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We consider solutions to the time-harmonic Maxwell's equations in two and three dimensions. For such solutions we derive high-order terms in the asymptotic expansions of the perturbations resulting from the presence of diametrically small electromagnetic inhomogeneity with parameters di¤erent from the background medium. Our study is rigorous and is founded on layer potential techniques. Our formulas may be awaited to head e¤ective computational identi…cation algorithms, aimed at reconstructing small dielectric object from electromagnetic boundary measurements.

Introduction

In this paper, we use layer potential techniques to derive complete asymptotic expansions for (tangential) boundary perturbations in the solutions of the Maxwell equations resulting from small perturbations of the shape of an inhomogeneity with smooth boundary in R d , for d = 2; 3. These formulae may permit us to advance the development of high-order terms in the asymptotic expansions of the boundary perturbations of electromagnetic …elds caused by the presence of small inhomogeneity. So at this stage, a development of e¤ective algorithms for determining certain properties of the shape of an inhomogeneity will be more possible. Moreover, the general approach of this paper can be extended to other investigations such as the context of interface problems related to electromagnetic boundary measurements, and to develop complete and precise asymptotic expansions of both eigenvalues and eigenfunction associated to full Maxwell equations as a generalization of the previous results. Thus, it will be easy to provide accurate energy estimates and reconstruction procedures of interfaces from measurements of these eigenvalues and eigenfunctions. Time-harmonic Maxwell equations occur in many applications and frequently involve non homogeneous domains, making boundary integral formulation advantageous. But, compared with other elliptic problems such as the Helmholtz equation Maxwell equations pose supplementary di¢ culties in boundary conditions. More precisely, boundary conditions are formulated in terms of tangential components of magnetic and of electric …elds. In fact, this di¢ culty requires spaces so that traces and operators de…ned by integral equations are continuous, leading in a natural way to variational formulations in speci…c Hilbert spaces. Beyond electric …eld integral equations, to the best of our knowledge, no theory existed for boundary layer techniques related to Maxwell equations by providing complete asymptotic expansions of solutions with respect to shape variation parameter. Let be a bounded domain in R d , d = 2 or 3, with a connected Lipschitz boundary @ . Let denote the unit outward normal to @ . Suppose that contains a small inhomogeneity D of the form D = z + B where B, is a bounded Lipschitz domain in R d containing the origin, and is the order of magnitude of the diameter of the inhomogeneity. We assume that the domain D is separated apart from the boundary. More precisely, we assume that there exists a constant c 0 > 0 such that: dist(z; @ ) c 0 > 0:

(1.1)

Let " re be the (real) electric permittivity and the magnetic permeability of the domain containing di¤erent materials. The time-dependent linear Maxwell equations in take the form: r E(x; t) = (x)@ t H(x; t); for (x; t) 2 (0; 1); r H(x; t) = " re (x)@ t E(x; t) + J f (x; t); for (x; t) 2 (0; 1);

where E 2 C d is the electric …eld and H 2 C d is the magnetic …eld. But, J f is the free current related to the …eld E by J f = E, where represents the conductivity of the medium.

In this paper we study the time-harmonic solutions to these equations, we consider special solutions of the form: E(x; t) = <(E(x)e i!t ) and H(x; t) = <(H(x)e i!t ); x 2 ; t > 0;

where ! > 0 is a given frequency, and where the C d valued …elds E(x) and H(x) satisfy the time-harmonic Maxwell equations:

( r E = i! H in ; r H = i!"E in ;

(1.3)

where "(x) = " re (x) + i (x) ! , for x 2 means the complex permittivity. Now, one can eliminate the magnetic …eld from the above equations by dividing the …rst equation in (1.3) by and taking the curl to obtain the following system of equations for E:

r 1 r E ! 2 "E = 0 in : (1.4)
Having found the electric …eld E, we then obtain the magnetic …eld H through the formula:

H = 1 i! r E: (1.5) 
It is well known that to get particular non-trivial solutions to (1.4), one can prescribe non-trivial boundary conditions for E , on the boundary of the domain with means the outward unit normal to . Let 0 > 0, " re 0 > 0 and 0 denote the permeability, the (real) permittivity, and the conductivity of the background medium, by means of " 0 = " re 0 + i 0 ! denotes the background complex permittivity. Also, we denote by 1 > 0, " re 1 > 0 and 1 respectively the permeability, the (real) permittivity, and the conductivity of the inhomogeneity with " 1 = " re 1 + i 1 ! means the associated complex permittivity. For simplicity, we shall assume that all these parameters are constants and that 0 << !" re 0 , 1 << !" re 1 . In that case " 0 " re 0 and " 1 " re 1 . We denote by k = ! p " > 0 the wave number, where ! > 0 is a given frequency.

Using this notation we introduce the piecewise constant magnetic permeability:

(x) = ( 0 ; x 2 nD; 1 ; x 2 D: (1.6)
If we allow the degenerate case = 0, then the function 0 (x) equals the constant 0 . The piecewise constant electric permittivity, " is de…ned analogously. The electric …eld in the presence of the inhomogeneity, is denoted E . It is the solution to the following Maxwell's equations:

(

r 1 r E ! 2 " E = 0 in ; E = g; on @ ; (1.7)
where g is a tangential …eld on the boundary @ that furthermore belongs to an adequate Sobolev space.

Considering (1.5), we …nd that the magnetic …eld H solves: ( r

1 " r H ! 2 H = 0 in ; 1 " r H = g; on @ : (1.8)
The equations in (1.7) may alternatively be formulated as follows:

r (r E ) = ! 2 0 " 0 E ; r (E ) = 0 in n D; (1.9) r (r E ) = ! 2 1 " 1 E ; r (E ) = 0 in D ; (1.10) E is continuous across @D; (1.11) 1 0 (r E ) j + 1 1 (r E ) j = 0 on @D;
(1.12)

" 0 E j + " 1 E j = 0 on @D; (1.13) 
E = g on @ : (1.14) 
Here denotes the outward unit normal to @D (and to @ ); superscript + and indicate the limiting values as we approach @D from outside D, and from inside D, respectively. The electric …eld, E 0 , in the absence of inhomogeneity, satis…es:

r (r E 0 ) = ! 2 0 " 0 E 0 ; r (E 0 ) = 0 in ; (1.15) E 0 = g on @ : (1.16)
We assume that "! is not a resonant frequency for the problem (1.15)-(1.16)" (1.17) and so by assumption there exists a unique solution

(E 0 ; H 0 ) 2 [H( curl ; )] 2 = fv 2 L 2 ( ) 3 ; curl v 2 L 2 ( ) 3 g 2 of (1.3) if = 0.
It has been shown in [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic …elds due to the presence of imperfections of small diameter II. The full Maxwell equations[END_REF] that assumption (1.17) insures also well-posedness for the -dependent case for su¢ ciently small, that are problems (1.3) and (1.9)- (1.14). The main achievement of this paper is a rigorous derivation, based on layer potential techniques, of complete asymptotic expansions of E , H , r E as ! 0. These formulas generalize those by Vogelius and Volkov [START_REF] Vogelius | Asymptotic formulas for perturbations in the electromagnetic …elds due to the presence of inhomogeneities[END_REF][START_REF] Friedman | Identi…cation of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF], where only solutions with a transverse electric and a transverse magnetic symmetries were considered. In [START_REF] Ammari | Electromagnetic Scattering by Small Dielectric Inhomogeneities[END_REF][START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic …elds due to the presence of imperfections of small diameter II. The full Maxwell equations[END_REF][START_REF] Ammari | Asymptotic formulas for perturbations in the eigenfrequencies of the full Maxwell equations due to the presence of imperfections of small diameter[END_REF], Ammari et al. have also derived formulas for the perturbations in boundary integrals of solutions to the time-harmonic Maxwell equations. Thanks to electromagnetic potentials, we decide to go more in this line of work, and to advance the generalization of related previous results. For example, in [START_REF] Ammari | Electromagnetic Scattering by Small Dielectric Inhomogeneities[END_REF] we have presented only formal derivations of asymptotic expansions of the solutions to Maxwell equations. Moreover, these results are based on Lippman-Schwinger integral representation formula which provides us only with asymptotic formulae at lower orders. Conversely, in the present paper we use layer technique methods based on formulations introduced before in [START_REF] Ammari | Electromagnetic Scattering by Small Dielectric Inhomogeneities[END_REF][START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF][START_REF] Verchota | Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains[END_REF] and used in several works of Bu¤a et al. [START_REF] Bu¤a | On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra[END_REF][START_REF] Bu¤a | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF] and Costabel et al. [START_REF] Costabel | Boundary integral operators on Lipschitz domains: Elementary results[END_REF][START_REF] Costabel | Volume and surface integral equations for electromagnetic scattering by a dielectric body[END_REF][START_REF] Costabel | On the Kleinman-Martin integral equation method for the electromagnetic scattering problem by a dielectric[END_REF][START_REF] Costabel | Strongly elliptic boundary integral equations for electromagnetic transmission problems[END_REF]. Additionally, we refer the readers to the works [START_REF] Mitrea | Vector potential theory on nonsmooth domains in R3 and applications to electromagnetic scattering[END_REF][START_REF] Korikov | Asymptotic of Maxwell system eigenvalues in a domain with small cavities[END_REF]. These authors have used di¤erent techniques from harmonic analysis to develop a theory of boundary integral equations for the time-harmonic Maxwell equations on Lipschitz domains. For a same approach, we …nd the potential work of Ammari and Kang in [START_REF] Ammari | Boundary Layer Techniques for Solving the Helmholtz Equation in the Presence of Small Inhomogeneities[END_REF] where a complete asymptotic expansion of solutions to the Helmholtz equation is obtained. Moreover, the general approach developed in this paper could be carried out to obtain more precise asymptotic formulas for the full Maxwell's equations than those derived in [START_REF] Ammari | Asymptotic formulas for perturbations in the eigenfrequencies of the full Maxwell equations due to the presence of imperfections of small diameter[END_REF] and [START_REF] Asch | Numerical localisation of electromagnetic imperfections from a perturbation formula in three dimensions[END_REF]. The proofs of our asymptotic expansions are radically di¤erent from the ones found in above cited references. They are based on layer potential techniques and a new decomposition formula of the solution to the Maxwell equation. This decomposition formula generalizes that introduced by Ammari and Kang [START_REF] Ammari | Boundary Layer Techniques for Solving the Helmholtz Equation in the Presence of Small Inhomogeneities[END_REF] for the Helmholtz equation, and by Kang and Seo in [START_REF] Kang | Layer potential technique for the inverse conductivity problem[END_REF] for steady-state voltage potentials. We note that our formulas will …nd important applications for developing e¤ective algorithms for reconstructing small dielectric inhomogeneities from electromagnetic boundary measurements which can be applied for medical imagining, breast cancer, and land mines.

The outline of this paper is as follows. Section 2 is devoted to the introduction of some notations and preliminaries regarding layer potentials. In section 3, we give di¤erent representations of solution of the underlined problem. In section 4, after giving an estimate to the di¤erence E E 0 , we provide a rigorous derivation of complete asymptotic expansions of tangential traces of both electric and magnetic …elds. Based on electromagnetic potentials, we provide also complete asymptotic expansions of the electric …eld E (x) for x 2 . For d = 2, we give a rigorous asymptotic expansion of E (x) at order 2 which generalize the one obtained by matched expansions in [START_REF] Ammari | Electromagnetic Scattering by Small Dielectric Inhomogeneities[END_REF] for the time-harmonic Maxwell's equations with TE symmetry.

Preliminary results

We will develop a boundary integral formulation for solving time-harmonic Maxwell equations. The theory of layer potentials has been developed in relation to the boundary value problems. In this investigation we will recall and we will use both electric and magnetic layer potentials for proving our complete asymptotic expansion of solution when the shape parameter ! 0.

Firstly, we present some results on the characterization of traces associated to Sobolev spaces of interest for Maxwell's equations.

Functional spaces

In this paper, we denote by bold letters the functional spaces for the vector …elds in R d . Thus, we denote by D( ) the space of the 3D vector …elds with each component belonging to C 1 0 ( ) and by D 0 ( ) the corresponding dual space. The duality is denoted by < ; > D . Moreover, H s ( ) denotes the usual Sobolev space on and H s ( ) denotes (H s ( )) d and L 2 ( ) denotes (L 2 ( )) d . As usual for Maxwell equations, we recall that if the domain is regular, all the de…nitions here below make sense and are correct (see [START_REF] Bu¤a | On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra[END_REF][START_REF] Bu¤a | On traces for H( curl ; ) in Lipschitz domains[END_REF][START_REF] Terrasse | Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés[END_REF]). Let us set:

H( curl ; ) := fv 2 L 2 ( ); curl v 2 L 2 ( )g; k k H( curl ; ) the graph norm; H(div ; ) := fv 2 L 2 ( ); div v 2 L 2 ( )g; k k H(div ; ) the graph norm; := fv : v 2 H( curl ; )g;
H s (@ ) := (H s (@ )) d for s > 0; and H 0 (@ ) := L 2 (@ ):

Layer potentials for the Helmholtz equation

Let us …rst review some well-known properties of the layer potentials for the Helmholtz equation and recall some useful identities.

Let D be a bounded domain in R d ; d = 2; 3. We assume that @D is Lipschitz. Let k (x) be the fundamental solution for + k 2 , that is for x 6 = 0:

k (x) = 8 > > < > > : i 4 H 1 0 (kjx yj); d = 2; e ikjx yj 4 jx yj ; d = 3; (2.1)
where H 1 0 is the Hankel function of the …rst kind of order 0. Similarly, the fundamental solution for the Laplacian is for x 6 = 0:

0 (x) = 8 > > < > > : 1 2 logjx yj; d = 2; 1 4 jx yj ; d = 3: (2.
2)

The single and double layer potentials of the density function ' on D is de…ned by:

S k D '(x) := Z @D k (x y)'(y)d (y); x 2 R d ; (2.3) D k D '(x) := Z @D @ @ y k (x y)'(y)d (y); x 2 R d n @D: (2.4)

Electromagnetic potentials

We use some well known results about traces of vector …elds and integral representations of time-harmonic electromagnetic …elds. Details can be found in [START_REF] Bu¤a | On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra[END_REF][START_REF] Bu¤a | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF][START_REF] Bu¤a | On traces for H( curl ; ) in Lipschitz domains[END_REF][START_REF] Costabel | Boundary integral operators on Lipschitz domains: Elementary results[END_REF][START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF].

For a vector function u 2 (C 1 ( )) d and a scalar function v 2 C 1 ( ) we de…ne the traces :

(u) = uj @ ; Dir (u) = ( u)j @ Dirichlet conditions; N eu (u) = ( curlu)j @ Neumann conditions:
It is well known that for s > 0, the traces

: H s+1=2 ( ) ! H s (@ ); Dir : H s+1=2 ( ) ! H s (@ )
are continuous.

According to [START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF], we can de…ne some useful surface di¤erential operators such that the tangential gradient denoted by r @ , the surface divergence denoted by div @ , and the tangential vector curl denoted by curl @ . Now, using previous de…nitions we can de…ne the Hilbert space:

T H 1=2 div (@ ) := fv 2 H 1=2 (@ ); v = 0; div @ v 2 H 1=2 (@ ))g
endowed with the norm:

k k T H 1=2 div (@ ) = k k H 1=2 (@ ) + kdiv k H 1=2 (@ ) :
Remark 2.1 The single layer potential de…ned in (2.3) is applied also to tangent vectors and, since it is never misleading, we shall use the same notations.

We de…ne the electric potential V k D generated by j 2 T H 1=2 div (@D) by

V k D j = kS k D j + 1=krS k D div @ j: (2.5)
Analogously, we de…ne the magnetic potential

W k D generated by m 2 T H 1=2 div (@D) by W k D m = curlS k D m: (2.6)
The following results can be found in [START_REF] Bu¤a | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF][START_REF] Costabel | Boundary integral operators on Lipschitz domains: Elementary results[END_REF][START_REF] Costabel | On the Kleinman-Martin integral equation method for the electromagnetic scattering problem by a dielectric[END_REF], for example.

Lemma 2.2 ([7]

) Let B be a bounded domain with a smooth boundary B. Then, the potentials V k B and W k B de…ned by (2.5) and (2.6) respectively are continuous from T H 1=2 div (@B) to H(curl; B). Moreover, for j 2 T H 1=2 div (@B) we have, for all x 2 R d n@B:

(curlcurl k 2 I)V k B j(x) = 0 (2.7) (curlcurl k 2 I)W k B m(x) = 0 (2.8)
where I is the identity operator.

Moreover, the following jump conditions hold, on @D, as given in [START_REF] Bu¤a | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF]:

k Dir (V k D ) = N eu (W k B ); (2.9) 
k Dir (W k D ) = N eu (V k B ):
(2.10)

Representation of solutions

Our aim in this section is to give a representation of the solution of (1.9)-(1.14) through boundary layer techniques. This representation generalizes those found in [START_REF] Ammari | Boundary Layer Techniques for Solving the Helmholtz Equation in the Presence of Small Inhomogeneities[END_REF] for Helmholtz Equation and in [START_REF] Kang | Layer potential technique for the inverse conductivity problem[END_REF] for the harmonic equation. Our …rst step in this investigation, is to extend the well-known Stratton-Chu integral representation to electromagnetic …elds

(E; H) 2 (H( curl ; )) 2 .
Recall the well known representation (see for example [START_REF] Bu¤a | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF][START_REF] Costabel | Volume and surface integral equations for electromagnetic scattering by a dielectric body[END_REF]).

Lemma 3.1 (Stratton-Chu) Suppose that O is a C 2 regular bounded domain in R 3
. Let be the unit outward normal to @O, and let

(E; H) 2 C 1 (O) C 1 (O) solution of the time-harmonic Maxwell equations 8 > < > : r E ikH = 0; in O; r H + ik"E = 0; in O B:C; on @O; (3.1)
where k = ! p " > 0 is the associated wave number. Then for all x 2 O, we have:

E(x) = r Z @O (y) E(y) (x y) d (y)+r Z @O (y) E(y) (x y) d (y) (3.2) ik Z @O (y) H(y) (x y) d (y) + ik Z O r H(y) + ikE(y) (x y) dy r Z O r E(y) (x y) dy + r Z O r E(y) ikH(y) (x y) dy;
with the fundamental solution of the Helmholtz equation.

According to [START_REF] Costabel | Volume and surface integral equations for electromagnetic scattering by a dielectric body[END_REF], representation (3.2) holds also for

(E; H) 2 H( curl ; ) H( curl ; ),
where the boundary values are understood in the sense of weak tangential and normal traces in H 1=2 (@O). Now, one can use Lemma 3.1 to get the …rst integral representation of the solution to problem (1.9)-(1.14). Proposition 3.2 Suppose that D is a domain compactly contained in with a connected Lipschitz boundary and wave number k. Suppose that we have condition (1.17). Let (E; H) be the solution of (1.3) and the Cauchy data j = [ E] @D , and m = [ E] @D . Then, if we set j 0 = H 0 j @ , and m 0 = E 0 j @ , we immediately get:

E(x) = Z @D k 0 (x; y)j(y) d (y) 1 0 " 0 ! 2 r Z @D k 0 (x; y) @D j(y) d (y) (3.3) r Z @ k 0 (x; y)m 0 (y) d (y) + Z @ k 0 (x; y)j 0 (y) d (y) + 1 0 " 0 ! 2 r Z @ k 0 (x; y) @ j 0 (y) d (y); for x 2 nD
and,

E(x) = Z @D k (x; y)j(y) d (y) 1 "! 2 r Z @D k (x; y) @D j(y)d (y); for x 2 D; (3.4)
where k is given by (2.1).

Proof.

Let E(x) be the solution of the problem (1.9)-(1.14). Then, with the Stratton-Chu representation formula (3.2), we may represent the solution E(x) in as follows: For more details about the proof of last integral relation, we refer the readers to [START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF] and [START_REF] Colton | Integral equation methods in scattering theory[END_REF]. Now, inserting relations found in (1.3) and (1.9)-(1.10) into last relation (3.2), immediately volume integrals vanish. Thus, to get the desired results we insert appropriate boundary conditions.

Ẽ(x) = r Z @ [@D (y) Ẽ(y) k(x y) d (y)+r Z @ [@D (y) Ẽ(y) k(x y) d (y) (3.5) i k Z @ [@D (y) H(y) k(x y) d (y)+i k Z ( nD)[D r H(y)+i k Ẽ(y) k(x y) dy r Z ( nD)[D r Ẽ(y) k(x y) dy + r Z ( nD)[D r Ẽ(y) i k H(y) k(x y
Based on the trace operators and the results found in Proposition 3.2, it is easy to prove the following transmission conditions. Lemma 3.3 Suppose that we have all hypothesis of Proposition 3.2. Let f = H 0 j @ , and

g = E 0 j @ . Then, if j 2 T H 1=2 div (@D) solves (3.3)-(3.4
) for E solution of (1.9)-(1.14), the following boundary conditions hold:

g(x) = V k 0 f (x) + W k 0 g(x) (x) V k 0 D j(x) (x); x 2 @ ; (3.6) V k D j(x) (x) = V k 0 f (x) + W k 0 g(x) (x) V k 0 D j(x) (x); x 2 @D; (3.7 
)

" 1 V k D j(x) (x) = " 0 V k 0 f (x) + W k 0 g(x) (x) " 0 V k 0 D j(x) (x); x 2 @D; (3.8) 1 1 V k D j(x) (x) = 1 0 V k 0 f (x) + W k 0 g(x) (x) (3.9) 1 0 V k 0 D j(x) (x); x 2 @D:
The potential operators V k D and W k D are de…ned by (2.5) and (2.6) respectively.

The following result gives the counterverse of that proved in Proposition 3.2.

Theorem 3.4 Suppose that we have all hypothesis of Proposition 3.2. Let j 0 = H 0 j @ , and m 0 = E 0 j @ . Then, if j 2 T H 1=2 div (@D) solves (3.3)-(3.4), the vector valued function E given by:

E(x) = V k 0 j 0 (x) W k 0 m 0 (x) V k 0 D j(x); for x 2 nD; (3.10)
and,

E(x) = V k D j(x) for x 2 D (3.11)
solves the problem (1.9)-(1.14).

Proof.

According to (2.7)-(2.8) and Remark 2.1, the potentials V k 0 and W k 0 satisfy the Maxwell equations. Then, in each case (in nD or in D) the integral representations of E satisfy the Maxwell equations (1.9)-(1.10). It remains to prove that the boundary conditions (1.11)- (1.14) are satis…ed if the density j satis…es a speci…c equations. But, by simple computations in (3.10) and in (3.11), one can deduce easily the desired boundary conditions from relations (3.6)-(3.9) given by Lemma 3.3. Our result is then proved.

To explain more our principal results in this paper, we may exploit Proposition 3.2 to expand solution of (1.9)-(1.14) into di¤erent terms. This technique was used …rstly by Kang and Seo in [START_REF] Kang | Layer potential technique for the inverse conductivity problem[END_REF], and later was more developed by Ammari and Kang in [START_REF] Ammari | Boundary Layer Techniques for Solving the Helmholtz Equation in the Presence of Small Inhomogeneities[END_REF] for Helmholtz problem. Our strategy, now, is to go more with this method by providing a generalization to time-harmonic Maxwell equations. Then, the following main representation holds. Theorem 3.5 Suppose that we have all hypothesis of Proposition 3.2. Let E be the solution of (1.9)-(1.14) with f = N eu (Ej @ ) and g = Dir (E)j @ . De…ne

H(x) := V k 0 f (x) + W k 0 g(x); x 2 R d n@ ; (3.12)
and let (j; m) 2 T H 1=2 div (@D) T H 1=2 div (@D) be the unique solution of 8 > < > :

V k D j V k 0 D m = H on @D; 1 1 N eu V k D j 1 0 N eu V k 0 D m = 1 0 N eu (H) on @D; " 1 V k D j " 0 V k 0 D m = " 0 H on @D: (3.13) 
Then E can be represented by:

E(x) = V k 0 D m(x) + H(x); x 2 nD; V k D j(x) x 2 D: (3.14)
Moreover, 8 n 2 N , there exists a constant C n = C(n; ; dist(D; @ )) independent of jDj such that

kHk C n (D) C n kgk T H 1=2 div (@ ) : (3.15)
Proof. From Lemma 2.2, we know that the electric potential operators V k 0 D m(x) and the magnetic potential operator W k 0 D m(x) satisfy the Maxwell equations (2.7),

(2.8) respectively. Then, the vector valued function H de…ned by (3.12) satis…es the same Maxwell equations. Moreover, the fact that the densities j and m solve uniquely the system of equations (3.13), we conclude that the …eld E given by (3.14) solves the equations (1.9)-(1.14). From Lemma 2.2, we know that the electric potential operators V k 0 D m(x) and the magnetic potential operator W k 0 D m(x) satisfy the Maxwell equations (2.7), (2.8) respectively. Conversely, to justify representation (3.14), we may use Theorem 3.4 which guarantees that representation (3.14) solves the problem (1.9)- (1.14). So that by uniqueness condition, the solution E satis…es (3.14). The representation formula (3.15) was proved in [START_REF] Kang | Layer potential technique for the inverse conductivity problem[END_REF] for the steady sate problem, and in [START_REF] Ammari | Boundary Layer Techniques for Solving the Helmholtz Equation in the Presence of Small Inhomogeneities[END_REF] for the Helmholtz problem and it is easily seen that the same proof works for the full Maxwell equations. Based on de…nition (3.12), it is not hard to …nd a positive constant C = C(n; dist(D; @ )) such that:

kHk C n (D) C kf k T H 1=2 div (@ ) + kgk T H 1=2 div (@ ) ; (3.16) 
where f = curl E j @ , g = E j @ and n a positive integer.

To obtain our main estimation, we may use the natural weak formulation of the electric problem that, for E 2 H( curl ; ): a(E; v) = l(v) for all v 2 H( curl ; );

(3.17

)
where the conjugate-linear functional l(v) = Z @ g v d is to be interpreted as the duality pairing on @ between the appropriate spaces of distributions and test functions. But, a(E; v) denotes the sesquilinear form:

a(E; v) = Z 1 r E r v dx ! 2 Z "E v dx:
It is well known that if ! 2 is not an eigenfrequency of the Maxwell problem (1.3), the solution E is the unique solution to weak formulation (3.17) such that:

kEk H( curl ; ) Ckgk T H 1=2 div (@ ) ; (3.18) 
where the positive constant C depends only on the medium parameters ; ", 0 and " 0 . Let v 2 T H 1=2 div (@ ). For such a datum v, let us consider ṽ 2 H( curl ; ) such that:

( v = ṽ ; on @ ; kṽk H( curl ; ) C 1 kvk T H 1=2 div (@ ) ; (3.19) 
where

C 1 = C 1 (
) is a positive constant depending only on . Note that a¢ rmation (3.19) can be deduced from [START_REF] Ammari | Asymptotic formulas for perturbations in the eigenfrequencies of the full Maxwell equations due to the presence of imperfections of small diameter[END_REF][START_REF] Asch | Numerical localisation of electromagnetic imperfections from a perturbation formula in three dimensions[END_REF].

Analogously to formulation (3.17), we may write a formulation for the magnetic …eld H as follows:

Z @ f v d = Z 1 " r H r v dx ! 2 Z H v dx; (3.20)
where is a smooth function, with = 1 in a neighborhood of @ and = 0 in D. Now, applying Cauchy-Schawrtz inequality to relation (3.20), we immediately get:

Z @ f v d C kr Hk L 2 ( nD) k + kHk L 2 ( nD) kṽk H( curl ; ) :
By relation (1.5), the following holds:

Z @ f v d CkEk H( curl ; nD) kṽk T H 1=2 div ( 
@ ) : Thus, using (3.19) we immediately get:

Z @ f v d CkEk H( curl ; nD) kvk T H 1=2 div (@ ) : Since v 2 T H 1=2 div (@ ) is arbitrary, we obtain: kf k T H 1=2 div (@ )
CkEk H( curl ; nD) ;

where C depends only on dist(D; @ ). Note that our last inequality agrees with the result sated by Bu¤a et al. in [START_REF] Bu¤a | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF]. Now, It follows from (3.18), that:

kf k T H 1=2 div (@ )
Ckgk T H 1=2 div (@ ) :

(3.21)

Therefore, inserting last estimation into (3.16), we obtain:

kHk C n (D) Ckgk T H 1=2 div ( 
@ ) ; where C n = C(n; ; dist(D; @ )). This achieves the proof.

Due to jump conditions (2.9)-(2.10), the following representation formula for the solution H to (1.3) holds.

Corollary 3.6 Suppose that we have all hypothesis of Theorem 3.5. Let H be the solution of (1.3). Let H be given by (3.12) and let (j; m) 2 L 2 (@D) L 2 (@D) be the unique solution of

( N eu W k D j N eu W k 0 D m = 1 i 0 ! H on @D; 1 1 W k D j 1 0 W k 0 D m = 1 i 2 0 ! N eu (H) on @D: (3.22)
Then H can be represented by:

H(x) = ( 1 i 0 ! r V k 0 D m(x) + 1 i 0 ! r H(x); x 2 nD; 1 i ! r V k D j(x) x 2 D: (3.23)
To establish a more explicitly representation formula for the electromagnetic …elds (E; H), we need to introduce the 3 3 matrix valued function G 0 that is the solution to:

curl 1 0 curl G 0 (x; y) ! 2 " 0 G 0 (x; y) = y I in ; G 0 (x; y) = 0 on @ : (3.24)
Here I is the 3 3 identity matrix.

For Lipschitz domain D , we de…ne:

G D '(x) := Z @D G 0 (x; y)'(y) (y)d (y); x 2 ; (3.25) 
where ' a vector valued function. Similarly, we introduce:

GD (x) := Z @D curl G0 (x; y) (y) (y)d (y); x 2 ; (3.26)
where is a vector valued function, and G0 is the 3 3 matrix valued function solution to:

curl 1 " 0 curl G0 (x; y) ! 2 0 G 0 (x; y) = y I in ; 1 " 0 curl G0 (x; y) = 0 on @ : On other hand, let f 0 = H 0 = 1 i 0 ! r E 0 .
Then, by the divergence theorem we get:

E 0 (x) = V k 0 f 0 (x) + W k 0 g(x); x 2 :
Now using above results, one can obtain the following representations.

Theorem 3.7 Suppose that D is a domain compactly contained in with a connected Lipschitz boundary satisfying (1.1). Let E be the solution of (1.9)-(1.14). Then, for the electric …eld we have the following representation formula:

r E(x) (x) = r E 0 (x) (x) + r G D m(x) (x); x 2 @ ; (3.27)
where m solves (3.13).

Suppose (1.1) is satis…ed, the magnetic …eld satis…es the following representation formula:

r H(x) (x) = r H 0 (x) (x) + r GD j(x) (x); x 2 @ ; (3.28)
where j solves (3.13).

Full asymptotic formula

In this section we derive higher-order terms in our asymptotic expansions for the perturbed Maxwell's equations. As stated in the introduction, we restrict our derivation to the case of small inhomogeneity. We assume that this inhomogeneity D has the form D = B + z, where z 2 and B is a bounded Lipschitz domain in R d containing the origin.

Let us introduce the following Hilbert space:

H 0 ( curl ; ) := fu 2 L 2 ( ) 3 : r u 2 L 2 ( ) 3 ; u = 0 on @ g:
It is well known that H 0 ( curl ; ) is a closed subspace of H( curl ; ) endowed with same norm.

The following result holds.

Theorem 4.1 Suppose (1.1) and (1.17) are satis…ed. There exists 0 < 0 such that, given an arbitrary g 2 T H

1=2 div (@ ), and any 0 < < 0 , the boundary value problem (1.9)-(1.14) has a unique (weak) solution E . The constant 0 depends on the domains D; , the medium parameters 0 ; 1 ; " 0 ; " 1 , the frequency !, and c 0 . Moreover, the following ascertions hold:

(i) The norms of the …eld E 2 H(curl; ) are uniformly bounded:

9C > 0; 8 2 [0; 0 ]; kE k H(curl; ) C: (ii)
The following convergence estimate holds:

9C > 0; 8 2 [0; 0 ]; kE E 0 k H 0 (curl; ) C d 2 :
The constant C depends on the domains B, , the medium constants 1 ; 0 ; " 1 ; " 0 and c 0 , jjgjj T H 1=2 div (@ ) , but is otherwise independent of parameter .

Proof.

The existence and uniqueness of solution to problem (1.9)-(1.14) can be followed from Theorem 1 of [START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic …elds due to the presence of imperfections of small diameter II. The full Maxwell equations[END_REF] when a similar study was done for magnetic …eld. Also, we refer the reader to same result found in [START_REF] Ammari | Electromagnetic Scattering by Small Dielectric Inhomogeneities[END_REF] for time-harmonic Maxwell's equations with TE symmetry.

(i) This uniform boundness can be deduced from the fact that E ! E 0 as ! 0 and by replacing, in (3.18), E by E for 0 0 .

(ii) Since both …elds E and E 0 satisfy the same boundary condition E = E 0 = g on @ , the function E E 0 belongs to H 0 ( curl ; ), and for any v 2 H 0 ( curl ; ):

a (E E 0 ; v) = Z 1 r (E E 0 ) r v ! 2 Z (E E 0 )v = Z z+ B
( 1

0 1 1 )r E 0 r v + ! 2 ( 1 0 )E 0 v dx;
where 0 < 0 . Subsequently, the term

j Z z+ B
( 1

0 1 1 )r E 0 r v + ! 2 ( 1 0 )E 0 v dxj is bounded by C jjE 0 jj L 2 (z+ B) + jjr E 0 jj L 2 (z+ B) jjvjj H( curl ; ) :
In view of the fact that D is bounded away from the boundary @ (see (1.1)), standard elliptic regularity results give that:

( jjE 0 jj L 1 (D ) CjjE 0 jj H( curl ; ) Cjjgjj T H 1=2 div (@ ) ; jjr E 0 jj L 1 (D ) CjjE 0 jj H( curl ; ) Cjjgjj T H 1=2 div ( 
@ ) ; and so, 

jjE 0 jj L 2 (z+ B) + jjr E 0 jj L 2 (z+ B) d 2 p jBj jjE 0 jj L 1 (D ) + jjr E 0 jj L 1 (D ) C d 2 p jBjjjgjj T H 1=2 div ( 
jjE E 0 jj H 0 ( curl ; ) C d 2 p jBjjjgjj T H 1=2 div (@ ) : Consequently jjE E 0 jj H 0 ( curl ; ) C d 2 ; for 0 0 ;
exactly as desired.

To reveal the nature of the perturbations in the electric …eld, we introduce the local variables y := x z 2 B for 6 = 0 and x 2 @ . So that, for y 2 @D we may set: Inserting the above notations into (3.13) we can show that, for small enough, the following estimate holds.

Proposition 4.2 Suppose that the domain D = z + B satis…es (1.1). Let (j; m) 2 L 2 (@D) L 2 (@D) be the unique solution of (3.13). There exists 1 > 0 such that for all 0 < 1 , there exists C independent of such that:

kjk L 2 (@D) + kmk L 2 (@D) C 1 kH k L 2 (@D) + kH k L 2 (@D) : (4.2)
Let N 2 N, and de…ne

H N (x) := N X j j=0 1 ! (@ H)(z)(x z) ; (4.3) 
where H de…ned in (3.12). Regarding (3.13), we see that for n N there exists unique solution (j n ; m n ) to the following system:

8 < : V k D j n (x) V k 0 D m n (x) = H n+1 on @D; 1 0 N eu V k D j n 1 1 N eu V k 0 D m n = 1 0 N eu (H n+1 ) on @D: (4.4)
Therefore, combining both relations (3.13) and (4.4) with (4.2), we immediately get for the obtained solution (j j n ; m m n ) 2 L 2 (@D) 2 the following estimate:

kj j n k L 2 (@D) + km m n k L 2 (@D) C 1 k(H H n+1 ) k L 2 (@D) (4.5) +k( curl H curl H n+1 ) k L 2 (@D) :
Let E 0 be the solution of the background problem (1.15)-(1.16). Then, the pair Using above notations, the following uniform asymptotic expansion holds.

(j 0 = i 0 ! r E 0 j @ ; m 0 = E 0 j @ ) is
Proposition 4.3 Let (j ; m ) be de…ned by (4.1) where (j; m) solves (3.13). Then,

(j ; m ) 2 T H 1=2 div (@D) T H 1=2 div (@D)
is the unique solution to the following equations:

( V k B j (y) V k 0 B m (x) = H on @B; r 1 0 V k B j 1 1 V k 0 B m = 1 0 r H on @B; (4.8) 
where the electromagnetic potentials V k B and V k 0 B are de…ned by fundamental solutions k and k 0 , respectively. Moreover, there exists 2 > 0 such that the magnetic density j can be represented uniformly for x 2 @ as follows:

j (x) j 0 (x) = ( 0 1 1)r Z @D F (x; y)j 0 (y)d (y) (4.9) 
+ i 1 ! r G D m n (x) (x) + O( n+1 ); 0 < 2 ;
where j 0 = i 0 ! r E 0 j @ and m n was de…ned in (4.4).

Suppose that above conditions are satis…ed, the electric density m can be represented uniformly for x 2 @ as follows:

m (x) m 0 (x) = ( " 0 " 1 1) 
Z @D F (x; y)m 0 (y)d (y) (4.10) i " 1 ! r GD j n (x) (x) + O( n+1 ); 0 < 2 ;
where m 0 = E 0 j @ and j n was de…ned in (4.4).

Proof. Let m n be the solution of (4.4). Then, inserting the term r G D m n (x) (x) into relation (3.27), we immediately get for x 2 @ :

r E (x) (x) = r E 0 (x) (x) + r G D (m m n )(x) (x) +r G D m n (x) (x):
In view of (1.5), we obtain that:

j (x) 0 j 0 (x) = i ! r G D (m m n )(x) (x) (4.11) 
+ i ! r G D m n (x) (x):
As a consequence,

j (x) j 0 (x) = ( 0 1)j 0 (x) + i ! r G D (m m n )(x) (x) + i ! r G D m n (x) (x):
So that by integrating last relation in D, we get for x 2 @ :

j (x) j 0 (x) = ( 0 1 1)j 0 (x) + i 1 ! r G D (m m n )(x) (x) (4.12) 
+ i 1 ! r G D m n (x) (x):
Inserting (4.6) into relation (4.12), we immediately get:

j (x) j 0 (x) = ( 0 1 1)r Z @D F (x; y)j 0 (y)d (y) + i 1 ! r G D m n (x) (x) + i 1 ! r G D (m m n )(x) (x): (4.13) 
On the other hand, by relations (1.1) and (1.6) we naturally get:

k i 1 ! r (G D ') k L 1 (@ @D) Ck'k L 2 (@D) ;
where C is a positive constant independent of . Replacing ' by m m n , it then follows from (3.25) that:

k i 1 ! r G D (m m n ) k L 1 (@ @D) Cj@Dj 1=2 km m n k L 2 (@D) : (4.14) 
To estimate the term km m n k L 2 (@D) , we may use …rstly the de…nition of

H n+1 . So that, kH H n+1 k L 2 (@D) Cj@Dj 1=2 kH H n+1 k L 1 (@D) C 1 j@Dj 1=2 n+2 kHk C n+2 (D) :
Then, as before we obtain that:

kr (H H n+1 ) k L 2 (@D) p j@Djkr (H H n+1 ) k L 1 (@D) kHk C n+1 (D) jx zj n+1 p j@Dj C 2 n+1 p j@DjkHk C n+1 (D) :
Thus, by Theorem (3.5) and relation (4.5) we immediately get:

km m n k L 2 (@D) (C 1 c n+2 + C 2 c n+1 )kgk T H 1=2 div (@ ) n+1 p j@Dj: So that, km m n k L 2 (@D) c 0 n p j@Dj n+1 : (4.15) 
Finally, inserting (4.15) into (4.14) we get for all x 2 @ that:

k i 1 ! r G D (m m n )(x) (x)k L 1 (@ @D) c 0 n n+1 j@Dj = C n n+1 :
The proof of (4.9) is achieved by inserting last estimation into relation (4.13). Formula (4.10) for the density m follows in a manner completely similar to that for (4.9).

The main result of this paper is the following full asymptotic expansion of the tangential trace of electromagnetic …elds. Theorem 4.4 Suppose that the domain D = z + B satis…es (1.1), and assume that we have all hypothesis of Proposition 4.3. Let E be the solution of (1.9)-(1.14) and suppose that condition (1.17) is well satis…ed. The following pointwise asymptotic expansion, for the electric …eld, on @ holds for d = 2; 3:

(E (x) E 0 (x)) (x) = (4.16) 
(1

" 0 " 1 ) n X jpj=0 1 p! jpj @ p z F (x; z) Z @B t p m 0 (t)d (t) (x) + 1 1 ! d 1 n+1 X jpj=0 n+1 jpj X jqj=0 1 p!q! jpj+jqj (@ p H)(z)@ q z r ( GD a pq ) (x) + O( n+1 );
with p; q 2 N d are multi-index and a pq = i R @B j q (t)t p d (t). Suppose above conditions are satis…ed, the magnetic …eld satis…es the following asymptotic expansion formula, for x 2 @ :

(H (x) H 0 (x)) (x) = (4.17) (1 0 1 ) n X jpj=0 1 p! jpj r @ p z F (x; z) Z @B t p j 0 (t)d (t) (x) 1 1 ! d 1 n+1 X jpj=0 n jpj+1 X jqj=0 1 p!q! jpj+jqj (@ p H)(z)@ q z r (G D b pq ) (x) + O( n+1 );
where b pq = i R @B m q (t)t p d (t). In both asymptotic formulae, the term O( n+1 ) is dominated by C n+1 kgk T H 1=2 div (@ ) for some C independent of x 2 @ .

Proof. The proofs of (4.16) and (4.17) can be done by a similar way. So that, we may only prove (4.17). Let 2 N d be a multi-index. Since D = B + z, one can use the change of variables y := x z ( 6 = 0) to expand G 0 (x; y + z) asymptotically as ! 0.

Then, for x near @ , z 2 and t 2 @B and for su¢ ciently small, we get:

G 0 (x; t + z) := 1 X j j=0 j j ! @ z G 0 (x; z)t : (4.18)
So that, from (3.25) we obtain:

G D ('( x z )) := 1 X j j=0 j j+d 1 ! @ z G 0 (x; z) Z @B '(t)t d (t): (4.19) 
Now let (j ; m ) be the solution of:

8 < : V k B j (x) V k 0 B m (x) = Z on @B; 1 0 N eu V k B j 1 1 N eu V k 0 B m = 1 0 N eu (Z ) on @B (4.20) 
where Z = x , and is a multi-index. If (j n ; m n ) is the solution of problem (4.4), then one can use de…nition (4.3) to expand:

m n (x) = n+1 X j j=0 j j ! @ H(z)m ( x z ): (4.21) 
The density j n can be expressed analogously. On other hand, for x near @ , z 2 and t 2 @B and for su¢ ciently small, we have:

F (x; t + z) := 1 X j j=0 j j ! @ z F (x; z)t : Therefore, Z @D F (x; y)j 0 (y)d (y) = Z @D F (x; t + z)j 0 ( x z ))d (t) (4.22) = 1 X j j=0 j j ! @ z F (x; z) Z @B j 0 (t)t d (t):
Now inserting both relations (4.21) and (4.22) into the expansion (4.9), we immediately get for x 2 @ :

j (x) = j 0 (x) + ( 0 1 1) n X jpj=0 1 p! jpj r @ p z F (x; z) Z @B t p j 0 (t)d (t) (x) + i 1 ! n+1 X j j=0 j j ! @ H(z)r G D (m ( x z )) (x) + O( n+1 ): (4.23) 
Observe that j = H and j 0 = H 0 , then we obtain:

H (x) (x) = H 0 (x) (x)+(1 0 1 ) n X jpj=0 1 p! jpj r @ p z F (x; z) Z @B t p j 0 (t)d (t) (x) (4.24) i ! 1 n+1 X j j=0 j j ! @ H(z)r G D (m ( x z )) (x) + O( n+1 ):
To achieve the proof, we insert (4.19) into uniform expansion (4.24) and we put

b pq = i Z @B m q (t)t p d (t).
As a consequence of previous results, we have the following complete asymptotic expansions.

Corollary 4.5 Suppose that we have all hypothesis of Theorem 4.4. The following pointwise asymptotic expansion on @ holds for d = 2; 3:

r E (x) (x) = 1 0 r E 0 (x) (x)+ (4.25) i!( 1 0 ) n X jpj=0 1 p! jpj r @ p z F (x; z) Z @B t p j 0 (t)d (t) (x) i d 1 n+1 X jpj=0 n jpj+1 X jqj=0 1 p!q! jpj+jqj (@ p H)(z)@ q z r (G D b pq ) (x) + O( n+1 );
where b pq = i R @B m q (t)t p d (t). In both asymptotic formulae, the term O( n+1 ) is dominated by C n+1 kgk T H 1=2 div (@ ) for some C independent of x 2 @ .

We now proceed to construct an asymptotic expansion of the electric potential V k D . Recall from (2.5) that,

V k D ' = kS k D ' + 1=krS k D div @ ';
where ' 2 L 2 (@D) is a given density. According to (2.3) and Remark 2.1, we have:

S k D '(x) = Z @D k (x; y)'(y)d (y):
Therefore,

S k D '(x) = Z @D k (x; y)'( y z )d (y) = d 1 Z @B k (x; z + t)'(t)d (t):
On other hand, for x near @ , z 2 and t 2 @B and for su¢ ciently small, we have:

k (x; t + z) := 1 X j j=0 j j ! @ z k (x; z)t :
Then,

S k D '(x) = 1 X jpj=0 jpj+d 1 p! @ p z k (x; z) Z @B t p '(t)d (t):
Consequently,

V k D '(x) = 1 X jpj=0 jpj+d 1 p! k@ p z k (x; z) Z @B t p '(t)d (t) (4.26) +1=kr@ p z k (x; z) Z @B t p div @B '(t)d (t) :
Now, we state the following complete asymptotic expansion in .

Theorem 4.6 Suppose that we have all hypothesis of Theorem 4.4. Let G 0 be the solution of (3.24). Then, the following uniform asymptotic expansion for x 2 holds:

E (x) = E 0 (x) d h (1 1 0 )h 1 ( ; x; z) + ! 2 ( 1 0 )e 1 ( ; x; z) i + 2d 1 h (1 1 0 )h 2 ( ; x; z) + ! 2 ( 1 0 )e 2 ( ; x; z) i 3d 2 h (1 1 0 )h 3 ( ; x; z) + ! 2 ( 1 0 )e 3 ( ; x; z) i + O( n+1 );
where for i 2 f1; 2; 3g, the functions (e i ; h i ) 2 [H(curl; )] 2 are analytic with respect to and satisfy e i (0; x; z) 6 = 0; h i (0; x; z) 6 = 0. The term O( n+1 ) is dominated by C n+1 kgk T H 1=2 div (@ ) for some positive constant C independent of the geometry of the medium .

Proof.

First of all, we note that the problem (3.24) has a unique solution since ! is assumed not to be a resonant frequency for the problem (1.15)-(1.16). For any x 2 we now get, from use of (3.24) and integration by parts,

E (x) = E 0 (x) + i!(1 1 0 ) Z z+ B r y G 0 (x; y)H (y) dy ! 2 (" 1 " 0 ) Z z+ B G 0 (x; y)E (y) dy: (4.27)
Based on Theorem 3.5, we may use (4.27) to develop the desired asymptotic formula for all x 2 .

Before formulating this, we need to develop the following:

Z z+ B r y G 0 (x; y) (y) dy = d Z B r t G 0 (x; z + t) (t) dt:
Using expansion (4.18), we obtain: 

Z z+ B r y G 0 (x; y) (y) dy := 1 X j j=0 j j+d ! r z @ z G 0 (x; z) Z B ( 
(x) = V k D (j )(x):
So that by (4.26), we get for x 2 D:

E (x) = 1 X jpj=0 jpj p! k@ p z k (x; z) Z @B t p j (t)d (t)+1=kr@ p z k (x; z) Z @B t p div @B (j )(t)d (t) :
Consequently, by using relation (4.23) we obtain:

E (x) = n+1 X jpj=0 jpj p! k@ p z k (x; z) Z @B t p j 0 (t)d (t)+1=kr@ p z k (x; z) Z @B t p div @B (j 0 )(t)d (t) (1 0 1 ) d 1 n+1 X jpj=0 n+1 jpj X jqj=0 jpj+jqj p!q! h k@ p z k (x; z) Z @B t p r @ q z F (t; z) Z @B s q j 0 (s)d (s) (t) d (t) +1=kr@ p z k (x; z) Z @B t p div @B r @ q z F (t; z) Z @B s q j 0 (s)d (s) (t) d (t) i + 1 1 ! 2d 2 n+1 X jpj=0 n+1 jpj X jqj=0 n+1 jpj jqj X j j=0 jpj+jqj+j j p!q! ! h k@ p z k (x; z) Z @B t p @ q H)(z)@ z r (G D b q ) (t) d (t) +1=kr@ p z k (x; z) Z @B t p div @B @ q H)(z)@ z r (G D b q ) (t) d (t) i + O( n+1 ):
(4.30) Therefore, inserting (4.30) into (4.29), we get:

Z z+ B G 0 (x; y)E (y) dy = d n+1 X j j=0 n+1 j j X jpj=0 j j+jpj !p! @ z G 0 (x; z) Z B n k@ p z k (t; z) Z @B s p j 0 (s)d (s) +1=kr@ p z k (t; z) Z @B s p div @B (j 0 )(s)d (s) o (t)t dt (1 0 1 ) 2d 1 n+1 X j j=0 n+1 j j X jpj=0 n+1 j j jpj X jqj=0 j j+jpj+jqj !p!q! @ z G 0 (x; z) Z B n k@ p z k (t; z) Z @B s p r @ q z F (s; z) Z @B q j 0 ( )d ( ) (s) d (s) +1=kr@ p z k (t; z) Z @B s p div @B r @ q z F (s; z) Z @B q j 0 ( )d ( ) (s) d (s) o (t)t dt + 1 1 ! 3d 2 n+1 X j j=0 n+1 j j X jpj=0 n+1 jpj j j X jqj=0 n+1 jpj j j jqj X j j=0 j j+jpj+jqj+j j !p!q! ! @ z G 0 (x; z) Z B n k@ p z k (t; z) Z @B s p @ q H)(z)@ z r (G D b q ) (s) d (s) +1=kr@ p z k (t; z) Z @B s p div @B @ q H)(z)@ z r (G D b q ) (s) d (s) o (t)t dt +O( n+1 ): (4.31)
To simplify the above formulations, we may de…ne: )@ z G 0 (x; z) Z B n k@ p z k (t; z) Z @B s p r @ q z F (s; z) Z @B q j 0 ( )d ( ) (s) d (s) +1=kr@ p z k (t; z)

Z @B
s p div @B r @ q z F (s; z) s p @ q H)(z)@ z r (G D b q ) (s) d (s) +1=kr@ p z k (t; z)

Z @B
s p div @B @ q H)(z)@ z r (G D b q ) (s) d Then, the following uniform asymptotic expansion for x 2 holds: where the term O( 2) is dominated by C 2 kgk T H 1=2 div (@ ) for some positive constant C independent of the geometry of the medium .

E (x) = E 0 (x) 2 n (1 1 

  @ ) : Now, replacing in the formulation (3:17) E by the di¤erence E E. It then follows from relation (3.18) that:

j

  (y) = j(z + y); m (y) = m(z + y); H (y) = H(z + y): (4.1)

F

  well known and allows us to de…ne the pair (F; F ) of regular matrix valued function that satis…es: (x; y)j 0 (y)d (y) = j 0 (x); (4.6) Z @D F (x; y)m 0 (y)d (y) = m 0 (x): (4.7)

es

  p (x; z) := @ z G 0 (x; z) p j 0 (s)d (s) +1=kr@ p z k (t; z) Z @B s p div @B (j 0 )(s)d (s) o (t)t dt;e pq (x; z) := (1 0 1

Corollary 4 . 7

 47 q! ! e pq (x; z) + O( n+1 ):(4.32) Using representation(3.23), we obtain:H (x) = 1 i 1 ! r V k D (j )(x); x 2 D:It then follows from (4.30) and (4.28) that:Z z+ Br y G 0 (x; y)H (y) dy = q! ! h pq (x; z) + O( n+1 ): z e p (x; z) ;h pq (x; z) := i 1 ! r xr z e pq (x; z) ;h pq (x; z) := i 1 ! r xr z e pq (x; z) :Inserting both relations (4.32) and (4.33) into (4.27). We get:E (x) = E 0 (x) p (x; z) + ! 2 (" 1 " 0 )e p (x; z) (x; z) + ! 2 (" 1 " 0 )e pq (x; z) (x; z) + ! 2 (" 1 " 0 )e pq (x; z) i + O( n+1 );To achieve the proof, we put: e 1 ( ; x; z) = e p (x; z); h 1 ( ; x; z) = ! q! ! e pq (x; z); andh 3 ( ; x; z) = ! n+1 X !p!q! ! h pq (x; z):For d = 2 and n = 1, we obtain the following uniform expansion at order 2. Let d = 2 and suppose that we have all hypothesis of Theorem 4.6.