failure is explained by
inspecting the velocity �eld in the reference simulation (i). Figure 6 shows the velocity distribution for
725m ≤ x ≤ 925m at t = 600s. The �gure clearly indicates that the �ow velocity is not uniform across
the street. Along the building walls, a low velocity region can be observed, with a width approximately
20% of the width of the street. In this low velocity region, the velocity is approximately twice as small
as the velocity along the centreline of the street. This low velocity region is due to the water being
abstracted from the lateral streets into the main street. The nearly immobile water coming from the
lateral street mixes with the fast �owing water in the main street, causing a decrease in the �ow
speed near the interface between the two street networks. This non-uniform velocity distribution is
not accounted for in the proposed closure model (8), that assumes a uniform �ow velocity over the
cross-sections between the buildings. Improving the closure model (8) would require that a correction
coe�cient be applied to decrease φΓ, which would result in increasing‖uΓ‖. Increasing ‖uΓ‖ would
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Figure 6: Propagation of a negative wave into an idealized urban network. Reference simulation (i).
Velocity at t = 600s next to the left-hand boundary.

indeed lead to increase c′ (see formula in Table 1) and a subsequently increased spreading of the wave.

3.3 Dam-Break

The urban dam break problem was introduced in [15]. It is an initial value problem with a piecewise
constant initial state solved over the periodic street network presented in Sections 3.1 and 3.2. It is a
Riemann problem for the porosity-based equations. The initial conditions are de�ned as

h (x, 0) =

{
hL if x < 0
hR if x > 0

u (x, 0) = 0∀x
(26)

In the present test the street network extends from x = −2km to x = +2km. The following simulations
are carried out (Table 4): (i) classical 2D shallow water equations solved using the same re�ned grid as
in Sections 3.1-2, (ii) single porosity (SP) model [20], (iii) IP model, (iv)DIP model with µxx = 0.48,
(v) DIP model with µxx = 0.41. For µxx = 0.48 the propagation speed of the shock wave in the
DIP model is the propagation speed of the middle of the shock in Simulation (i). For µxx = 0.41
the propagation speed of the shock wave in the porosity model is that of the head of the shock in
Simulation (i). Figure 7 shows the water depth and unit discharge pro�les computed at t = 200s. In
Figure 7a the computational results of Simulation (i) are plotted for all of the computational cells.
In Figures 8b-d, the results of Simulation (i) are averaged over the 100m spatial period of the street
network to produce a solution at the resolution of the porosity model, which �lters out high frequency
�uctuations associated with wave re�ections o� building walls. Quite expectedly, the SP model yields
strongly overestimated wave propagation speeds (Figure 8a) and unit discharges (Figure 7b). The
IP model produces strongly underestimated wave propagation speeds (Figure 7a) and overestimated
unit discharges (Figure 7b). The DIP model, in contrast, accurately computes all aspects of the water
depth and unit discharge pro�les except the steepness of the forward moving shock wave (Figures 7b, d).
Modifying the momentum dissipation coe�cient µxx leads to di�erent water depths and unit discharges
behind the shock wave and does not a�ect the upstream part of the rarefaction wave, where no
momentum dissipation occurs.
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Simulation (i) (ii) (iii) (iv) (v)
Model SW SP IP DIP DIP
CbD NA NA 0 (F) 0 (F) 0 (F)
µxx NA NA NA 0.48 0.41

Table 4: Urban dam-break problem. Overview of simulations. C: parameter is calibrated; F: parameter
is �xed; NA: Not Applicable because the parameter does not exist in the model.
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Figure 7: Urban dam break problem. Comparison between the re�ned 2D shallow water simulation
and the various models. (a)Water depth pro�les, Simulation (i) displayed for all computational points.
(b)Water depth pro�les, Simulation (i) results are averaged over each 100m× 100m building block.
(c), (d): unit discharge pro�les, Simulation (i) results are averaged over each 100m-long building block.

4 Field-Scale Levee-Break Flood Modelling

4.1 Simulation objectives and setup

The purpose of this test case is validate �eld-scale applicability of the DIP model and to analyse and
discuss model performance. The test case chosen here involves a hypothetical scenario whereby an
earthen levee protecting a 450m×650m neighbourhood of West Sacramento (CA) suddenly fails, as
shown in Figure 8. The Sacramento conurbation is one of many metropolitan areas around the world
where vast areas of development are below sea level, protected by levees, and at risk of major damage
and casualties in the unfortunate event of a levee failure e.g. [25]. Consequently, models that e�ciently
and accurately model the hazard are of great interest for emergency preparedness and response. For
this hypothetical scenario, it is assumed that water in the Sacramento River Deep Water Ship Channel
is at a stage of 8m compared to an average ground elevation of 4m East of the levee, and for simplicity,
that the levee breaches instantaneously with a width of 100m and a bottom elevation of 5 m. Flooding
dynamics are established by solving the classical shallow-water equations on a re�ned grid, and the IP
and DIP models are run on specially designed coarse grids and compared to the re�ned grid solution
to characterize porosity model errors [22]. Since the purpose is to analyse porosity model errors, as
opposed to structural model errors associated with shallow-water models [22], a zero bottom friction is
assumed in all models. Previous work has shown that in densely developed areas, the blockage e�ects
of buildings are far more important than bottom friction relative to �ooding predictions [30, 22].
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Figure 8: Real-World test case. Aerial view of the West Sacramento neighbourhood. (c) Google Earth.
Neighbourhood centre coordinates: lat. 38°37'15�N, long. 121°34'44�W.

Aerial laser scanning point cloud data (lidar) were provided by the City of West Sacramento
and processed using a combination of automated and manual techniques in ArcGIS (ESRI, Redlands,
California, USA) to create a 3 m resolution Digital Terrain Model (DTM) and a 3 m resolution building
mask raster with values of 0 where buildings are present and values of 1 where there are no buildings.
This corresponds to the �nest possible resolution considering the spacing of point cloud data within
the study area. Building walls are modelled with a precision of approximately ±1.5m in the E-W and
N-S directions, and as such, closely aligned building walls are not always distinguished from each other
leading to the fusing of multiple buildings into a single structure. Small gaps in �ow barriers are often
important considerations in the development of urban �ood inundation models, and require ground-
based surveys to properly document [13]. However, for the present study, errors in the approximation
of building shape (as well as storage and conveyance) do not undermine the investigation because the
re�ned solution by the classical shallow-water equations and the coarse grid solution by the porosity
models reference the same building data.

4.2 Models

Fine grid model. The classical shallow-water equations are solved on a re�ned grid consisting of
an unstructured mesh of triangular and quadrilateral cells that is constrained by building walls. This
represents the so-called building-hole method of representing buildings in urban �ood models [30].
The mesh consists of 78840 cells with an average cell area 3.6m2 within the neighbourhood and 30m2

outside. The average cell width within the built area is 2.5m, as shown in Figure 9. Three types of
boundary conditions are used in the model (Figure 9). Boundary type 1 is a wall boundary condition
which is prescribed along the levee and the canal bank, as well as all building walls. Boundary type
2 is a prescribed free surface elevation which is speci�ed to be 8m across both the upstream and
downstream sections of the Deep Water Ship Canal. Boundary type 3 is a free out�ow boundary
condition. This condition is ensured by lowering arti�cially the mesh elevation by 4m along the
boundary and prescribing a Froude number in the normal direction u.n/c = 0.9. An a posteriori check
of the simulation results con�rms that the �ow conditions within the model remain hydraulically
disconnected from those at the boundary at all times.
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Figure 9: Re�ned model. Model de�nition sketch and magni�ed view of the mesh. Boundary type 1:
impervious. Boundary type 2: prescribed water level. Boundary type 3: free out�ow.

Coarse grid models. A coarse grid was created to support application of the IP and DIP models.
The grid consists of 2529 cells (Figure 10) with an average area of 345 m2within the neighbourhood
(to be compared with the average 3.6m2 in the re�ned model). A combination of triangular and
quadrilateral cell types were used to most e�ciently span the domain and place vertices at the centroids
of buildings, so model edges resolve the most narrow gaps between buildings to regulate conveyance
[29, 22] and to ensure that φΓ < φΩ. The mesh shown in Figure 10 is the result of manual processing.
The boundary conditions in this model are identical to those in the re�ned model. As in the �ne grid
model, a zero bottom friction is assumed, therefore the bottom drag coe�cient is set to zero and only
the building drag coe�cient is to be calibrated.

Model parametrization requires that the porosities φΩ and φΓ be computed over each cell and each
interface respectively. This is done by sampling the coarse model cells and interfaces. In each cell
of the coarse mesh, a large number of points (N = 10, 000) is generated with a uniform density so
as to cover the entire cell. For each of these points, the re�ned model mesh is scanned to determine
whether the point belongs to a building (thus lying outside the re�ned model domain) or is within the
re�ned model mesh. The domain porosity φΩ is computed as the ratio of the number n of points lying
within the re�ned model mesh to the total number N , φΩ = n/N . A similar procedure is used for the
cell interfaces. The order of magnitude of the imprecision in the areal and connectivity porosities is
therefore 10−4.

The porosity models were implemented using spatially uniform drag parameters and transient
momentum dissipation parameters. The former were calibrated under steady state conditions, by
comparison to �ne-grid model predictions, and the latter were calibrated under transient conditions.
Although the momentum dissipation model presented in this paper is not part of the original IP model,
it was implemented here for the sake of model comparison. In this way, the IP and DIP models have
the same number of calibration parameters. Benchmarking is thus free from model dimension-induced
biases. Additional detail is provided in the following sections.
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Figure 10: Porosity model. View of the mesh.

4.3 Model performance indicators

Several model performance indicators are used. The �rst is the L-norm of the error between the
porosity model and the �ne grid simulation results. For a simulated variable U , the norm is de�ned
as:

Lp =

[∑
i φΩiAi

∣∣Ui − Ui∣∣p∑
i φΩiAi

]1/p

, p > 0 (27)

where Ai and φΩi are respectively the area and the areal porosity of the cell i of the coarse model
mesh, Ui and Ui are respectively the values for U over the cell i computed by the porosity and the
re�ned model. Ui is computed by averaging U in all the cells of the re�ned mesh that belong to the
cell i of the porosity model. Three di�erent norms are tested: the L1, L2 and L∞ norms, but only L1

norms are reported hereafter because the L2 trends were similar and the L∞ norm was found to be
insensitive.

The second indicator is the Flood Extent Agreement FA, de�ned as

FA =

∑
i φΩiA

(I)
i∑

i φΩiA
(U)
i

(28a)

A
(U)
i =

{
Ai if i ∈ A(U)

0 if i /∈ A(U) , A
(I)
i =

{
Ai if i ∈ A(I)

0 if i /∈ A(I) (28b)

where the superscripts (I) and (U) denote cells that make up the intersection and union, respectively,
of the �ooded area predicted by the re�ned model and porosity model. A �ood extent agreement
FA = 1 indicates that both models give identical �ooded areas (thus the best possible agreement),
while FA = 0 indicates that the �ooded areas computed by both models have no intersection (thus the
worst possible �t).

The third indicator, used for vector variables such as the �ow velocity and unit discharge, is the
polar histogram. The polar histogram for a vector �eld w is computed as follows. The 360 degrees
angular range is divided into N = 36 intervals. For each class i = 1, . . . , N the following contribution
is computed

wi =
∑
j∈i

Aj ‖wj‖ , Wi =
wi∑N
i=1 wi

(29)

where j ∈ i is the set of cells in the model for which the direction of the �ow velocity falls within the
ith direction interval, Aj and wj are respectively the area and the average value of the vector w in
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the computational cell j. The sum of the Wi is therefore equal to unity and the polar histogram must
be interpreted as a normalized contribution of the various �ow directions.

4.4 Steady-state analysis

The classical shallow-water model and porosity model are �rst run for a period of t = 2400s which
establishes a steady state �ow from the Deep Water Ship Channel across the urbanized development
and over its outer perimeter (free overfall boundary condition). At a steady-state, the dissipation
parameter µ = 0, so the role of drag coe�cients on model accuracy can be isolated as in previous ap-
plications of porosity models [30, 29, 22]. The building drag coe�cients in the x− and y−directions for
the IP and DIP models are assumed uniform over the neighbourhood and zero outside. Drag coe�cient
values between 0 and 0.025 were tested to identify the optimal parameter value (i.e., calibration).

Figure 11 shows the maps of the L1 norm of the water depth error as a function of the building
drag coe�cients in the x− and y−directions. Figure 11a and 11b show the L1 norm of the water depth
error for the IP and DIP models respectively. Errors for the IP model are slightly larger than for the
DIP model, for example, IP errors range from ∼0.12-0.19 m while DIP errors range from ∼0.11-0.17
m. Figure 11 also shows that the sensitivity of each model to the drag coe�cient is relatively small, at
least within the range of parameter values considered here, compared to the sensitivity of the depth
predictions to the porosity model (IP vs DIP). Calibrating the drag coe�cient against the water depth
leads to the optimal values shown in Table 5. Table 5 also shows the corresponding L1 error norms
for the �ow velocity and the unit discharges. The optimal value of the drag coe�cient for IP and
DIP yield water depth errors of 0.122 and 0.107 m respectively. From a practical perspective, depth
errors of 0.10-0.15 m in a �ood prediction would be considered acceptable given that aerial lidar data
are typically characterized by errors of 0.10-0.015 m RMSE on hard surface such as concrete [28].
However, from a model development perspective, this error poses an opportunity for additional model
improvements. The L1-norms of the �ow velocities and unit discharge are seen to be larger for the
DIP model than for the IP model.
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Figure 11: Calibration of the building drag coe�cient. L1-norm of the water depth error. Left: IP
model. Right: DIP model.
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Model L1(h) (m) L1(V ) (m/s) L1 (hV )
(
m2/s

)
FA Optimal CbD,x Optimal CbD,y

IP 0.122 0.63 T0.39 100% 5× 10−3 0
DIP 0.107 0.71 0.43 100% 10−2 10−2

Table 5: Calibration of the building drag coe�cient against the steady state solution. Optimal para-
meter sets.

Figure 12 shows the �ow �elds computed by the re�ned, IP and DIP models at t = 2400s. Figure 13
shows the polar histogram for the steady state �ow velocity and unit discharge. It is visible from
Figures 12 and 13 that the re�ned �ow simulation exhibits two preferential directions along the main
street directions. The polar histograms for the velocity and the unit discharge have very similar
shapes. This indicates that the �ow is aligned along the two preferential directions regardless of the
water depth. Quite strikingly, averaging the re�ned simulation results onto the coarse grids used by
the IP and DIP models does not eliminate this directional behaviour. This indicates that the �ow
�eld is strongly directional on the scale of the building block. Both the IP and DIP models fail to
identify these preferential directions to a large extent. In the IP model, the histogram spreads rather
evenly over the fourth quadrant (spanning the South to East directions), while in the DIP model the
contribution of the x−velocity is exaggerated. The cells with a large x−velocity have small depths,
therefore their contribution to the unit discharge histogram is comparatively small. This explains
that the unit discharge histogram (Figure 13, lower right diagram) is more isotropic than the velocity
histogram. Both the IP and DIP models overestimate the velocity and unit discharge in the diagonal
direction.
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Figure 12: Calibration of the building drag coe�cient. Unit discharge (hu) and velocity vector �elds
(u) for the steady state �ow velocity and unit discharge at t = 2400s. Top: �ow velocity. Bottom:
unit discharge.
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Figure 13: Polar histograms for the steady state �ow velocity and unit discharge at t = 2400s. Top:
�ow velocity. Bottom: unit discharge. �Re�ned simulation�: �ne grid simulation results averaged onto
the coarse mesh used by the IP and DIP models.

4.5 Transient analysis

The preceding modelling scenario is now analysed at t = 120s when the levee-break wave front has
penetrated the neighbourhood but has yet to reach the model boundary. Under transient conditions,
the DIP model requires a dissipation parameter µ > 0, and here a calibration procedure is used to
estimate its value using the �ne grid solution as a benchmark. It is assumed that µ is uniform within
the neighbourhood and zero outside. Given building layout, the principal directions of the tensor
are the x− and y− directions. Therefore, µxy = µyx = 0 and only the coe�cients µxx and µyy are
calibrated assuming a range of 0 to 1. The optimal parameter values that minimize the depth error
(L1 norm) are given in Table 6. The contrast between the IP and DIP models is striking. While
the optimal x− and y− dissipation coe�cients for the IP model are small (0.0 to 0.2), the optimal
y− dissipation coe�cient is 0.7 for the DIP model, while no x−momentum dissipation is required to
reach optimal calibration. This is somewhat surprising in that the geometry of the streets is roughly
the same in the x− and y−directions. The structure of the neighbourhood thus clearly involves two
principal directions. A possible explanation is that the wave propagation properties play a key role in
reproducing the �ow features and that the momentum dissipation tensor is of secondary importance.
Another possible explanation is that the momentum dissipation model is incompletely parameterized
(see the discussion in Section 5). This may also be seen as a con�rmation of previous theoretical and
experimental studies [15, 22] where anisotropy was identi�ed as as a key feature of �ow dynamics.

Model L1(h) (m) L1(V ) (m/s) L1 (hV )
(
m2/s

)
FA Optimal µxx Optimal µyy

IP 0.081 0.12 0.32 77% 0.1 0.2
DIP 0.067 0.84 0.26 91% 0.0 0.7

Table 6: Calibration of the momentum dissipation coe�cient against the transient solution at t = 120s.
Optimal parameter sets.

Table 3 shows that the L1 norm for the water depth and discharge per unit width is smaller in
the DIP model than in the IP model. On the other hand, the L1 norm of the �ow velocity error is
signi�cantly larger in the DIP model than the IP model. This contrast in the performance with respect
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to V and hV is explained as follows: the DIP model makes a larger �ow velocity error than the IP
model in a limited number of cells. In these cells the water depth is very small, which contributes
to a small error in terms of unit discharge. The �ood extent agreement in the DIP model is also
signi�cantly better than for the IP model.

Figure 14 shows water depths at at t = 120s based on the re�ned model (Fig. 14a), the re�ned
model coarsened to the scale of the porosity model (Fig. 14b), the IP model (Fig. 14c), and the DIP
model with three combinations of dissipation parameters (Fig. 14d-e). This shows that an increase in
µyy reduces spreading of �ood water in the y− direction and qualitatively improves the accuracy of
the DIP prediction, compared with the coarsened �ne grid prediction. Hence, inclusion of anisotropic
dissipation parameters adds a second level of control over the spreading of �ood water, in addition to
the anisotropic porosity distribution resulting from the intersection of cell edges and building footprints.
Note that the IP model with the parameter set (µxx, µyy) = (0, 0.7) gives L1 (h) = 0.082m, L1 (V ) =
0.69m s−1 and L1 (hV ) = 0.32m2s−1.

Figure 14: Real world test case. Water depths simulated at t = 120s. x− and y− tick mark spacing
100m.

The unlikely parameter set (µxx = 0, µyy = 0.7) for the DIP model is explained to some extent by
the vector �elds and the polar histograms in Figures 15-16. The �ow velocity �eld simulated over the
�ne grid at t = 120s exhibits the same two preferential directions as those observed at t = 2400s.
The y−direction, that is associated with small depths, contributes much less to the histogram of the
unit discharge. This strongly anisotropic wave propagation behaviour is preserved after averaging the
�ne grid simulation results onto the coarse grid. This again is an indication that the �ow propagation
pattern exhibits two preferential directions on the scale of the building block. The velocity and unit
discharge �elds computed by the IP model give too much weight to the y−direction, while the �ow
velocity computed by the DIP model give too much weight to the x−direction. The polar histogram
for the unit discharge in the DIP model is very similar to that of the re�ned model. This may explain
the smaller L1 error in the water depths. Figure 15 con�rms the FA values in Table 3, in that the IP
model slightly overestimates the extent of the �ooded area compared to the DIP model.
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Figure 15: Unit discharge (hu) and velocity vector �elds (u) simulated for t = 120s. Top: �ow velocity.
Bottom: unit discharge.
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Figure 16: Polar histograms of the �ow velocity and unit discharge at t =120s. Top: �ow velocity.
Bottom: unit discharge.�Re�ned simulation�: �ne grid simulation results averaged onto the coarse
mesh used by the IP and DIP models.
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This may be attributed to several reasons: (i) the spatial scale of the perturbation (here the width
of the dyke breach) is of the same order of magnitude as the size of the building block, which is
practically relevant, but violates the scale separation principle (a basic requirement for upscaled,
continuum-based model validity, [1, 2]), (ii) the impinging wave propagates along one of the principal
directions of the drag and momentum dissipation tensors, thus resulting in a poorly conditioned inverse
problem, (iii) the momentum dissipation tensor model may be incomplete. In the present model, the
tensor µ is assumed independent from the �ow variables (water depth and �ow velocities). It is easy to
imagine, however, that the dissipation rate of the hydraulic transients described in Section 2 depends
on the �ow conditions. Besides, it may well be that the 2× 2 tensor formulation (12) does not su�ce
to fully reproduce the �ood dynamics. This point is detailed in the discussion section.

5 Discussion

There has been a debate as to whether the di�erential form of the porous shallow water equations is
meaningful, even though it is clearly valuable for demonstrating wave propagation properties [29, 15].
Writing the equations in di�erential form and inferring a continuous solution should not be considered
a problem if the modeller does not try to interpret the solution at a scale smaller than the typical
dimension of the heterogeneities (typically, the building size). Groundwater �ow modellers deal with
a similar problem [34] in strongly heterogeneous aquifers where the REV does not exist, or, if it does,
it is signi�cantly larger than the computational cell size [3]. It is possible to re�ne shallow-water
porosity model grids to minimize numerical truncation errors. However, mesh re�nement undermines
the primary goal of porosity models to radically reduce the computational cost of urban �ood modelling,
and calls for new methods of estimating porosity parameter distributions based on the intersection of
mesh cells and edges with building footprints. The authors acknowledge that the implications of mesh
design in terms of numerical accuracy have not been fully explored for the IP and DIP model and that
further research work is needed along this line.

The unusual transient momentum dissipation model presented in Section 2.3 is clearly superior to
energy dissipation models usually found in the literature. In particular, it allows the large scale self-
similar character of solutions to be preserved, while energy dissipation models do not. Nevertheless,
the computational examples shown in Sections 3.1 and 3.3 indicate that further e�ort is needed to make
the parameterization of this model fully explicit. Obviously, the dissipation tensor depends not only
on the geometry, but also on the hydraulic �eld. Indeed, while the computational examples in Sections
3.1 and 3.3 use the same geometry, the optimum value is µxx = 0.156 in Section 3.1 and µxx = 0.48 in
Section 3.3. Likewise, a strongly anisotropic parameter set (µxx = 0, µyy = 0.7) is obtained in the �eld
scale test case (Section 4) over a model with almost identical x− and y−geometries. More research will
be needed to characterize the relationship between the dissipation tensor and the hydraulic variables.
Another path for further research should consist in exploring a wider range of urban geometries (in
terms of building alignment, spacing, street orientation, etc.) than those explored in the present paper.

The DIP and IP models include parameters that cannot be measured and therefore must be inferred.
Whereas both models require a drag parametrization for buildings, the DIP also introduces momentum
dissipation parameters that allow for additional control over �ood spreading. If we assume that in any
application of porosity models, a �ne grid solution is needed to support calibration of drag coe�cients,
then the key di�erence between the DIP and original IP models is the number of parameters that need
to be calibrated, and thus the number of porosity model simulations (trials or functional calls) needed
to �nd optimal parameter values. One may question the value of a porosity model �ood simulation
if a �ne grid model is nevertheless required; bene�ts arise when large numbers of scenarios are run
to characterize model uncertainties (i.e, Monte Carlo methods) and when test cases on a relatively
small domain can be used to to develop functional forms for porosity model parameters that can be
extrapolated over large domains. Additional research is needed to pursue these possibilities.

When both the building drag and momentum dissipation models are incorporated in both the IP
and DIP models, the DIP model gives more accurate results than the IP model. It is also noted that
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the DIP model is more accurate than the IP model in idealized 1D tests when the transient momentum
dissipation is not activated, i.e., µ = 0. This indicates that the discharge closure model proposed in
Subsection 2.2 is essential to an accuracte representation of wave propagation properties.

The two-dimensional application presented in Section 4.4 shows that neither the IP nor the DIP
models achieve a satisfactory description of the anisotropic structure of the velocity distribution in the
transient phase. The �eld scale test presented in Section 4 shows that the directional behaviour of
the street network acts on a scale at least as large as that of the block scale. Averaging the �ow �eld
on the scale of a building block might have been expected to yield a rather isotropic velocity vector
�eld. This is not the case, as the polar histograms in Figure 16 indicate. At any rate, the unlikely
optimal parameter sets obtained from the calibration of both models (zero y−drag coe�cient for the IP
model, zero x−momentum dissipation for the DIP model) seem to point towards an inadequate model
structure. This preliminary conclusion is supported by previously reported work on the consequences of
attempting to calibrate overland �ow models with inappropriate structures [19]. Bearing in mind that
the IP model was speci�cally designed to address anisotropy issues [29], the reason for this limitation
of the IP and DIP models is not clear at this stage.

Field studies with measurements of �ood extent, �ood depth and �ood velocities are needed to
deepen understanding of the performance of urban �ood models in general, and porosity models in
particular. Sensitivity analyses of the one- and two-dimensional shallow water equations [16, 17] show
that one- and two-dimensional shallow water models behave very di�erently with respect to model
geometry, parameters and boundary conditions. It should thus not come as a surprise that the DIP
model exhibits excellent performance in one-dimensional test cases while showing moderate success
in two-dimensional �ow simulations. It has been shown at the laboratory scale that a combination
of physical measurements, �ne grid model predictions, and porosity model predictions can be used to
distinguish between structural model errors in the shallow-water equations, scaling errors associated
with use of relatively coarse grid, and porosity model errors [22]. However, �eld-scale performance
is the true test of these models and in this context there are many additional sources of uncertainty
beyond what is encountered at the laboratory scale such as uncertainty in topography, �ow volumes,
�ood control infrastructure such as storm drains and pumps, and the physical behaviour of buildings
such as their capacity to store and convey �ood water, e.g., through doors and windows. Previous
work on shallow-water models suggests that topographic errors and �ood volumes are the primary
controls on urban �ood model accuracy [5, 12], so a key remaining issue in the development of porous
shallow-water models is whether and to what extent porosity models errors presently serve to limit
model accuracy.

6 Conclusions

The Dual Integral Porosity (DIP) model presented herein achieves closure of the previously introduced
Integral Porosity (IP) model by de�ning an edge-based model solution (boundary of computational
cell) in addition to a cell-based model solution (interior of a computational cell). The DIP model
results in a modi�cation of the mass and momentum �uxes compared to the IP model, as well as the
wave propagation speeds. A wave propagation speed analysis of the DIP model shows that problem
well-posedness requires that the storage porosity be greater than or equal to the conveyance porosity.
Several veri�cation test cases including a positive wave, a negative wave and a dam-break wave clearly
demonstrate a major accuracy advantage of the DIP model over the IP model when predicting the �ow
�eld, including �ow depth, �ow velocity and the position of shock waves even without the proposed
transient dissipation model. Furthermore, the transient momentum dissipation scheme proposed for
the DIP model is shown to exert a signi�cant in�uence on the propagation properties of positive waves.
This model contributes to increase the response range of the DIP model compared to the original IP
model. Furthermore, the transient dissipation model introduces another level of control for improving
model accuracy at the expense of an additional parameter that must be calibrated.

The DIP model includes a new, transient momentum dissipation term that acts directly on �uxes,
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in contrast to conventional momentum dissipation terms (i.e., bottom friction) that appear as a sink
term. Veri�cation test cases support the use of dissipation only for positive waves de�ned by ∂th > 0.
The transient dissipation parameter(s) can be identi�ed through a calibration procedure using a �ne
scale shallow-water model as a reference. In two dimensions, this is introduced as a 2× 2 tensor.

Field scale testing shows that the DIP model can achieve smaller errors in �ood depth and discharge
per unit with, and better �ood extent accuracy, compared to the IP model. Additionally, �eld-scale
testing shows that transient momentum dissipation introduces an important control for shaping the
directionality of �ood spreading within arrays of buildings that obstruct �ow. Hence, the DIP o�ers
greater versatility for �eld-scale modelling than the IP model in the sense that there is greater control
over model solutions. Nevertheless, both the DIP and IP models fail to some extent to reproduce the
preferential directions of the �ow �eld in the transient phase. The practice of shallow-water porosity
model calibration and application is at its infancy, and thus more work is needed to provide guidance
for accurate and e�cient modelling and to deepen understanding of the trade-o�s between model
structure (including the number of calibration parameters), mesh design and model performance at
�eld scale.
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