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It is shown that ITG turbulence close to the threshold exhibits a long time behaviour, with
smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave
length zonal flows and, consequently, the numerical dissipation on these flows must be sufficient
small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation
can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow.
Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to
be subdued. The heat flux then does not go smoothly to zero when the threshold is approached from
above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent
state exists. The threshold value of the temperature gradient length at which this finite heat flux is
obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat
flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when
a fully developed staircase structure in the ExB shearing rate forms. Just above the threshold, an
incomplete staircase develops, and transport is mediated by avalanche structures which propagate
through the marginally stable regions.

I. INTRODUCTION

Energy confinement in fusion plasmas is determined by
turbulent transport, with the Ion Temperature Gradient
(ITG) mode expected to dominate under reactor condi-
tions. ITG turbulence arises through a small scale (ion
Larmor radius) instability, which is dominantly driven
by the ion temperature gradient, and has a threshold in
the gradient length (R/LTlin), above which the mode
is unstable. The non-linear threshold (R/LTdim), above
which a stationary turbulent state develops, however, is
larger (’up-shifted’) compared with the linear threshold,
a phenomenon known as the Dimits shift [1]. ITG tur-
bulence, through nonlinear interactions, generates zonal
flows which through shear stabilization regulate the tur-
bulence [2–4]. For gradient lengths R/LTlin < R/LT <
R/LTdim, the shear flow quenches the turbulence.

In the original work [1], the non-linear threshold
R/LTdim is obtained by extrapolating the heat flux
of several simulations with gradient lengths R/LT >
R/LTdim, to obtain the gradient length at which the
heat flux goes to zero. Recently, the non-linear threshold
for turbulence generation has been revisited [5, 6]. For
gradient-driven simulations, it was shown that the heat
flux does not go smoothly to zero when the threshold is
approached from above. Rather, the heat flux has a fi-
nite value at a non-linear threshold R/LTc > R/LTdim,
below which no stationary turbulent state is obtained.
In this paper the gradient-driven case is investigated in
more detail.

II. NUMERICAL SET-UP

The plasma parameters for the study in this paper are
those of the cyclone base case: safety factor q = 1.4,
magnetic shear ŝ = 0.78, inverse aspect ratio ε = 0.19,
density gradient R/Ln = 2.2, and electron to ion tem-
perature ratio Te/Ti = 1. The temperature gradient is
scanned to determine the threshold. In order to compare
the results with the original work, the electro-static limit
with the adiabatic electron response is investigated, and
collisions are neglected. Various resolutions have been
used in the numerical simulations and are given in Ta-
ble I. The maximum of the velocity grid, is three times
the thermal velocity for both the parallel as well as the
perpendicular velocity, in all cases.
The simulations are performed with the flux tube ver-
sion of the non-linear gyro-kinetic code GKW [7]. The
temperature gradient is prescribed, and periodic bound-
ary conditions are used in the plane perpendicular to the
magnetic field. Different from Refs. [5, 6], in which the
radial direction is treated with finite differences, the sim-
ulations in this paper use a spectral representation in
both the radial as well as the bi-normal direction. Details
of the model equations and implementation are given in
Ref. [7]. Since numerical dissipation turns out to be im-
portant, some details of the implementation are given
below.
In the turbulent state, the entropy production due to
the heat flux down the temperature gradient is balanced
by dissipation [8]. Furthermore, in Eulerian codes like
GKW, grid scale dissipation plays an essential role in ob-
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taining numerical stability. Therefore, dissipation must
be applied to obtain a stationary turbulent state. How-
ever, if the applied dissipation is not linked with a physi-
cal process, like collisions, the predicted turbulent fluxes
should not be affected by its arbitrary magnitude. In-
deed, it has been shown that the fluxes are insensitive
to the magnitude of the applied dissipation [9] for simu-
lations well above the nonlinear threshold, provided the
dissipation is sufficiently small. The precise form of the
dissipation on the scale of the grid, then does not affect
macroscopic quantities like the heat flux.
The spectral version of GKW has two convective deriva-
tives

∂f

∂t
+ v‖b · ∇f −

µ

m
b · ∇B ∂f

∂v‖
+ . . . = 0, (1)

modelling the motion along the magnetic field (second
term) and the particle trapping in the magnetic well
(third term). In the equation above, f is the perturbed
distribution, v‖ the parallel velocity, b the unit vector in
the direction of the magnetic field, B the magnetic field
strength, and µ the magnetic moment. These convective
derivatives require dissipation in order to obtain numer-
ical stability. Both are treated using a five point stencil,
with the motion along the magnetic field represented us-
ing

v‖b · ∇f → Fiv‖
fi−2 − 8fi−1 + 8fi+1 − fi+2

12∆s

+DFivd
fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2

12∆s
, (2)

where i denotes the grid point considered, s is the paral-
lel coordinate in straight field line Hamada coordinates,
and ∆s is the distance between the grid points. The
parallel coordinate is normalized such that one poloidal
turn corresponds to an interval s = [-0.5 0.5] and, con-
sequently, ∆s = 1/Ns, where Ns is the number of grid
points along the magnetic field. The quantity F = Bs/B,
where Bs = B · ∇s is the contra-variant component of
the magnetic field can, for circular geometry, be approx-
imated by F ≈ 1/2πqR. The first term in Eq. (2) is the
approximation of the convective derivative and is fourth
order accurate in space, while the second term, propor-
tional to D, represents the numerical dissipation, which
satisfies

DvdFi
fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2

12∆s

=
D(∆s)3vdF

12

∂4f

∂s4
+O(∆s2). (3)

When the velocity vd is set equal to the absolute value
of parallel velocity vd = |v‖|, the scheme is equivalent
to a third order upwind scheme if D = 1. However, vd
can also be taken to be a constant vd =

√
3vth, where

vth =
√

2T/mi is the thermal velocity. In the latter case
the dissipation has no velocity dependence. For D ≈ 1, a

value usually required for stability, the second term is of
equal magnitude compared with the first term, for per-
turbations with wavelengths of the order of the grid size.
The latter perturbations are then effectively damped. In-
creasing the number of grid points by a factor two, does
not change the damping at the (finer) grid scale, but re-
duces the damping at fixed wavelengths by a factor eight.
For unstable modes, the dissipation has little influence
as long as the damping of the mode through the dissipa-
tion is much smaller than its growth rate. This condi-
tion can easily be satisfied for the modes that generate
the turbulent fluxes, but not for the zonal mode, since
it has zero growth rate. Indeed, when investigating the
effect of collisions, Ref. [10] found that the ion heat flux
depends on the collision frequency, even if the instabili-
ties are collisionless, through the collisional damping of
the zonal mode. The largest influence of the dissipa-
tion is, therefore, expected to occur through the damp-
ing of the zonal mode. In the inhomogeneous magnetic
field the ExB velocity, associated with the zonal mode,
is not divergence free. A Pfirsch Schlüter type depen-
dence in the perturbed distribution then arises, which
has a spatial dependence f = A cos(2πs). Using the
equations above, the dissipation then yields a typical
damping rate γ(4)d (Ns) = −D(

√
3/12q)(2π/Ns)

3, where
γ
(4)
d , and all other time-scales in this paper, are nor-

malized with vth/R. For D = 1 this corresponds to
γ
(4)
d (16) = −6.2 ·10−3, and γ(4)d (32) = −7.8 ·10−4. These

damping rates are much smaller than the ITG growth
rate of the cyclone base case γ = 0.188 (ŝ− α geometry,
with R/LT = 6.9, kyρ = 0.4, and ky ≈ nq/r with n the
toroidal mode number, and r the minor radius of the sur-
face). They are, however, not necessarily small compared
with the the collisional damping rate of zonal mode under
experimentally relevant conditions. The latter damping
rate is γC ≈ −Rνii/(2.7εvth) = −1 · 10−3Rn19T

−2
k [11],

where νii is the ion-ion collision frequency, n19 is the par-
ticle density in 1019 m−3, Tk is the temperature in keV,
and in the last step a Deuterium plasma with ε = 0.19
has been assumed. In many current experiments, and
certainly in a reactor, the collisional damping rate can be
considerably smaller than the dissipation at a resolution
Ns ≈ 16. The DIII-D discharge # 81499, from which the
original cyclone base case parameters were obtained, for
instance, has a collisional damping rate γC = 1.9 · 10−3

(with n19 = 4.5, Tk = 2 and R = 1.7).
The same numerical scheme is used for both the parallel
motion along the magnetic field and the trapping term.
In order to estimate the damping of the zonal flow due
to the dissipation added in the trapping term a scale
length in velocity space equal to the size of the trapped
domain (

√
2εvth) is assumed. Indeed, using this estimate

for the collision induced diffusion in velocity space, yields
a collisional damping rate γC = −Rνii/2εvth, in close
agreement with the results of Ref. [11]. Using this typical
scale, the damping rate can be estimated to be γv(Nv‖) =



3

−Dv‖/(3qε)(v
max
‖ /Nv‖vth)3. For vmax

‖ = 3vth, Dv‖ = 1,
this yields γv(32) = −1 · 10−3 and γv(64) = −1.3 · 10−4.
The fourth order scheme was chosen in the original im-
plementation of GKW [7] because of its high accuracy
and low dissipation. The results presented in this paper
will, however, show that the dissipation is not for all cases
sufficiently small. Therefore, additionally a sixth order
scheme has been implemented for the derivatives along
the magnetic field of the zonal mode (all other modes as
well as the velocity space derivative are unchanged)

v‖b · ∇f =

v‖iFi
−fi−3 + 9fi−2 − 45fi−1 + 45fi+1 − 9fi+2 + fi+3

60∆s
−

vdFi
fi−3 − 6fi−2 + 15fi−1 − 20fi + 15fi+1 − 6fi+2 + fi+3

60∆s
(4)

In this case the dissipation given by the last term on the
right hand side is approximately

≈ vdF (∆s)5

60

∂6f

∂s6
+O(∆s2) (5)

yielding a damping rate γ(6)d (Ns) = −
√

3D/60q(2π/Ns)
5,

or γ(6)d (16) = −1.9 · 10−4 for D = 1.
Additional to the dissipation in the convective terms, a
damping of high wave vector modes can be applied

∂f

∂t
= −Dy

(
ky
kmax
y

)4

f −Dx

(
kx
kmax
x

)4

f, (6)

where kx (ky) is the radial (bi-normal) wave vector and
kmax
x (kmax

y ) is the maximum value of the radial (bi-
normal) wave vector kept in the simulations. Note that
all dissipation is applied only in the terms that involve
the distribution function. Dissipation of the field terms
in general leads to a numerical instability [12].

III. MODERATE RESOLUTION AND TIME
INTERVAL SIMULATIONS

Fig. 1 shows the heat conduction coefficients in gyro-
Bohm units ρ2vth/R, where ρ = mivth/eB is the ion
Larmor radius, vth =

√
2T/mi is the thermal velocity, T

is the background temperature, e is the unit charge, and
R is the major radius. Note that the thermal velocity and
Larmor radius are

√
2 larger than the often used sound

speed cs =
√
Te/mi and its corresponding Larmor radius

ρs = mics/eB. The results are obtained for a standard
resolution (case S of Table I), and a total simulation time
interval of 2400 R/vth. Two different geometry models
have been used: the ŝ−α geometry and a circular geom-
etry in which all orders of the inverse aspect ratio (ε) are
kept [13]. The dashed lines in the graph represent the

4.5 5 5.5 6 6.5 7
0

0.5

1

1.5

2

R/L
T

χ
i [

G
B

]

s−α geometry

Circular geometry

FIG. 1. Heat conduction coefficient χ in units ρ2vth/R as a
function of the normalized gradient length R/LT , for both
the ŝ− α (colour online: black) as well as the circular geom-
etry (colour online: red). Crosses (colour online: magenta)
represent the results of runs with the GYRO code and are
discussed in Section V.

Dimits fit, adjusted for the different normalization used
in this paper,

χ = 12

(
1− 6

R/LT

)
(7)

valid for the ŝ− α geometry, and a similar fit

χ = 8.25

(
1− 4.7

R/LT

)
(8)

for the circular geometry. The latter is obtained by fitting
the data in the graph. Note that the non-linear threshold
in the gradient length is smaller for the circular geome-
try compared with the ŝ−α geometry. The error bars in
the graph, and in all other figures in this paper, repre-
sent the statistical error only, and have been obtained by
dividing the stationary phase into three time windows,
and by taking the standard deviation of the mean values
obtained for each of these windows. The heat conduc-
tion in these simulations goes, more or less, smoothly to
zero when the threshold is approached from above. Al-
though the error bars get larger close to the threshold
of the ŝ − α model, the results agree within the error
bars with the Dimits fit (χfit), and the value well above
the threshold at R/LT = 6.9 of χ = 1.61 is in excellent
agreement (χfit = 1.56). A benchmark for larger values
of the gradient length can be found in Ref. [14].
Below the non-linear threshold (R/LTdim = 6) of the
ŝ − α geometry, a small but finite heat flux is obtained.
This region of parameter space is investigated in more
detail below. Fig. 2 shows the time traces of three simu-
lations with R/LT = 5.8: The simulation from which the
data in Fig. 1 is taken (case S in Table I, red curve in the
online version), a simulation in which the velocity space
resolution as well as Ns have been doubled (case D in Ta-
ble I, blue curve in the online version), and a simulation



4

TABLE I. The Resolutions used in this paper: Number of toroidal modes Nm, number of radial modes Nx, number of grid
points along the magnetic field Ns, number of parallel velocity grid points Nv‖ , number of magnetic moment grid points Nµ,
dissipation coefficient used in convection along the magnetic field D, the velocity in the dissipation scheme vd, dissipation
coefficient used in the trapping term Dv‖ , damping coefficient of radial modes Dx, damping coefficient of toroidal modes Dy,
Order of the scheme used for the zonal mode, maximum poloidal wave vector kyρmax, and maximum radial wave vector kxρmax

Case Nm Nx Ns Nv‖ Nµ D vd Dv‖ Dx Dy Order kyρmax kxρ
max

Standard resolution (S) 21 83 16 64 9 1
√
3vth 0.2 0.1 0.1 4 1.4 2.1

Standard resolution with 6th order (S6) 21 83 16 64 9 1 |v‖| 0.2 0.1 0.1 6 1.4 2.1
Double resolution (D) 21 83 32 128 18 1

√
3vth 0.2 0.1 0.1 4 1.4 2.1

Double resolution high dissipation (DD) 21 83 32 128 18 8
√
3vth 1.6 0.1 0.1 4 1.4 2.1

Low dissipation high perpendicular resolution (LH) 41 167 32 64 9 1
√
3vth 0.03 0.1 0.1 4 2.0 4.0

Low dissipation standard resolution (LS) 21 83 32 192 9 1
√
3vth 1 0.1 0.1 4 1.4 2.1

Benchmark (G6) 21 83 24 64 24 1 |v‖| 0.2 0.1 0.1 6 1.4 2.1
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FIG. 2. Top: time traces of the heat conduction coefficient
for the ŝ−α geometry with R/LT = 5.8 and different resolu-
tion / dissipation labelled according to Table I. Bottom: the
squared potential of the ky = 0 mode summed over all radial
modes, as a function of normalized time.

in which both the resolution as well as the dissipation co-
efficients have been increased (case DD in Table I, black
curve in the online version). In the latter case the dissi-
pation connected with the convective terms is the same
as the original (case S) simulation. Taking the average
over the time interval [180-2400], the simulations yield:

χS = 0.19, χD = 0.034, and χDD = 0.089. Although, the
resolution of the numerical solution plays a role, the re-
sults above show that the finite heat flux below R/LT = 6
also depends strongly on the applied dissipation, with
higher dissipation leading to higher heat fluxes. This, of
course, means the results are non-physical since the dis-
sipation should not affect macroscopic quantities like the
heat flux. Some insight into the reason of the finite heat
flux below R/LT = 6 can be obtained from the time trace
of
∑

kx
|φ0,kx

|2, where φ(0, kx) is the potential perturba-
tion of the ky = 0 (zonal) mode, and the sum is taken
over all radial modes. This time trace is shown in the bot-
tom graph of Fig. 2. Initially, the turbulence spins up a
zonal flow which, when the turbulence is reduced through
ExB shearing, starts to decay. A decay rate can be esti-
mated from the latter phase to be γ = −5.5 ·10−3 for the
high dissipation case (DD), and γ = −8.2 · 10−4 for the
low dissipation case (D). These decay rates are in good
agreement with the estimates based on the dissipation
given above (γ(4)d = −6.2 · 10−3 and γ(4)d = −7.8 · 10−4,
respectively). The decay of the zonal mode is, therefore,
attributed to the dissipation in the convection term. As
the zonal mode amplitude decays, and falls below a cer-
tain value, temporal limited phases of higher turbulent
activity reappear, which in turn drive the zonal mode,
leading to an increases in its amplitude. This behaviour
is similar to the behaviour observed when collisions are
included [10]. When averaged over a long time interval,
a finite heat flux is obtained which, however, is linked
with the dissipative damping and is, therefore, consid-
ered non-physical. Investigating the simulations shown
in Fig. 1 it is, furthermore, found that for R/LT ≤ 6.3
the heat flux exhibits temporal limited quiet phases with
a heat conduction coefficient χ < 0.1 ρ2vth/R. These
simulations can therefore be considered below the non-
linear threshold.
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FIG. 3. Heat conduction coefficient in gyro-Bohm units
(ρ2vth/R) as a function of the gradient length R/LT for the
circular geometry and low dissipation / high resolution. The
circles (colour red online) represent the case LH, the crosses
(colour online blue) the case LS, and the diamonds connected
with the solid line (colour online black) the case S6 of Table I.
The dashed line represents the fit of Eq. (8)

IV. HIGH RESOLUTION / LOW DISSIPATION

The investigation presented in the previous section show
that at, or close to the non-linear threshold, the dissipa-
tion plays a role, which raises the question what threshold
is obtained at very low dissipation.
Fig. 3 shows the heat conduction coefficient obtained
with the circular geometry for two sets of simulations.
Denoted with circles (red in the online version) are sim-
ulations obtained with a higher spatial resolution, both
along the magnetic field as well as in the plane perpendic-
ular to the magnetic field (case LH of Table I). Denoted
with crosses (blue in the online version) is a case with a
higher resolution in both the direction along the magnetic
field as well as in the parallel velocity direction (case LS
of Table I). The dashed lines represent the fits given by
Eq. (8). The turbulence is simulated over a time interval
2400 (4800) R/vth for the LH (LS) case, and the heat
flux is averaged over a time interval [600 - 2400] ([1200
4800]). In both cases the higher resolution leads to a
smaller dissipation when compared with the moderate
resolution case of Fig. 1, which leads to a remarkable re-
sult: A non-linear threshold for the temperature gradient
in the circular geometry case R/LTc = 6.2 is found, 30%
larger than the value (R/LTdim = 4.7) obtained with a
higher dissipation / lower resolution. Furthermore, the
heat conduction coefficient does not go smoothly to zero,
but rather has a finite value χ ≈ 1.5 at the non-linear
threshold [5, 6].
Also in this case a finite heat flux, with rather large error
bars, is obtained below the non-linear threshold R/LTc =
6.2. Although the averaged heat flux for R/LT = 6.1 is
not negligible, quiet phases with a very low heat flux are
again observed in this case. The temporal limited time
interval of the subdued state is interpreted to result from
the dissipative damping of the zonal mode. Therefore,

the obtained heat fluxes below R/LT = 6.2 is considered
non-physical.
If the interpretation adopted in this paper is correct, the
results at higher resolution shown in Fig. 3 should also
be obtained for the moderate resolution cases shown in
Fig. 1, if the dissipation of the zonal mode is reduced at
the same resolution. This has been verified by replac-
ing the fourth order scheme for the convection along the
field line with the sixth order scheme given by Eq. (4).
The latter scheme is applied to the zonal mode (ky = 0)
only, while all other modes (ky 6= 0) are modelled using
the fourth order scheme. Fig. 3 also shows (diamonds
connected with a solid line, online colour black) the re-
sults of the simulations using this scheme (case S6 of
Table I). Simulations have been run for 4800 normalized
time units and for all cases in which no subdued trans-
port is observed, the heat flux is averaged over a time
interval [600 - 4800]. For the cases with subdued trans-
port the time average is taken from the first time point
at which a subdued state is observed, and the minimum
time interval over which the heat flux is averaged is 720
normalized time units. Also for the 6th order scheme at
moderate resolution a threshold value R/LTc = 6.2 is
obtained, in agreement with the results of the LH and
LS cases. Furthermore, the obtained values of χ for
R/LT > 6.2 are in good agreement with the LH and LS
cases, and around 15% smaller than the case S of Fig. 1
due to the stronger zonal flow. For the 6th order scheme,
|γ(6)(16)| < |γ(4)(32)|, and an almost zero heat flux is
obtained for R/LT < 6.2. Finally, it is found that close
to the threshold, rather long simulations are necessary to
obtain the subdued turbulence state.
As mentioned above the closer R/LT is to the non-linear
threshold, the longer it takes for the turbulence to be
subdued. It can not be completely excluded that a higher
threshold is obtained if the simulation time interval is
extended. It has, however, been verified that a quenching
does not occur in all cases, by extending the time interval
for the case with R/LT = 6.9 (S6) to 15700 R/vth. This
excessive long run shows no sign of turbulence quenching.
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FIG. 4. Heat conduction coefficient in gyro-Bohm unites
(ρ2vth/R) as a function of the gradient length R/LT for the
ŝ−α and circular geometry (resolution case G6). For the ŝ−α
geometry the results of GYRO (case GH) are also shown.
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V. BENCHMARK

A word of caution on the results of the previous section is
in order. The results rely on rather long simulations with
very little numerical dissipation at wave lengths much
large than the grid size. A small numerical error in the
transfer of energy could lead to a slow build up of the
zonal mode, that can nevertheless reach high amplitudes
due to the small dissipation. Indeed, it is possible that
none of the numerous benchmarks performed with the
code is sensitive to such a small error. The simulations
using different dissipations settings in combination with
the physical picture of the influence of the dissipation on
the zonal flow give confidence to the results presented
in the paper. However, they can not completely rule out
the possibility of a small numerical error in the zonal flow
drive. Therefore, a benchmark with the GYRO code [12]
has been undertaken.
GYRO is particularly suited for this benchmark since its
numerical implementation is quite different when com-
pared with GKW. GYRO uses an orbit-grid to repre-
sent the perturbed distribution, and blending functions
for the solution of the field equations. The representa-
tion of the velocity space, using pitch angle and energy,
is quite different compared with GKW, which uses the
parallel velocity and magnetic moment. Furthermore,
no velocity space dissipation is applied in GYRO. Since
GYRO uses a third order upwind scheme for the orbit
integration (similar to the fourth order scheme described
above), the numerical dissipation at fixed wavelengths
can again be reduced through the increase of the number
of orbit grid points. Simulations have been performed
for the ŝ − α geometry and the cyclone base case pa-
rameters given above. Two resolutions for the orbit in-

tegration Ns = 6 (case GL) and Ns = 20 (case GH)
have been used. The number of blending functions was
chosen equal to the number of orbit grid points in both
cases. The GL case uses 4 passing pitch angle as well as
4 trapped pitch angle grid points, while the GH case uses
10 passing as well as 10 trapped grid points. All other
parameters are the same in both cases: 128 radial grid
points with Lx = 100ρ (note that all quantities are given
in GKW units), 24 toroidal modes with kmax

y ρ = 1.48,
and 8 energy grid points. The resolution and box size in
the plane perpendicular to the field are similar to that
used in the simulations with GKW, but no special effort
has been made to try and match these quantities exactly.

The simulation results of the GL case are included in
Fig. 1 (crosses, online colour magenta). At this mod-
erate resolution and limited time interval (1900 R/vth)
there is good agreement with the moderate resolution re-
sults obtained with GKW. Fig. 4 shows the comparison
of the high resolution GYRO case (GH) with the results
of GKW. The latter have been obtained with a higher ve-
locity space and parallel coordinate resolution (case G6
in Table I) when compared with the results of Fig. 3 in
order to match the resolution in the GYRO case. The
benchmark is performed for the ŝ− α geometry, but the
GKW results for circular geometry are also shown. The
GKW results have been obtained for a simulation inter-
val 11400 R/vth, with the R/LT = 7.4 case extended
to 30000 R/vth, while the smallest time interval of the
GYRO runs was [0 1900] (for small R/LT where trans-
port is quickly subdued) and the R/LT = 7.5 case has
been simulated over a time interval 10400 R/vth. The
agreement between GKW and GYRO for the ŝ−α geom-
etry is good, giving further confidence in the correctness
of the results. There is a small difference in the thresh-
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old with R/LTc = 7.4 for GKW while R/LTc = 7.5
in the GYRO case. This might be related to the fact
that GYRO has no velocity space dissipation, but if the
threshold is set by a critical heat flux, it might also be
due to the somewhat smaller heat fluxes obtained in the
GYRO runs.
Also in the ŝ−α geometry a finite heat flux at a threshold
R/LT = 7.4 is obtained, a value larger than that of the
cyclone base case R/LT = 6.9. The results of these sim-
ulations, therefore, lead to the somewhat shocking con-
clusion that the cyclone base case, which uses the ŝ − α
geometry, is non-linearly stable. The critical minimum
heat conduction coefficient χ ≈ 1.5 is similar for both
geometries. It suggests that a stationary turbulent state
in a gradient driven simulation can only develop when
the heat flux, heat conductivity, or turbulent intensity
exceeds a critical value.

VI. ZONAL FLOW EVOLUTION

The previous sections show that low dissipation as well
as a sufficiently long time interval are necessary to ob-
tain the correct heat flux in collisionless ITG turbulence.
Furthermore, the zonal ExB shear plays an essential role
in obtaining the finite heat flux threshold. The reason
behind the long time scales involved, however, remains
to be clarified.
Fig. 5 shows the time traces of the heat conduction co-
efficient, obtained in the ŝ− α geometry with resolution
G6 of Table. I, for R/LT = 7.0, 7.2, 7.3, and 7.5, as a
function of the normalized time. Several observations
can be made. First, as mentioned above, the time point
at which turbulence is subdued, increases when R/LT is
closer to the threshold. Second, also for gradient lengths
above the threshold, the heat flux shows an evolution
on long time scales, with the averaged heat flux smaller
at later times. Fig. 5 also shows the potential (normal-
ized with e/(ρ∗Te) with ρ∗ = ρ/R) times the wave vec-
tor squared (kxρ)2|φ(0, kx)|, for the kxρ = 0.069 zonal
mode as a function of time. This quantity is a measure
of the shearing rate (ωmax

ExB) obtained at the radial po-
sition where the potential of the long wave length zonal
mode reaches its maximum value. The kxρ = 0.069 mode
is the longest wavelength zonal mode in the computa-
tional domain, and dominates in amplitude, by an order
of magnitude, at late times in the evolution. Even before
turbulence is subdued, a clear correlation between the
amplitude of this mode and the magnitude of the heat
transport is observed, and turbulence is subdued only
when a specific amplitude of this mode is reached.
The long wavelength zonal flow generation is likely re-
lated to the modulation instability [15, 16]. Indeed the
growth rate of the modulation instability scales with the
wave vector of the zonal mode and, therefore, is rela-
tively small for these long wavelength modes. It is noted,

however, that the amplitude of the zonal mode as a
function of time does not reflect an exponential growth,
and can be, especially at higher gradient lengths, a non-
monotonic function of time. Estimating the typical time-
scale of growth using τ = 2(t(0.3)−t(0.18)), where t(β) is
the first time point for which the amplitude of the mode
reaches β, one obtains time intervals τ = 344, 1800, and
1000 for R/LT = 7.0, 7.2, and 7.3, whereas the estimated
growth rate of the modulation instability is γM ≈ 0.01.
Furthermore, when increasing R/LT the time-scale on
which the long wave length zonal flow develops appears
to be longer, a result that is not easily explained on the
basis of the modulation instability alone. Although it
is likely that the zonal mode grows through a modula-
tion instability, it is also clear that additional physics is
involved, perhaps not surprisingly in a fully developed
turbulent state. The long time scales involved do how-
ever, explain the sensitivity to dissipation as well as the
long time intervals required for the simulations.
Since the zonal mode involved in the quenching is the
longest wavelength in the box one could argue that in-
creasing the box size could change the results. The sim-
ulations with the large computational domain (case LH
of Table I), however, yield similar results for the thresh-
old and heat fluxes. In the latter case the zonal mode
responsible for the quenching have a wavelength equal to
only half the box size.
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FIG. 6. Spectra |φ(ky)|2 =
∑
kx
|φ(kx, ky)|2 and |φ(kx)|2 =∑

ky
|φ(kx, ky)|2 of the simulation with R/LT = 7.2 (case G6

of Table I) as a function of kyρ and kxρ, respectively. Circles
(colour online red) represent the average over the time interval
[500, 2000], whereas crosses (colour online blue) represent the
average of the time interval [7000, 11000].

After turbulence is subdued the zonal flow slowly de-
cays, in agreement with the damping through dissipa-
tion. For R/LT = 7.0 and 7.2, however, it is observed
that it saturates at a finite value, which for R/LT = 7.0
is maintained over a time interval of 7000 normalized
time units. In this, and all other cases, the heat flux and
turbulent transport are not completely quenched. Tur-
bulence is subdued, with the heat flux two orders of mag-
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nitude lower, rather than completely quenched. Fig. 6
compares the spectra for R/LT = 7.2 averaged over the
time interval [500, 2000] (fully developed turbulence) and
[7000, 11000] (subdued turbulence). It can be seen that
also in the latter case, the spectrum has a shape similar
to that of the fully developed turbulence, albeit strongly
reduced in magnitude. It appears that in the subdued
state the low level turbulence can still drive the zonal
flow against the dissipative damping. Only closer to the
threshold, the evolution of the heat flux is similar to the
observations in Ref. [10], which investigates the heat flux
below the nonlinear threshold connected with the colli-
sional damping of the zonal flow. In the latter case the
zonal flow decays up to a point where a substantial heat
flux reappears.
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FIG. 7. Maximum values of (kxρ)2|φ| obtained in the time
trace of the simulations as a function of the temperature gra-
dient R/LT . Circles (colour online red) represent the circular
geometry, while crosses (colour online black) represent the
ŝ− α geometry.

Another striking observation can be made in Fig. 5. The
amplitude of the long wave length zonal flow appears to
be limited to a particular value, and turbulence is not
immediately subdued when this value is reached. For
R/LT = 7.3, for instance, the long wave length zonal flow
has a nearly constant maximum value for a time interval
of 4000 normalized time units. During this time, turbu-
lence is reduced compared to the time intervals in which
the long wave length zonal mode has a much smaller am-
plitude, but it is not subdued. The limitation of the
long wave length zonal flow amplitude is observed in all
simulations, and the maximum value is relatively inde-
pendent of the temperature gradient as shown in Fig. 7,
which gives the maximum value of (kxρ)2|φ| obtained in
a time trace as a function of R/LT . The limitation of
the zonal flow amplitude is possibly related to a thresh-
old behaviour for the Kelvin Helmholtz instability [17],
although this could not be verified within the scope of
this paper. A maximum amplitude of the long wave-
length zonal flow corresponds to a maximum shearing
rate, and one may argue that it explains a threshold
behaviour since at sufficient high temperature gradients
the growth rate of the ITG will exceed the shearing rate

γ > ωmax
ExB , and turbulence can no longer be subdued

through ExB shearing. However, the physics picture ap-
pears to be more complicated. First it is noted, that the
mechanism above does not explain the finite heat flux at
the threshold. The effect of the shearing rate is usually
modelled as generating an offset for the growth rate, i.e.
one expects the heat conduction coefficient to scale as
χ ∝ (γ − |ωExB |). This model can, therefore, explain an
up-shift in the nonlinear threshold, but not a finite heat
flux at the threshold. Second, the condition γ = ωmax

ExB is
also satisfied for gradient lengths above the threshold as
will be shown below.
Fig. 8 gives the shearing rate ωExB for the simulation
with R/LT = 7.2 as a function of the radial coordinate
for different time intervals. The thick line gives ωExB

averaged over the time interval [500 2000] which repre-
sents the initial state, the time interval [4500 6000] which
represents a reduced turbulence state, and [7000 10000]
in which the turbulence is subdued. The dashed line in
the plots gives the (instantaneous) shearing rate at the
middle of the chosen time interval, and the dash-dotted
line (online colour blue) gives the growth rate (γ) of the
most unstable mode (kyρ = 0.4). These three time in-
tervals represent the three states of turbulence that are
observed in the various simulations. In the initial state
([500 2000]) the averaged shearing rate is relatively small
and shows no clear structure. In this case the turbulence
is not reduced with respect to the high dissipation re-
sults. For the reduced turbulence state ([4500 6000]) the
long wave length zonal flow has reached its maximum
amplitude, and transport is reduced but not subdued.
The ExB shearing rate can be observed to reach values
equal to or larger than the growth rate over a large part
of the radial domain. Furthermore, a radial structure
can be observed to exist, with the shearing rate roughly
equal to ±γ over a large part of the radial domain, with
one relatively steep transition ωExB = −γ → +γ, and
a less steep transition ωExB = +γ → −γ (note that the
radial boundary conditions are periodic). This structure
has been observed previously in global GISELA simula-
tions, and is referred to as staircase [21]. Note that the
fluctuations in the ExB shearing are larger than the aver-
aged ExB shearing rate, as indicated by the dashed line.
Finally, the interval [7000 10000] represents the state in
which the transport is subdued. In this case the shearing
rate at nearly all radial positions is equal to ±γ, with
very steep transitions from positive to negative and vice
versa. We will, therefore, refer to this state as a ’fully
developed staircase’. In all investigated states of sub-
dued transport a fully developed staircase is observed.
Indeed, only for a fully developed staircase is the shear-
ing rate equal to the growth rate over (almost) the entire
radial domain, and can the ExB shearing suppress the
turbulence at all radial locations. For the fully devel-
oped staircase the fluctuations in the shearing rate are
small compared with the time averaged shearing rate as
shown by the dashed line. Note, furthermore, that the
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FIG. 8. The shearing rate ωExB = ∂2φ/∂x2/(2B) as a function of the radial coordinate (x) normalized with the Larmor radius
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interval. The dash-dotted line (online colour blue) gives the growth rate ±γ of the most unstable mode.

radial structure formed in the potential / shearing rate
is reflected in the shape of the spectrum

∑
ky
|φ(kx, ky)|2

shown in Fig. 6
The reduced turbulence state with staircase formation is
also observed above the threshold as shown in Fig. 9. Dif-
ferent from the R/LT = 7.2 case, where the reduced tur-
bulence state is only a quasi-stationary state, the stair-
case is observed to exist for a time interval > 5000 nor-
malized time units in the R/LT = 7.4 case, and is as-
sumed to be a stationary state here. Also for R/LT = 7.4
the time averaged shearing rate is equal to the growth
rate over a large part of the radial domain. The time
averaged heat conduction coefficient, however, shows lit-
tle radial structure, as indeed it must, since a stationary
state demands a uniform radial heat flux. The reason for
the finite heat flux in the radial domain with γ = |ωExB |
is the occurrence of avalanches as shown in Fig. 9, which
shows the heat conduction coefficient as a function of
the time and the radial coordinate. Avalanches have
been observed in turbulent simulations under various cir-
cumstances [18–22], and the behaviour here is similar to
the one previously reported in connection with staircases
[21]. Avalanches start in the region |ωExB | < γ and prop-
agate outward / inward across the staircase. They allow
for a finite heat flux in the regions where γ = |ωExB |,
despite the marginal stability of the turbulence in these
regions. This conclusion is supported by the observed
perturbations in the temperature gradient also shown in
Fig. 9. These perturbations are correlated with the ob-
served perturbations in the heat conduction, and have a
magnitude sufficient to generate local growth rates well
above the averaged shearing rate.
From the observations described above the following
physical picture of the finite heat flux threshold emerges.
Turbulence is subdued only when the staircase structure
fully develops. This occurs below the threshold in the
temperature gradient. Above the threshold the staircase
does not develop fully and a finite heat flux occurs which
is supported by avalanches propagating through the re-
gions of marginal stability (γ = ωExB). Of course, it re-
mains to explain under what circumstances the staircase

can develop fully and, in particular, what the influence
of the temperature gradient on its development is. These
questions are beyond the scope of this paper.

VII. CONCLUSION

In this paper, gradient driven ion temperature gradient
turbulence close to the non-linear threshold has been in-
vestigated in detail. It is shown that a long time-scale
evolution in the heat flux occurs, provided the dissipation
is sufficiently small. A finite dissipative damping of the
zonal mode, can maintain a finite heat flux, in disagree-
ment with the collisionless ITG turbulence model. At suf-
ficiently small dissipation it is found that the threshold
for turbulence generation is considerably larger ( 30%)
compared with the threshold predicted by extrapolating
the heat flux to zero. Furthermore, the heat flux does not
go smoothly to zero when approached from above, but
rather has a finite value at the threshold, below which no
stationary fully developed turbulent state exists [6].
The long time scale in the evolution of the heat flux,
with smaller heat fluxes at later times, is shown to be
connected with a slowly growing long wave length zonal
flow. The amplitude of the long wave length electro-static
potential is found to be limited to a specific value which
shows no strong dependence on the temperature gradi-
ent length or the turbulence intensity. At the maximum
amplitude, turbulence reduction is observed for gradi-
ent lengths close to the threshold, but turbulence is not
subdued in all cases, or occurs only after a considerable
time interval. The time averaged potential shows a stair-
case structure, with the ExB shearing rate comparable
to the growth rate over a large range of the radial do-
main. The latter condition suggests that the ITG mode is
marginally stable in these regions. However, a finite heat
flux is generated over the entire radial domain through
the occurrence of avalanches which emerge from the re-
gion with |ωExB | < γ and propagate through the regions
with |ωExB | = γ. Turbulence is subdued only if the stair-
case is fully developed with |ωExB | = γ over (almost) the
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FIG. 9. Top: Shearing rate ωExB at t = 9600 (dashed
line) as well as averaged over the time interval [8400 10800]
(solid thick line) as a function of the radial coordinate (x) for
R/LT = 7.4 and ŝ−α geometry. The dash dotted line (colour
online blue) gives the growth rate (±γ) of the ITG. Middle:
Contour plot of the heat conduction coefficient as a function
of time and radial coordinate. Bottom: Contour plot of the
radial temperature gradient due to the turbulent temperature
fluctuations as a function of time and radial coordinate.

entire radial domain. Above the nonlinear threshold in
the temperature gradient R/LTc, the staircase can no
longer fully develop and a finite heat flux is generated
through the occurrence of avalanches.
A reduced model, using adiabatic electrons and neglect-
ing collisions, has been used for the studies in this pa-
per. Although, in the view of the authors, it is impor-
tant to understand this basic case, collisions can be ex-
pected to damp the zonal flow, and alter the picture at
sufficiently high collision frequencies. For many current
experiments, and certainly for a reactor, the collisional
damping however is smaller than the damping generated
by the numerical dissipation at moderate resolution. Al-
though collisions will likely allow for a finite heat flux
below the collisionless threshold, it can be expected that
a steep increase in the heat flux is observed close to the
collisionless threshold in a sufficiently hot plasma, while
above the threshold collisions have little effect. Besides
the neglect of the collisions, also the use of adiabatic elec-
trons present a simplification when compared with an ex-
perimentally relevant case. Zonal flows are weaker in the
case of kinetic electrons. They, however, still regulate
the transport, and it can be expected that the physics
model discussed in this paper also applies to the case
of kinetic electrons, although the effects are perhaps less
pronounced.
The results presented in this paper show that the de-
termination of the nonlinear threshold requires a careful
approach. In the collisionless case, the finite heat flux at
the nonlinear threshold in the gradient driven case does
not allow to determine the gradient length for which the
averaged heat flux goes to zero, and a flux driven ap-
proach must be used to obtain this gradient length [5, 6].
Although it is unclear how collisions or kinetic electrons
change this picture precisely, the results do show that a
proper determination of the heat flux requires the dissi-
pative damping to be small compared with the collisional
damping, and that in the case of small collisionality, rel-
atively long simulations may be required.
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