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ON WELL-POSEDNESS FOR SOME DISPERSIVE
PERTURBATIONS OF BURGERS’ EQUATION

LUC MOLINET, DIDIER PILOD AND STEPHANE VENTO

ABSTRACT. We show that the Cauchy problem for a class of dispersive per-
turbations of Burgers’ equations containing the low dispersion Benjamin-Ono

equation
Otu — DS Oru = <9gg(u2)7 0<a<l,
is locally well-posed in H*(R) when s > sq := % - %. As a consequence, we

obtain global well-posedness in the energy space HS (R) as soon as 3 > sa,
ie. a> g.

1. INTRODUCTION

This paper is concerned with the initial value problem for a class of disper-
sive perturbations of Burgers’ equation containing in particular the low dispersion
Benjamin-Ono equation

(1.1) Oru — DSOpu = 0, (u?)

where u = u(x, t) is a real valued function, x € R, t € R, a > 0 and D? is the Riesz
potential of order —«, which is given via Fourier transform by

Dgo(8) = €17 (8) -
The cases o = 2 and & = 1 correspond to the well-known Korteweg-de Vries (KdV)
and Benjamin-Ono (BO) equations. In the case o = 0, d,u is a transport term, so

that there is no dispersion anymore and equation (1.1) corresponds merely to the
inviscid Burgers equation.

While the Cauchy problem associated with (1.1) is now very well-understood
in the case o > 1, our objective here is to investigate the case of low dispersion
when 0 < « < 1, which seems of great physical interest (see for example the
introductions in [19, 21] and the references therein). In particular, in the case
a = %, the dispersion is somehow reminiscent of the linear dispersion of finite
depth water waves with surface tension. The corresponding Whitham equation
with surface tension writes

(1.2) Opu — w(Dy)0pu 4 05 (u?) = 0,

where v = u(x,t) is a real valued function, z € R, ¢ € R, w(D;) is the Fourier
multiplier of symbol w(§) = (%)% (1 + 7'«52)% and 7 is a positive parameter
related to the surface tension. Note that for high frequencies w(€) ~ |¢|2, which

corresponds exactly to equation (1.1) in the L? critical case.

Date: February 10, 2017.



2 L. MOLINET, D. PILOD AND S. VENTO

Equation (1.1) is hamiltonian. In particular, the quantities

(1.3) M(u) = /RUQ(x,t) dx ,
and
(1.4) H(u) = /R (%|D%u(x,t)|2 + %ug(:c,t)) dzx .

are (at least formally) conserved by the flow associated to (1.1). Moreover, equation
(1.1) is invariant under the scaling transformation
u(z,t) = A\u(Az, \*Tt),
for any positive number A. A straightforward computation shows that ||ux| z. =
A5t~ |luy || 4., and thus the critical index corresponding to (1.1) is s = -
1

In particular, equation (1.1) is L2-critical for a = % and energy critical for a = 3.

Next we recall some important facts about the initial value problem (IVP) associ-
ated with (1.1) in L2-based Sobolev spaces H*(R)!. For results in weighted Sobolev
spaces, we refer to Fonseca, Linares and Ponce [9] and the references therein. It was
proved by Molinet, Saut and Tzvetkov [24], that, due to bad high-low frequency
interactions in the nonlinearity, the IVP associated with (1.1) cannot be solved by a
contraction argument on the corresponding integral equation in any Sobolev space
H*(R), s € R, as soon as a < 2. Thus, one needs to use compactness arguments
based on a priori estimates on the solution and on the difference of two solutions
at the required level of regularity.

Standard energy estimates, the Kato-Ponce commutator estimate and Gronwall’s
inequality provide the following bound for solutions of (1.1)

lull oo s < elfuol|prs e o 19wl

Therefore, one way to obtain a priori estimates in H* is to control [|[Oyul| 11 £ at
x

the H®-level. This can be done easily in H%“‘(R) by using the Sobolev embedding
H3F(R) < L*(R). In the Bejamin-Ono case o = 1, Ponce [30] used the smoothing
effects (Strichartz estimates, Kato type smoothing estimate and maximal function
estimate) associated with the dispersive part of (1.1) to obtain well-posedness in
H?(R). Later on, Koch and Tzvetkov [20] introduced a refined Strichartz estimate,
derived by chopping the time interval in small pieces whose length depends on the
spatial frequency of the solution, which allowed them to prove local well-posedness
for BO in HiT(R). This refined Strichartz estimate was then improved by Kenig
and Koenig [16] and the local well-posedness for BO pushed down to H=*(R).
Recently, Linares, Pilod and Ponce [21] extended Kenig and Koenig’s result to (1.1)
in the range 0 < a < 1 by proving that the corresponding initial value problem
is well-posed in H*(R) for s > 3 — %O‘. Note that even very few dispersion (when
0 < a < 1) allows to enlarge the resolution space, which is not the case anymore
when there is no dispersion. Indeed, it is known that the IVP associated with
Burgers’ equation is ill-posed in H2 (R) (c.f. Remark 1.6. in [21]).

Another technique to obtain suitable estimates on the solutions at low regula-
rity is the use of a nonlinear gauge transformation which allows to weaken the bad

1Recall that the natural space where the quantities (1.3) and (1.4) make sense is H 2 (R), at
least when a > %
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frequency interactions in the nonlinear term. Such transformation was introduced
by Tao [32] for the Benjamin-Ono equation and enabled him to prove global well-
posedness for BO in H'(R). By using this gauge transformation in the context
of Bourgain’s spaces X*° Burq and Planchon [6], respectively Ionescu and Kenig
[14], proved that the IVP associated with BO is well-posed in H i*(R), respectively
L?(R). We also refer to Molinet and Pilod [25] for another proof of Ionescu and
Kenig’s result with stronger uniqueness result (for example unconditional unique-
ness in Hit(R)). In [13], Herr, Ionescu, Kenig and Koch were able to extend
Tonescu and Kenig’s result to the whole range 1 < av < 2. By using a paradifferen-
tial gauge transformation, they proved that the IVP associated to (1.1) is globally
well-posed in L%(R) for 1 < a < 2.

Recently Molinet and Vento [28] introduced a new method to obtain energy
estimates at low regularity for strongly nonresonant dispersive equations. It starts
with the classical estimate for the dyadic piece Pyu localized in turn of the spatial
frequency IV,

t
/ /PNam(UQ)PNud:cdt‘ .
0o Jr

To control the last term on the right-hand side of the energy estimate (1.5), one
performs a paraproduct decomposition
(1.6)

(15)  [IPvullizrz S IPvuollZz + sup
te]0, T

PNaI(’U,2)PN’U, = /

azPN(uzNuZN)PNU+/ azPN(u«NU)PNU
Rx[0,t]

Rx[0,t] Rx[0,t]

and put the derivative on the lowest spatial frequencies by “integrating by parts”2.

The idea is then to perform a dyadic decomposition of each function in term of its
modulation variable and to put one of them (the one with the greatest modulation)
in the space X*~ 1. This allows to recover at least |Q2] N ~! where € is the resonance
function. The price to pay is to handle the characteristic function 1)9; which
appears after extending the functions to R? and is not continuous in X*~%!. On
the positive side, the X*~ 1! norm of u is relatively simple to control by using the
classical linear estimates in Bourgain’s spaces as follows

A7) ullxe-ra S Nuoll e + 102737 ()22, S ol e + 175 (w?) | Lge s -

Thus, for s > %, one can easily concludes the bilinear estimate since H*(R) is a
Banach algebra. By using this method, Molinet and Vento proved that the IVP
associated with (1.1) is locally well-posed in H*(R) for s > 1 — & when 1 < o < 2.
Note that Guo [11] also proved local well-posedness in H*(R) for s > 2 — o when
1 < o < 2 without using a gauge transformation. He used instead the short time

Bourgain’s spaces in the way of Tonescu, Kenig and Tataru in [15].
Throughout this paper we consider the class of dispersive equations
(1.8) st + Loy1u = 0y (u?),
where u = u(x,t) is a real-valued function, € R, ¢t € R, @ > 0 and the linear

operator L, satisfies the following hypothesis.

2Since we work with frequency localized functions, this corresponds actually to use suitable
commutator estimates.
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Hypothesis 1. We assume that L.1 is the Fourier multiplier operator by iwq41
where W11 8 a real-valued odd function belonging to C*(R) N C°°(R*) and satis-
fying: There exists &y > 0 such that for any & > &y, it holds

(1.9) 0P was1(§)] ~ €1°T1 7P, Be{0,1,2},
and
(1.10) 10Pwar1(€)] S IE[*T1F, B> 3.

Remark 1.1. We easily check that the following operators satisfy Hypothesis 1:
(1) The purely dispersive operator L = —D$0,, a > 0.

1 1
(2) The Whitham operator with symbol w(§) = ¢ (tangﬂ) ’ (1+72)%,7>0
for a = 1/2.
(3) The linear Intermediate Long Wave operator L = 0, D,, coth(D,,) for a = 1.

In this article, we show that the initial value problem (IVP) associated with (1.8)

is locally well-posed in H*(R) for s > % — %‘3‘ when 0 < o < 1, which improves

Linares, Pilod and Saut’s result in [21].

Theorem 1.2. Assume that L1 satisfies Hypothesis 1 with 0 < a < 1 and let

§> 5o =3 — 22 Then, for any ug € H*(R), there exist T = T(||uo||z=) > 0 and

a unique solution u of the IVP associated with (1.8) in the class
(1.11) C([0,T) : H¥(R)) N X5 N L2(0, T : We—setl-a)—oo(R))

Moreover, for any0 < T’ < T, there exists a neighborhood U of ug in H*(R) such
that the flow-map data solution vy — v is continuous from U into C([0,T'] : H*(R)).

Remark 1.3. In the case a = 1 and Ln41 = —Dg 0y, our result provides a proof of
the local well-posedness for BO in H %"’(R). In other words, we recover Burq and
Planchon’s result in [6] without using a gauge transformation.

If we assume moreover that the symbol w,.1 satisfies

(1.12) wat1(§)] S 18] for [¢] S 1,

we easily see that the Hamiltonian
1 1
Hon(w) = [ (GIA2u(a, ) + 5u*(a, )ds
R

where A%/2 is the space Fourier multiplier defined by

1/2

as well as (1.3) are conserved by the flow associated to (1.8). Iterating Theorem
1.2, we obtain global well-posedness as soon as « > g.

M;(f) _ ‘waﬂ(f)

Corollary 1.1. Assume that Loy1 satisfies Hypothesis 1 and (1.12) with g <
a < 1. Then the Cauchy problem associated with (1.8) is globally well-posed in the
energy space H? (R).

Remark 1.4. The operators defined in Remark 1.1 also satisfy assumption (1.12).
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Remark 1.5. Based on numerical computations by Klein and Saut [19], the global
well-posedness of (1.1) was conjectured [19, 21] in the L?-subcritical case o > %
Here, we answer to part of this conjecture when o > %. Up to our knowledge, this
is the first global existence result for o < 1.

Remark 1.6. It would be interesting to obtain results on the dispersion decay of
the solutions associated to small data for (1.1) with low dispersion. Some progress
in this direction were recently done by Ifrim and Tataru [12] for the Benjamin-Ono
equation.?

Remark 1.7. In [22], Linares, Pilod and Saut showed that the solitary waves asso-
ciated to (1.1) are orbitally stable in the energy space H?2 (R) as soon as o > %,
conditionally to the global well-posedness in H? (see Remark 2.1 in [22]). We also
refer to Arnesen [2] and Angulo [1] for other proofs of this result. Theorem 2.14 in
[22] combined with Theorem 1.2 provides then a complete orbital stability result in
the energy space as soon as a > 2.

Now, we discuss the main ingredients in the proof of Theorem 1.2. Since it is not
clear wether one can take advantage of a gauge transformation in the case a < 1
or not, we elect to follow the energy method introduced in [28]. However, we need
to add several key ingredients.

Firstly, in order to close the bilinear estimate (1.7) in H*(R) for s < 1, we use the
norm | - [|g2 1o, which is in turn estimated by using the refined Strichartz estimate
as in [20, 16, 21]. Then, we can control the last term on the right-hand side of (1.7)
by using the fractional Leibniz rule as ||.J5(u?)|| s ms < lull 2 oo | JZull g 2 -

The norm ||+ |12 o is also an important ingredient to close the energy estimate
(1.5). This creates a serious technical difficulty. Indeed to handle some commuta-
tors with those norms, we need then to use a generalized Coifman-Meyer theorem
for multilinear Fourier multipliers m(&y,-- - ,&,) satisfying the Marcinkiewicz type

condition
n

°m(&, - &) STLIGI™, vBeN .
=1

Such a theorem was proved by Muscalu, Pipher, Tao and Thiele [29] in the bilinear
case and can be deduced from a result of Bernicot [3] in the multilinear case (see
Section 2.3 for more details).
With this theorem in hand, we can estimate the first term of (1.6) correspond-
ing to the high-high frequency interactions by using the norms |ul|y:-1.1 and
T

|| L= 21 as explained above. For the second term, we would like to inte-

grate by parts and use the || - ||xs—1.1-norm as in [28] but the resonance relation
1] ~ NpinNg,, would not be sufficient to recover the “big” derivative we lost

by using this norm. This is one of the main difficulty to work at low dispersion
«a < 1. For this reason, we modify the energy by adding a cubic term, constructed
so that the contribution of its time derivative coming from the linear part of the
equation cancels out the high-low frequency term. It is worth noticing that this
modified energy is defined in Fourier variables in the same spirit of the modified

3Note also that the authors give another proof of the well-posedness of the Benjamin-Ono
equation in L? without using the X *® structure but still based on Tao’s renormalization argument
together with modified energies.
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energy in the I-method [8]. We also refer to our recent works [26, 27] on the mod-
ified Korteweg-de Vries equation both on the line and on the torus for a similar
strategy using a modified energy. Note that we gain a factor Ny, NS, on the
additional cubic term. On the other hand, the contribution of its time derivative
coming from the nonlinear part of the equation is of order four and contains one
more spatial derivative. For a < 1, it is clear that when this spatial derivative
falls on the term with the highest spatial frequencies we should lose N1 N}-a
which is not acceptable for some high-low frequency interaction terms. The crucial
observation here is that there is a fundamental cancellation between two of those

terms exhibiting the badest high-low frequency interactions.

Those ingredients are enough to derive a suitable a priori estimate for a solution
of (1.8). However, things are more complicated to get an estimate for the difference
of two solutions u; and us, since the corresponding equation lacks of symmetry.
For this reason, we are only able to derive an energy estimate for the difference
w = u; — us at low regularity H?, o < 0, and with an additional weight on low
frequency. This is sufficient for our purposes, since we only need this estimate for
the difference of solutions having the same low frequency part in order to prove the
uniqueness and the continuity of the flow map (c.f. [14]). However, the bilinear
estimate is not straightforward as before when working with negative regularity
H?, 0 < 0. To overcome this last difficulty, we follow the strategy in [28] and work
with the sum space F*2 = X511 4+ X(2)+ instead of working with X*~ 1! only.

Finally, it is worth noticing that even in the particular case of purely power
dispersion where scaling invariance occurs, equation (1.8) is L?-super critical for
a < 1/2 and thus we will not be able to use a classical scaling argument to prove
the local existence result. Roughly speaking, our method comnsists in cutting the
spatial frequencies of the solution into two parts P<p, and Pspy,. We gain some
positive factor of the time 7' (but lose some positive factor of Ny) when estimating
the low frequency part whereas we gain a negative factor of Ny when estimating the
high frequency part. This will allow us to close our estimates on ]0, 7| for smooth
solution to (1.1) by taking Ny big enough and 7' > 0 small enough. Finally, the
continuity of the solution as well as the continuity with respect to initial data will
be proved by using a kind of uniform decay estimate on the high spatial frequencies
of the solution.

The paper is organized as follows: in Section 2, we introduce the notation, define
the function spaces and state some important preliminary estimates related the
generalized Coifman-Meyer theorem. In Section 3, we derive multilinear estimates
at the L?-level. Those estimates will be used in Sections 4 and 5 to prove estimates
for the solution and the difference of two solutions of the equation. Finally, we give
the proof of Theorem 1.2 in Section 6.

Acknowledgements. The authors would like to thank Jean-Claude Saut for con-
stant encouragements. They are also grateful to Terence Tao for helpful comments
on the generalized Coifman-Meyer theorem in Section 2.3.

2. NOTATION, FUNCTION SPACES AND PRELIMINARY ESTIMATES

2.1. Notation. For any positive numbers a and b, the notation a < b means that
there exists a positive constant C' such that a < Cb, and we denote a ~ b when
a < band b < a. We also write a < b if the estimate b < a does not hold. If z € R,
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x4, respectively x_ will denote a number slightly greater, respectively lesser, than
z. We also set () = (1+22)2.

For u = u(x,t) € 8'(R?), Fu = 4 will denote its space-time Fourier transform,
whereas F,u, respectively Fyu will denote its Fourier transform in space, respec-
tively in time. For s € R, we define the Bessel and Riesz potentials of order —s, J3
and D%, by

Jiu = F () Fpu) and Diu = F, ' (|¢]* Fou).

Throughout the paper, we fix a smooth cutoff function 7 such that
(2.1) neCy(R), 0<n<1l mn_,,=1 and supp(n) C[-2,2]

We set ¢(€) := n(€) — n(28). Let ¢ € C°(R) be such that 5@1 , = 1and
55

supp (gg) C £[1,4]. For | € Z, we define
621(€) = 6(27'),  Gui() = b (§) == 9(27€)

and, for [ € N*,
Vo1 (§,7) = o1 (T — wat1(§))-

By convention, we also denote

P1(§,7) == n2(7 — wat1(§)))-

Any summations over capitalized variables such as N or L are presumed to be
dyadic. Unless stated otherwise, we work with homogeneous dyadic decomposition
for the space frequency variables and non-homogeneous decompositions for modu-
lation variables, i.e. these variables range over numbers of the form {2% : k € Z}
and {2 : k € N} respectively. Then, we have that

> ¢n(§) =1 VEeRT, supp(qbw)c{gémlsw},Ne{2k:keZ},

N>0

and

S wr(€r) =1 V(E7)ER:, Le{2":keN).

L>1
Let us define the Littlewood-Paley multipliers by

Pyu=F; (onFou), Punu=F; ' (onFou) Qru=F ' (vpFu),

Pon =3 gon P, Pon =D jon Pk, Pan =2 oy Prcy P<n =D gy Pk,
Q>1 =Y g Qr and Q<r := > -, Qk. For the sake of brevity we often write
un = Pynu, u<ny = P<nyu, - -

Finally, if N7, Ny are two dyadic numbers, we denote N7 V No = max{Ny, Na}
and Nl A N2 = min{Nl,NQ}.

2.2. Function spaces. For 1 < p < oo, LP denotes the usual Lebesgue space and
for s € R, H® is the L?-based Sobolev space with norm || f| gs = ||J5f]| 2. If B is
a space of functions on R, 7' > 0 and 1 < p < oo, we define the spaces LY. B, and
LY B, by the norms

Ifllze s, = Bl and [[fllzzs, = I1F1B] L@ -

If M is a space of functions, we will denote M the spaces endowed with the norms

lullzz = 17 (€1~ Fau(©) -
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For s,b € R we introduce the Bourgain space X*? associated with the dispersive
Burgers’ equation as the completion of the Schwartz space S(R?) under the norm

lull 0 = I{€)*(T — wat1 ()’ Frau] 2.

We will also work in the sum space F*b = Xs5=Lb+3 4 Xsb+ endowed with the
norm

(22) Hu| Fs.b = inf {||U1HX5,1,1,+% + ||’U,2||Xs,bJr U =u + UQ}.
For s € R, we define our resolution space Y* by the norm
(2.3) lullys = llullge s + Nl + 1S5 ]| 2 .

We will also need to consider the space Z° equipped with the norm
lullze = llullLee bz + llull 0z + ||J(S_s“)+(1_a)7u||L$L;c-

Finally, we will use restriction in time versions of these spaces. Let T" > 0 be a
positive time and M be a normed space of space-time functions. The restriction
space M will be the space of functions u : Rx]0, T[— R satisfying

||w||pie = inf{||T||ar, : R xR — R, 17|1Rx]0,T[ =u} < 0.
2.3. Generalized Coifman-Meyer theorem.

Definition 2.1. For n > 1 and x a bounded measurable function on R", we define
the multilinear Fourier multiplier operator I} on S(R)™ by

(2.4) H;(fl,,fn))(l'):/ (&1,...,&n) H eir(§it&n) d&y - --dg, .

If o is a permutation of {1,...,n}, then it is clear that
(25) H;(fla"'afn):H;(,(fa(l)a---afa(n))
where x5 (£1,- -+, &) = X(o1)s -+ Eo(n)). For any t > 0, we define R} = R™x]0, ]
and for uy,...un+1 € S(R?), we set

(2.6) Gﬁx(ul, cey Upy1) = / H;(ul, cey U U g1 dadt
R

When there is no risk of confusion, we will write G' = G}, with x € L>(R").
From Plancherel theorem, it is not too hard to check that

(2.7) sz(ul, ceyUpr1) = / H;f(unﬂ, Uy .oy Up Uy ddt
Ry

where Y(&1,...,&) = x(— 2 & oy - -, &n). We deduce from (2.5)-(2.7) that
(2.8) sz(ul, ce ,un+1) - GZXU (ug(l), cee ’ua-(nJrl))

for any permutation o of {1,...,n + 1} with an implicit symbol y, € L>®(R"™)
satisfying [[Xol[L~ S [Ix][zo~-

The classical Coifman-Meyer theorem [7] states that if x is smooth away from
the origin and satisfies the Hormander-Milhin condition

(2.9) 10°x(O)] < 1€177,
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for sufficiently many multi-indices 8 € N", then the operator I} is bounded from
LPY(R) x --- x LP(R) to LP(R) and satisfies

(2.10) T (s fadllee S TN
j=1

1

aslongasl<pj§+oo,1§p<+ooand%:p%+...pn

In the sequel, we will need the following generalized version of Coifman-Meyer’s
theorem.

Theorem 2.2. Let1 < py,--- ,pp < +00 and 1 < p < 400 satisfy % = p%"""'p_ln'
Assume that fi,..., fn € S(R) are functions with Fourier variables supported in
{|¢] ~ N;} for some dyadic numbers Ny, ..., Ny,.

Assume also that x € C*°(R™) satisfies the Marcinkiewicz type condition

n

(2.11) VB = (Br,.-: ) €N, 107x(9) S ] 16177
i=1
on the support of [}, fz(fi) Then,

(2.12) T (fr- s fdllee S Tl Les

j=1
with an implicit constant that doesn’t depend on Ny, ..., Ny.

Remark 2.3. Condition (2.9) is too restrictive for our purpose. For instance if
N7 < Ny are dyadic numbers and

X(€1,82) = o, (§1)nN, (62),

then y clearly satisfies condition (2.11), but |9 x(&1,&)| ~ N7t o> Nyt~
|(&1,€2)| 71, so that x does not satisfy (2.9).

Theorem 2.2 was proved by Muscalu, Pipher, Tao and Thiele [29] in the case of
bilinear Fourier multipliers® (in dimension 2).

One could certainly prove Theorem 2.2 by extending the arguments in [29] to the
multilinear case®. Instead, we will deduce Theorem 2.2 as a Corollary of Bernicot’s
theorem in [3].

Theorem 2.4 ([3], Theorem 1.3). Suppose 1 < p1,...,pp, < 00, 1 < p < 00 and
1/p=1/p1+ ...+ 1/pn. Assume that x € C(R™) satisfies

< H?:l |>‘i P
~ (& 0)1817

for some A1, ..., A, > 0 and where dy is the metric defined by dx(£,0) = D" M|&l.
Then we have for any smooth functions f1,..., fn € S(R)

(2.13) VB = (B1,....Bn) EN", |0°x(¢)|

(2.14) I (frse s fdllee S T fillzes,

i=1

with an implicit constant that doesn’t depend on A.

4Note that even the extremal case where one the p; is equal to 400 is proved.
5Personal communication by Terence Tao.
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Proof of Theorem 2.2. Noticing that
H;(fla afn) = H;(flv 7fn)

with x(&1,-++, &) = (51, &) [T d~n, (&), it suffices to show that x satisfies
(2.13) for suitable A1, -+, A\, > 0. But setting A = (N1 , Nle , 1), this is easily
checked since on the one hand

0501 < X 0o [T v (&) <HN ST
=1

v<B

and on the other hand,

Iy A
N % _)

for |§z| NNZ'. O

131 ”HN ’,

Remark 2.5. Tt is worth noticing that if two symbols x1, x2 satisfy (2.11), then this
condition also holds for the product function yi1x2. This is easily obtained thanks
to the Leibniz rule.

Lemma 2.6. Let 0 < o« < 1. Let N1 < Ny be two dyadic numbers. Then the
symbol x defined on R? by

N1 N§
92(61552)

where Qg is defined in (3.1), satisfies the Marcinkiewicz condition (2.11) on the set
{(&1,&2) €R?: |G ~ N1, [&] ~ Na}.

Proof. Let (£1,&) € R? be such that £ ~ Ny and |&| ~ Na. First we estimate
%09 (&1, &) for 8= (B1, B2) € N2, From Lemma 3.1 and the mean value theorem
we easily get that

X(&1,62) =

(2.15) 1005 (£1, &) S NINSTP2 if B = 0,8, > 0,
(2.16) 1000 (61, &) S NSTIPL g8 > 1,8, > 1 or B=(1,0),
(2.17) 1070 (61, &) < NP e g > 2 8, = 0.

Now classical derivative rules lead to

‘85 <Q2 (€1,&) >‘ Z W H |a(i7j)92(§1,§2)|%‘,j7

0<i<p1
0<5<B2

where

Co=47=(ilogis © . Wg =18l D #ig =B D v =B
0si<B2 o<i<p, 0<i<By 0<i<B:
0<5< Bz 0<5< Bz 0<5< B2



WELL-POSEDNESS FOR DISPERSIVE BURGERS EQUATIONS 11

Therefore, we deduce from (3.2) as well as (2.15)-(2.16)-(2.17) that

&11711€2] 72107 x (&1, &)

NHBlN”‘JFB2 b2 ; el (at1—i)y (a+1—i—75)7y
< a7v1,0 A—J\v0,j . - 0,0 —1— i,
Swas gy e a1 Il
=0 i=2 1<i<h
1<j<B2
< max N WN
™ yeCs
with
B2 B1
Ay = ZVO,;‘ + Z(Oé +1—14)yi,0 — B2
j=0 i=2
and
B2
By=amo+Y (@=io;+ D (a+1—i—j)y,+B—alb|
=0 1<i<By
1<j<B2
Noticing that for v € Cg we have
B2
fa = [B| = pr = Z Yig — Z ig = ZVO,;‘ - Z (i — Vi
0<i<p 0<i<p Jj=0 1<i<py
0<j<ps 0<j<p2 0<j<ps

we infer

B
_aZ%o Zl—l)%,o-f' Z (i — )i
=2

1<i<p
0<j<B2
= Z Yi,0 T Z 71 j-
1<i<B1
1<5<B2

Similarly, we get

By=a| |8l +00+y0+ D vig |+ |B— D i D, (-

0<i<p: 0<i<f: 1<i<f,
155<8s 1< 85 15<8s
B1
=—a) vio— » (i—1)y;
i=2 1<i<f1
1<5<B2

We conclude that A, > 0 and A, = —B,,, which provides

A
1611711€21%210% x (€1, &)  max Ny~ TP <1
’YECﬂ
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2.4. Basic estimates on the sum space F*2 = X 11 4 X0.()+, By definition
of sum space in (2.2), we always have by taking the trivial decompositions (u1, uz) =
(u,0) or (u1,us) = (0,u) that

(2.18) [ull o, < minflullx-11, [Jull o1, }-
The next lemma tells us when the reverse holds true.

Lemma 2.7. Let u € F*% and L, N be two dyadic numbers.
If1 < L < N2, then

(2.19) 1Qzrunllzz, S NLTHQzrun]
If L = (N)?, then

(2.20) Qs runllzz, S L72[Qxrun|l oy -

Proof. Tt directly follows from the estimate

(2.21) 1@z punllzz, S (L7 L7IN) Q5 pun ]|

1.
Fo3

1.
F2

3. L2-MULTILINEAR ESTIMATES

3.1. L2-bilinear estimates. We follow the strategy in [28] to show L2-bilinear
estimates related to the dispersive symbol.
Let us define the resonance function of order 2 associated with (1.1) by

(3.1) D2(&1,8&2) = wat1(& + &2) — wWat1(&1) — wa+1(&2)

where wqy11 is the dispersive symbol defined in Hypothesis 1. For &;,&,&3 € R,
it will be convenient to define the quantities |&naz| > |[Emed| = [Emin| to be the
maximum, median and minimum of ||, |€2| and |€5] respectively.

For the sake of completeness, we recall a few results proved in [28].

Lemma 3.1 ([28], Lemma 2.1). Let o > 0. Let &1,& € R, and {5 = —(& + &2).
Then

(3.2) 1922(€1,&2)| ~ [€min [Emax| -

Lemma 3.2 (28], Lemma 2.3). Let L > 1, 1 < p < 0o and s € R. The operator
Q<1 is bounded in LYHS uniformly in L > 1.

For any T > 0, we counsider 17 the characteristic function of the interval |0, T
and use the decomposition

(3:3) L =15 + 175, VRR(r) = n(r/R)Tr()
for some R > 0.
Lemma 3.3 ([28], Lemma 2.4). For any R >0 and T > 0, it holds

(3.4) 5% 0 ST AR
and
(3.5) 1152% e S 1.

Lemma 3.4 ([28], Lemma 2.5). Let u € L*(R?). Then for any T >0, R > 0 and
L > R, it holds
1QL (2 5wre S 1Q~rull 2
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We are now in a position to prove the main result of this section.

Proposition 3.5. Let 0 < a < 1. Assume 0 <t <1 andu; € Z°, i = 1,2,3
are functions with spatial Fourier support in {|¢| ~ N;} with N; dyadic. Let x €
C>(R?) satisfy the Marcinkiewicz condition (2.11).

If Npin < 1, then

(3.6) |G (ur,uz, u)| S mm||U1||L$°L§HU2HL§IHusHLgI-

If Nppin > 1, then

(3.7) |G7 \ (ur, uz, us)| S N———zNu a)y H l[wil 2o »

max

2
where G ,,

is defined in (2.6).

Proof. From (2.8) we may always assume N1 < Ny < N3. Estimate (3.6) is easily
obtained thanks to Plancherel identity and Bernstein inequality. Thus it remains
to deal with the case N7 > 1. By localization considerations, Gix vanishes unless

NQ ~ Ng. Setting R = NlJr%Na_l we Spht G%,X as

G} (ur, ug,uz) = G2 (1 Z”I% uy, uz, us) + G2 (18 u1, uz, us)

(3.8) = GPhigh 4 g2low,
where G2 (u, v, w) f]RZ (u,v)w and 1?1}?7 1low are defined in (3.3).

The contribution of G2 }”gh

inequality by

is estimated thanks to Lemma 3.3 as well as Holder

(3.9) GP" S Ny ||1hzgh|\L1HU1HmeHU2||L°°L2 lusll g2
_l_«a 1—a
SN ? PN HHuz”Z“

To evaluate the contribution of G?’low, we use Lemma 3.1 and we get
GP17 =G2(Qzn, ng (11%Hu1), uz, us)
+ G2 (Qen, Ny (1°8u1), Q> v, np U2, U3)
+ G2 (Qenyne (18 1), Qen, Na U2, Qun, N Us)
(3.10) = G + Gy + G

It is worth noticing that since N; > 1, we have R < N;N§. Therefore the

contribution of Gi’{ow is easily estimated thanks to Lemma 3.4, Theorem 2.2 and
estimate (2.21) by

N
GTA™) S T2 (Qa vy g (U un), wa) | 2 sl 21
S 1@ n,vp (U8 un)ll 2, uall e oz llusll 2 e
(1 1 _a
< > @ VI NONG T ] oy sl 2ol us]| 20

~
LiZNiNg

3
(3.11) SN INGT [T il o,

=1



14 L. MOLINET, D. PILOD AND S. VENTO

where in the last step we used that 0 < o < 1. Using again Theorem 2.2, Holder
inequality and Lemma 2.7 we estimate the contribution of G2 bow 1y

2,1
G| S 1Qaeming (1R u) | 2 poo Q3w npuall 2 2+ sl oo 2
S (NiNg) T Ng N3 (| Qe g (12w | 2 oo [ oy sl 2o
(3.12) <N ® TN (N ? 4HQ<<N1N"(1£5RU1)HL§L;°*) [[uz|| zollus|| zo.
On the other hand, observe that an interpolation argument provides
(3.13) NE D gz S llunllzo if N2 1.
Since Q< = I — Q>p, we deduce that
1l — 140 2
Ny 2ot HQ<<N1N§(1£,O}§U1)HL3L;°* SN2 ||u1||L?L;°’ + Ny HQZNlNé‘UlHLfI

_1 — a
Slullzo+ Y5 (L72 VLTINDNY flu
LZNiNg

1
FO2

(3.14) S lluallzo-
Combining (3.12)-(3.14) we infer

3
—_a 1—
G5 S N TENE O T il o
i=1
Finally, using Lemma 3.2, the contribution of Gf éow is estimated in the same
way. O
3.2. L2-trilinear estimates. We first state an elementary estimate.

Proposition 3.6. Let 0 < o < 1. Assume 0 <t <1 andu; € Z° i = 1,2,3,4
are functions with spatial Fourier support in {|§| ~ N;} with N; dyadic. Let x €
C>=(R3) satisfy the Marcinkiewicz condition (2.11).

Then it holds that

max

1 o 1
(315) |G} (un, s, ug,ua)| S N (N~ TNS2 (v 4N0+H||uz||zo

Proof. We get from (2.12) together with Holder and Bernstein inequalities that
|G} (ur, ug, ug, ug)| S (T (ur, we, us)| 1 pe sl poe 2
< N lwall 2 poo- w2l 2 poo-llusll e p2 luall e 2.
We conclude the proof of estimate (3.15) combining
(3.16) lunll gz S N Jlunllperz it NS 1,
with (3.13). O
Now we define the resonance function of order 3 by

Q3(£1,62,83) = War1(&1 + & +&3) —war1(1) — wat1(§2) — wat1(£3).

For &1,&2,&3,&4 € R, it will be convenient to define the quantities |Emaz| > |Esun| =
|€tha| = |Emin| to be the maximum, sub-maximum, third-maximum and minimum
of [€1],]€2], €3] and |€4| respectively.
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Lemma 3.7. Let a > 0. Let £1,82,83 € R and & = —(§&1 + & + &3). If we assume
that |Emin| < |&tna| then it holds

(3.17) Q23(&1, &2, €3)| ~ |&enalléman] -

Proof. Without loss of generality, we may assume [£1] < |€2] < [€3] ~ |€4]. Then,
estimate (3.17) is a consequence of the identity

D3(61,82,83) = Q2(§2 + &3, 81) + Q2(82,&3)

combined with Lemma 3.1. O

Proposition 3.8. Let 0 < a < 1. Assume 0 <t <1 and u; € Z°, i =1,2,3,4
are functions with spatial Fourier support in {|€] ~ N;} with N; dyadic satisfying
Nimin < Ning and Npyar > 1. Let x € C°(R3) satisfy the Marcinkiewicz condition
(2.11). Then,

(3.18) 1G3 (w1, w2, uz, ws)| S NE (Nypa) 3% N

mam ]:[”U HZO

Proof. From (2.8) it is sufficient to consider the case N3 < Ny < N3 ~ Ny. More-
over, we may assume that No Ny > 1 and Ny > 1 since otherwise the claim follows
from estimate (3.15). We proceed now as in the proof of Proposition 3.5. First we
decompose G¥ as G2 4 GOV with

3,high 3 (1high 3 (1high
Gt (u17u27u3;u4> G ( t,R u17u27u3;u4> / I (1tR Ul,’lLQ,Ug)U4 dxdt
R2

and R = N, T+ N~ 3 NoNg. The high-part is easily estimated thanks to Lemma
3.3 by

4
3, high C1ATE AT
(3.19) |Gy 7 ISR 1Nl N3 HHUiHL;’OLga

i=1

which is acceptable. To deal with the low-part, we decompose with respect of the
modulation variables. Thus

GH = Y G (Qr,(1%Hur), Qryus, Qryus, Q).

Ly,L2,L3,L4
According to (3.17) the above sum is nontrivial only for L,q, 2 NoNg. In the
case where Li,q, = L1, we deduce from (2.12)-(2.21)-(3.13) and Lemma 3.4 that

1
GH 1S Ny NG (1Qa g (1)l 2 lluall o e~ sl ez s 3o 2

~Be - Do N5 N0
S ST @I VLTINONG NG TEND | o s lluallzo sl 2o lwall 2o

~ FO % 1
L1>NaNg

4
< NN TENST O T il o
=1
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In the same way, we get that the sum over L4, = Lo is controlled by
N/ 3)- 770
G| S Ny N | Quemany (LK un) e 2 | Qwawg il o sl oo utal ez

_ (1 1 1_a
S Y L VL NN N T D g e ua)

N [|us| zo [|wall zo
Ly>NoNg

1
FOz

4
1y _1l_a 1—
NN, TENET T 2o
i=1
Arguing similarly and using (3.14), the sum over L,, 4, = L3 can be estimated by
3,1 3)— As0
G < Ny NG| Quenong (Lo un) | e 12 | Quevvg il 2 oo | Qo v vp sl 2 ua | 3o 2
—(3)+ —1 (3)= Ar3—% Ar0+
N Z (Ls V Ly Ny)Ny2* Ni Ny uallpgerz uall zo lusl| o1 [luall zo
Ls>NyNg
(3)- =35 Ar(1—@) -
SNPTN, P TN +r[”uiHZ"-
i=1
Finally we easily check that the bound in the case L4, = L4 is obtained similarly.

Gathering all these estimates we get the desired result.
O

4. ESTIMATES FOR A SMOOTH SOLUTION

The aim of this section is to get suitable a priori estimates of a solution of (1.8)
in the space Y?* — Z° for s > sq4.

4.1. Bilinear estimate.

Proposition 4.1. Assume that 0 <T <1 and s > 0. Let u be a smooth solution
to (1.8) defined in the time interval [0, T]. Then

(4.1) [l ys-ra S Nuollrs + lullpzroe 1l e g -

Proof. By using the fractional Leibniz rule (c.f. Kenig, Ponce and Vega [18]), we
have for s >0

lull xs=10 < Nuollrre=s + 110 (u?) ] xz-10
(4.2) < lwollms + 175 @)l 2,
S lluollers + llull 2 pee llull g o -
(]

4.2. Refined Strichartz estimate. Let us first recall the following Strichartz
estimate:

(4.3) |Po1 D= Un(tyuol| iree S lluollzz,  uo € LA(R),

where U, (t) = e'Lo+1 is the free evolution operator associated to (1.8). This esti-
mate is a direct consequence of Theorem 2.1 in [17] applied with ¢ = (1 — n)wat1-
From this we get following the proof of Proposition 2.3 in [21] (see also [16]) the
refined Strichartz estimate:



WELL-POSEDNESS FOR DISPERSIVE BURGERS EQUATIONS 17

Lemma 4.2. Let 0 < oo < 1. Assume that 0 < T <1 and 6 > 0. Let u be a
solution to

(44) (8t + La+1)u =F

defined on the time interval [0, T]. Then, there exist 0 < K1, ko < % such that
(4.5)
IPxullgz e S T DL @74 Py oo 2 + T2 ||D;(a71)/4735/4PNFHLZT’I,

for any dyadic number N > 1.

Proposition 4.3. Let 0 < a < 1. Assume that 0 <T <1 and s > s,. Let u be a
smooth solution to (1.8) defined on the time interval [0,T]. There exists 0 < k < %

1
such that if 0 <T < |lull & g, then
(4.6) ||J£S_sa)+(1_a)7u|‘L2TL;° <2T"||ullLgems < 1.
Proof. From Bernstein’s inequality, we easily estimate the low frequencies part:
—s - 1
[Py JE 20t 0= ]| o oo ST ||ul pos 2
Taking 6 = 1 in (4.5), summing over N > 1 and using the fractional Leibniz rule,
we deduce
HP>1J§S_S“)+(1_a)fu|\L2TLgo ST pullpgere + THZHJ;(UQ)”L?TYI
ST lullogmy + T lullpz pee lull g mg -

Noticing that for s > s, and 0 < a < 1, it holds (s — s4) 4+ (1 — &)~ > 0, we obtain
(4.6) by combining the two above estimates and taking kK = K1 V Ka. O

Corollary 4.1. Let 0 < a < 1. Assume that 0 < T <1 and s > so. Let u be a
smooth solution to (1.8) defined on the time interval [0, T]. There exist 0 < k < 3

and Cy > 1 such that if 0 < T < HuHZ;HS, then
(4.7) ully; < CollullLge g -

Proof. We have to extend the function u from ]0,7'[ to R. For this we introduce
the extension operator pr defined by

(4.8) pr(u)(t) := Ua(O)n()Ua(—pr (b)) ulur(t)) ,
where 7 is the smooth cut-off function defined in Section 2.1 and pr is the contin-
uous piecewise affine function defined by

0 for t<0
pr(t) = t for ¢€][0,T]
T for t>T

According to classical results on extension operators (see for instance [23]), for any
1/2<b<1, frnf(ur()) is linear continuous from H([0,7]) into H*(R) with a
bound that does not depend on T" > 0.

First, the unitarity of the free group U,(+) in H*(R) easily leads to

4.9)  llpr(u)len: S lulpr()loems S llullogms + [[w(0)][ms + [[w(T)]|m- -

Second, the definition of the X%*-norm leads, for 1/2 <b <1 and 6 € R, to
(4.10)

lor (w)llxer =l Ua(=pr())ulur ()l gor S NVa(=)ullaeorpme) S llullxoe -
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Finally, for 6 € R,
||JfPT(U)||L§Lg° S H77Ua(*')<]fu(0)||L2(]—oo,o[;L;°) =+ ||qu|\L2TLgo
+ [V (=) TUa(T)u(T) | L2074 ool L30)
whereas (4.3) leads to
17Ua(=)Iu(0)l 220-os,0p25) S 1Pt nUa(=)T7u(0)l| 21 + [ Po1 Ua(=)J7u(0) 1o ree

9_,’_171&
S luOllzz + 17 w0)l[z2 S [[w(0)]] 04 150

and in the same way
[9Ua(=)U(T) (D) 22q7,+ o0 20) S IU(T)u(T)l|

Noticing that, for 0 < a<1,s—so+1—a=s— % +9<s— i, this ensures that

vo = [lu(T)]

l—a .

HOT 7

HT

||J§S_s“)+(1_a)_EPT(U)||L$L;o S ||J(S_s“)+(1_a)_eu|\L2TL;o
(4.11) HwO) | gs-< + [[u(T)][ rs--

for any > 0.
Gathering (4.9)-(4.11), we thus infer that for any (7', s) € R% x R, pr is a bounded

linear operator from C([0,T); H*(R)) ﬂX;’fl’l OL%WQES*S“)JF(FO‘)”OO into Y® with
a bound that does not depend on (7', s). Therefore (4.1) and (4.6) lead to (4.7). O

4.3. Energy estimate. Applying the operator Py with N > 0 dyadic to equation
(1.8), taking the L? scalar product with Pyu and integrating on |0, ¢[ we obtain

(4.12) (N)# [ Prul-, )72 = [|PyuollFrs +(N)* | Py (u?)Pyu
Ry

Let Ny > 22 and N > Ny. Define Jn by

(4.13) JIn = (N)* /R Py 0, (u*) Pyu.

By localization considerations, we get
Py (u?) = 2Py (uenu) + Pn(u>nu>y).
Moreover, from the fundamental theorem of calculus, we easily get
Py(uenu) = uenuy + Nﬁlﬂi(ﬁzu«]\;, u),

where we used the bilinear Fourier multiplier notation introduced in Definition 2.1
with

1
(€ &) = i [ SN0 + )b
0
Inserting this into (4.13) and integrating by parts we deduce Jy = Jx + Jx where
Ty = (N)* /R (Optien Pyu+ 2N 0,11 (Opuen, u)) Pyu
and

(4.14) T =—(N)* Y / Py, uPn,uP%0,u,
Ry

Ni2N
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Since Py P.n = Py, we may rewrite .J5 more symmetrically as

Th = <N>2S/R Py (Oxuen Py Pyt + 2N 0,11 (Opuen, P2 yu)) Punu
t

(4.15) :NQS/ I} (Ozue N, Punt) Puyu
R¢

with
(V)

(4.16) xa(61,62) = (T)Q (¢N(§2) +2¢51;52

Note that the function x; satisfies the condition (2.11). This decomposition of
Jn motivates the definition of our modified energy. For Ny > 1, u € H*(R), with
s € R, and N > 0 dyadic we define

x(&1, E2)¢~N(€2)) N (&1 + &2).

%HPNuHQL2 for N < N,

(0 5N(“):5N(“’NO):{ LIPyul3s + cel(u) for N > N,

where

ekl = [ MG TR ) Pvu(e) Pova(—6 — ) derdes.

02(&1,&2) is the quadratic resonance relation defined in (3.1), and ¢ is a real constant
to be fixed later.

We define the modified energy at the H?®-regularity by using a nonhomogeneous
dyadic decomposition in spatial frequency®

(4.18) E*(u) = E*(u, No) = Y _(N)**|€n(u, No)| -

Next, we show that if s > s, and Ny > 2° is large enough then the modified
energy F*(u) is equivalent to the H*-norm of w.

Lemma 4.4 (Coercivity of the modified energy). Let 0 < oo < 1 and let u € H*(R)
with s > sq. Then for any No > (1 + HuHH;Q)%, it holds

1 1
(419)  |B N = 5 S Pvald| < 5 ST (| Pauls

2
N>1 N>Ny

Proof. We infer from (4.18) and the triangle inequality that

1
(4200 |E*w,No) = 5 DO (N |IPwulllz| S D NE[ekw)].

N>1 N>Ng

Thanks to Young and Bernstein’s inequalities we have
N*|eh ()] S Y N* (NN TNF 0wyl 2 | P2
(4.21) Ni<N
S N+ NT Y ull grze | PonvullFs
Finally, we conclude the proof of (4.19) gathering (4.20)-(4.21) and the fact that
Z [Pl ~ Z (N)* || PyvullZs - O

N>1 N>1

6This means that when summing over N, we keep all the low frequencies together and by
convention P} = Pgl-
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We now state the main estimate of this subsection.

Proposition 4.5. Let 0 < a < 1. Let s > s > 85, 0<T <1 andu € Y} be a
solution of (1.8) on [0,T]. Then for any No > 1 we have
(4.22)

3 SQ—S/ —
Sup B (u(t). No) S B (o, No)oH (TN 8™ ™18 Yl el
€]0,

where the implicit constant only depends on «.

Proof. Let 0 <t <T < 1. First, assume that N < Ny = 29, By using the definition
of Ey in (4.17), we have

/ Py Oy ( PNu dx ,

which yields after integrating between 0 and ¢ and applying Holder and Bernstein’s
inequalities that

[En ()] < o)l + | | Pros(u)Pru

3
S En (uo)| +t N2 || Py (u?) || Lo 11 | Pyull ooz -
Thus, we deduce after taking the supreme over ¢ € [0, T and summing over N < Ny

that
(4.23) .
sup > (NP [En@®)] S D (N |En(uo)l + T N l|ull Lz 2wl F oo s »

t€]0,T[ N <, N<No

where we used that, since s > 0, N*|| Py (u?)|| et < llull e p2 Jul| o mrs-
Now, for N > Ny, we take the extension @ = pr(u) defined in (4.8). To simplify
the notation we drop the tilde in the sequel. We first notice that

(N)YEn (u(t)) = (N)2*Ex(ug) + (N)?* /]R P, (u?) Pyu + (N /O ek
(4.24) = (N)?*En(uo) + In(t) +thCN(t) ,

where Jy (t) = T4 (t) + JZ(t) is defined in (4.13), (4.14), (4.15).

Estimate for J%. We get from Proposition 3.5 that

TxOIS D NG (un,, uan,, PRozu)|
Ni12N

< SNBSS N e e [y

~

Ni1Z2N

Since s > % — 5 and s’ > s, we deduce that

(4.25)
sup > TRMIS D N5l [ulff

te]0.T[ NN, N>No

2 SNSTI ully ful3
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It remains to estimate 7. ]%, + cKy. Using equation (1.8) we obtain

K:N(t):_NQS/RZ (( 1’62)
2s (€1a§2
N /R? Q2(61,¢
xa(
Qs
xa(

§2)
§£1P<<Nc’)( 2)(&1)u~n (§2)un (—8)

2s €1a§2)

+ N /]R2 )
)

¢ €1U<<N(§1) NN/a\( )(52)U/~7v(_€)
&

R B e R I (RIS
=Ty + KN + K% + K3
Taking ¢ = 1 this leads to estimate Jy + Ky = KL + K% + K3
Estimate for K. We have
NMOESUSED Y (NlNa)*le/ T (U, Uy, Uy Uy
N1<N N»VNs>N, R

where

NIN® (& +&)°

xicr (€152, €3) = ix1(&1 + 62’63)92(51 +&2,&3) N12

N, (61 + &2),

21

161 (Wa+1(£1) + wag1(&2) — wat1(§))uen (&1)ton (&2)aon (—£)

with x1 defined in (4.16). From Lemma 2.6, xx1 satisfies (2.11). Therefore we get

from Proposition 3.6 that

KNOIS ST S NN NG () T NG () T (N v N

N1<N NpVNs>Ny

X [y gy o [ |3
SN N Ny (N2 I 3
N <N

where in the last step we used that l — & — ' < 0. We thus infer that

(4.26) sup > K0 S (Vg ™+ NE ) 2 [l
te]0,T| N>No
Estimates for K3, + K3;. Using, as in Subsection 4.3, that
(427) PNN(’U,Q) = 22U NU~N + 2N_1H§~((8I’UJ<<N, uNN) + PNN(UZNUZN),

where y satisfies (2.11), we decompose K% + K3 as K3 + K32 + K33 with

k) = 2v> [ G T ) [0 anin) )T () + TN ()0

—

(U NU~N) (—E)

K2(1) = 2N /R X160 8) ¢ ) [F (0,112 Dy, o)) (E2) T ()

2 Q(&1,&2)

+ o (62) F (0,112 (auen, un))(=E)]

]
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and
K0 = N2 [ XS o) 7, 00 P iz vz ) )i (—6)
Rz $22(£1,&2) M
+ N (&) F (0 Pun (uz nuzn)) (—E)]-
Estimate for K3}. We have

i) = -2iv® [ (1) 60 0 () (678 ()7 6 — (-6 6

~2iv [ () 6 0 (@) (@) (6 + TR G (6 6+ &)

2

Now a change a variables leads to

K3 (t)=2N> - / (€1, 62,€3)0pun, (61)T, (&2) T (3)Ton (—€)

Ni,N2&KN

with £ = & + & + &3 and
o(61,82,83) = (g) (1,82 +&3) (62 + &3) — (g) (€1,83) (&1 +&3)-
2 2

Let us rewrite o as follows:

o(£1,82,€3) = Kg—;) (€1, + &) — <§;—;> (51,53)} o (€s)Es
+ (é—;) (61,62 + &), (£2)6
- (é—;) (€1, &) DN, (E1)&1

According to Lemma 2.6 and Remark 2.5, it is easy to check that Ny N¢ ( ) (&1,&+

&s), mqﬁNz(fg)fg and thus M (—) (&1, 6 +€3)¢N2 (&2)&2 satisfy (2.11). In the

2

same way, N}VN (Xl) (&1, «53)(;51\/1 (&1)& satisfies (2.11). Now we get from the mean

1

value theorem that for any multi-indice 8 = (51,0, 83), there exists |§~5| ~ N such
that

0° [(g—;) (1,61 +&3) — (g—;) (51,53)} = g\Prhs) (;%) (1,82 + &3) — 9P15) ( ) (&1,€3)

_ a(ﬁl B3+1) ( > (517&3)5

On the other hand, for any 8 = (81, 52, f3) with Sz > 1, we have
o° K%) (€1,61 +&3) — (%) (51,53)] = P2t 0s) ( ) (&1, + &)
2 2

It thus follows from Lemma 2.6 that Nl%:H [(é—;) (61,61 + &) — (ﬁ) (51;53)}
satisfies (2.11). Therefore we deduce that yjs := N%o satisfies (2.11).

Nl\/N
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Rewriting K3} as
. N1V N,
IC?Z,Vl — 9N~ Z Tl A Hi s (&EUNI,UNZ,UNN)UNN
Ni,Na<N t

we get from estimate (3.15) that

KY¥@IS N > (W VN2)N T(Ny) T N27<N2>_7 N [, [yl [y
N1,No&N
Recalling that 3 — 9 — s’ < 0, it follows as in (4.26) that
(4.28) sup Z KR O S (NG ™+ Ng™ ™)l lul,.
t€l0,T[ NS,
Estimate for K3?. We only deal with the first term K3?! of the sum in K37 since
the other is estimated similarly. With the notation of Section 2.3 we obtain
k¥ () =2N> > NlNg(NlNa)_l/ I ., (uny, uny, uey N
N1,Na<N Ry
with
B - N N® & & & +€3
Xxcozr (€1, €2,83) = X1(§17§2+§3)X(§27§3) L&) NNy, N
Noticing that xjcsz1 (&1, &2) satisfies condition (2.11), estimate (3.15) implies that
IO S N7 D0 NN () TE NG () T N gyl e i

Ni,No<&N

which again, as in (4.26), leads to

(4.29) sup S KR S (Ng ™+ N ) Julf?
t€]0.T[ NS,

YS U|Ys.

Estimate for K3. We follow again the same arguments. We only deal with the
first term 33! of the sum in K3} and rewrite it as

IC331 — N2 Z Z N, NlNOt 1N/ — UNI,UNzaUNNz)UNN

N1<N Ny 2N

with
NiN*®
X1 (61,62, €3) = ixa (&1, &2 + '53)92(51 152 +&3) ]%1 e

Then, thanks to estimate (3.15), we get
RO N 3230 M) TN |

N1<N Ny 2N

S NC= ) S NS a2 [
N22Z N

don (&2 + E&3).

yor [[uns [y [[umn, [y |

This leads to

(4.30) sup S KB S NS 2
te]O,T[N>N0

ul|3s.

U~N||Ys .
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Combining (4.23)-(4.24)-(4.25)-(4.26)-(4.28)-(4.29)-(4.30), we conclude the proof of
Proposition 4.5. 0

Corollary 4.2. Let 0 < a < 1. Let s > 54, 0 <T <1 and u € Y} be a solution of
(1.8) on [0,T). Then for any Ny > 1 we have
(4.31)

sup 37 (V)2 e (ult), No)—Ex (o, No)| S (N4 ™ ().
t€]0,T[ NS N,
Proof. According to (4.24), it suffices to bound
sup Y ‘jN(t) + ICN(t)’
t€]0,T[ N>No
and the result follows from by combining (4.25)-(4.26)-(4.28)-(4.29)-(4.30). O

5. ESTIMATES FOR THE DIFFERENCE OF TWO SOLUTIONS

In this section, we provide the needed estimates for the difference w of two
solutions u,v of (1.8). If w =« — v and z = u + v, then

(5.1) (0 — Log1)w = 0z (zw) .

The lack of symmetry in the nonlinear term of (5.1) prevents us to estimate w in
Y7, s > so. To overcome this difficulty, we will rather work at a lower regularity
level o < 0 and more precisely with

1 a | 3
(5.2) JG}—§+Z,m1n(0,s—2+§a) .

Remark 5.1. For a €]0,1] and s > s, = 2 — 2q, it holds —2 + ¢ < 0 and
s—2+ %a > f% + . Therefore, the definition interval in (5.2) is never empty.

Moreover, it is worth noticing that —o < % — % < 8o < S.

Since we are not able to control the X;_l’l NL2 Aot sa) 00 part of w for

0 < 0 we need to bound the difference in the sum space Fos, Finally, to treat
some low-high interactions in the energy estimates, we also need to add a weight
on the low space frequencies so that w will take place in Z 7.

5.1. Bilinear estimate.

Proposition 5.2. Let 0 < o < 1. Assume that 0 < T <1, s > s, and f% +3<
o <min(0,s — 2+ 2a). Let z € Y} and let w € Zg be a solution of (5.1) on ]0,T]
with wo € He. Then it holds

(5.3) [wlizgrr2 S llwollge + (U + llzllva) 2l v llwl g e -
Proof. We take the extensions w = pr(w) and Z = pr(z) defined in (4.8). To

simplify the notation we drop the tilde in the sequel. For Ny > 1 to be chosen
later, we rewrite zw as

zw = P<pyy(zw) + E {zSNwNN + zoNw<n + E lewNNl}
N>Ny Ni>N

Lh h,l h,h
(5-4) = JSNo + J>N0 + J>N0 + J>N0 :
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Duhamel formula, (2.18), as well as classical Bourgain’s estimate on the linear
evolution (cf. [5], [10]) and (2.18) lead to

[l 7.3 S lwollze + 1102 (zw) | o 4

Lh Rl hh
S lwollge + <ol xoo + [1T3, + SN lIxe0 + 158l posr -3

Now, using that 0 < —o < s, we easily bound the contribution of the low frequency
part J<n, by

1 1
(5.5)  NJ<nollxeo S DY N2(N)|Py(zw)l|peors S NE |zl goms |wll s mg -
N<N,

The contribution of the high-low interactions .J. h’]lvo is also easily bounded as

>
follows
h,l
1720 xm0 S 30 AN Nzl p2pee lwsnllzse 2
N>Ng
<> lewllzzre lwll e me

N>Ng

(5.6) Sellyslwlosemrs

where in the next to the last step we used that o < 0 yields (N)7[[w<n|lpeerz <

~

[wl[z255- To bound the contribution of the low-high interactions Ji]]-bV[) we write

L,h < 20 2 1/2
1750, Ixm0 S ( D2 (M) llzgvwenllFe
N>Np

L?

1/2
SO 2 llzgnllEs hwanlizs) |

N>Np

L?

S |lzllzgllwlag ],
t

(5.7) S llzllrzre lwllizg ag -

Now we deal with the (high-high) interactions term

hh
RS T > PnQu(Qrizn,Qrowen,)

N>N, > (23 1
N1>>197 LimaxZN Ny potl—3
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To estimate the contribution of the sum over L 2 NN{*, we take advantage of the
XotL(=3)+_part of Fot1:~2. Therefore this term is bounded by

DD IPNQuenwan) | yoirds

N>No [>NNg
NN TR 1

S D > NULORPyQr (o wen)lizy,
N>No L>NN{

Ni>N ™~
1 —a
S D N ST NS P e e o e
N>Ng Ni>N
1 5= a— -
S 2 NTHB 3T NN IO ey, e
N>Np Ni1>N
S D0 N @D ey ful| e g
N>Ng
(58) <l lwleeny .

where we used that —§ — o + (sq — ) + (@ —1); < —0 — (1 = §) < 0 since
0< -0 < % — 4. The contribution of the region L < NN{* and L; 2 NN is

estimated by

> 1Qenng (Qznne2n, wan, )|l xo0

N>Np
Ni>N

A

1
SN N Qennpeemwan Iz

N>No Ni1>N

1 _
S Y Y MWD em o e, e
N>No N1 >N
5 Z N07% Z Nll_a_s_a”ZHXS*LI||w||Lt°°Hg
N>No Ni>N
S D0 NEO g el e g
N>Ng

(5.9) < Ng el el s
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where we used that —a — s+ 1 —0 < s4 — s < 0 to sum over Ny. Finally the
contribution of the last region can be bounded thanks to Lemmas 3.2 and 2.7 by

> 1Qenn: (Qennezn, Qznnpwan,)| xeo

N>Ng
N1>N
1
S Y NP2 Qenneam @enngwan 2Lt
N>Ng
N1>N
1 _
S DL NTFE(NND) T N 2w [l 2 lwan || oy
N>Ng
N1>N
_1 —a—s—
< Z No—3 Z NP7 2| oo b (1] Y
N>Ng N1>N
1_ e
S S 1 VP [
N>Ng
< o1+ g
(5.10) SNo e s llwll o

where we used that (NN®)~2 < (NN®)~!Ny, since a < 1. Gathering (5.5)-(5.10)
we obtain

1 1

IIwHF;,% < aflwollge + c2(Ng + Dllzllyvzlwllzg e 4 csNy 2 HZIIY;HUJIIF;,% :
where ¢1, ¢o,c3 > 1. This yields the desired result by taking No = [2¢5(1+ Hz||y;)]2
and concludes the proof of Proposition 5.2. (]

5.2. Refined Strichartz estimate.
Proposition 5.3. Let 0 < o < 1. Assume that 0 < T <1, s > s, and —% + % <

o < min(0,s — 2+ 3a). Let z € Y and w € Zg be a solution of (5.1) on ]0,T].
Then

(5.11) (I =+ ]|y o < ol e + (14 2]

va)(lwllg g +llwll ..5)-
T

Proof. The low frequency part is estimated by

_ _ 1 _
|| P<y Jimote S“)WHLZT§§T2 Z<N 1>N1/2HWNHL;°L§
N<1

1
ST ||w||L;°ﬁZ'

Now we estimate high frequency part of the LHS of (5.11). The high modulation
part is easily bounded thanks to (2.19) by

Z Nl_aﬂa_s")HQzNanNHLZ’TLgo < Z N1-ote=sa) N3 (Nt I N |wy ||

FO3
N>1 N>1
_3a
(5.12) S D N wnll ey S wll ey
N>1

where we used that (N*+1)~2 < (N*+1)~1 N since a < 1. Noticing that Q « ye+1wy
satisfies equation (4.4) with F' = Q« nyae+1Pn0z(2w), we deduce from Lemma 4.2
with 0 =1 that

(5.13)

N{o=se)t(=e)- 1Qenerwnllpz e S N lwnllpg s +N- Q<o+ Prn(zw)| 2, -
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On the other hand since 1+ a < 2, proceeding as in Lemma 2.7, we easily get

o atly
N|Qenati Py (zw)| 2 S (N 125 (zw)l] o4

2+
T

)V (N|Py (zw)]| yg-10)

< NIPx ()]l

a,—%
T

and (5.5)-(5.10) ensure that this last term is bounded by |||y (||w|| Lge me +||wHFC,,% ).
T

Summing (5.13) for N > 1 we thus get

Z N(e—sa)+(1—a)- |Q <« narrwn HLZTL;o
N>1

(5.14) S lwllog mg + 112

villwllogms +llwll o.1),

T

which completes the proof of the proposition. O

Corollary 5.1. Let 0 < a < 1. Assume that 0 < T <1, s > s, and —3 + % <

o <min(0,s — 2+ 3a). Let z € Yj and w € Zg be a solution of (5.1) on |0,T]|
such that wg € H’. Then

(5.15) ol < 1+ llzllva)® (lwollzze + lwll ) -

Proof. By the property of the extension w = pr(w) defined in (4.8) we have

(5.16) 1@z < 1wl gz + llwllzg, + 175720070 7
and the result follows by gathering this last estimate with (5.3) and (5.11). O

5.3. Energy estimate. For Ny > 1, we define the modified energy for the diffe-
rence w of two solutions v and v by

L Py for N < N

17) & No) = . e
(5.17) En(z,w, No) { %HPNwH%Z + &y (z,w) + &% (2,w) for N > Np,

where

Ex(zw) = /R2 (%) (51752)51/2/<<\N(§1)P/-1V\10(§2)P/~-1V\w(*§1 — &2)d&1d¢,
and

Ex(z,w) = /}R2 <§(2—Z) (&1,8) (& + &)wan (§1)Punz(&2) Punw(—& — &)dErdEs
Oy is defined in (3.1), X1, X2 are symbols satisfying the Marcinkiewicz condition
(2.11) and defined later in the proof of Proposition 5.5, and ¢1, ¢ are real constants
that will be fixed later in the proof of Proposition 5.5.

We define the modified energy at the H?-regularity associated with the difference
of two solutions by using a homogeneous dyadic decomposition in spatial frequency

(5.18) E7(z,w, No) = > _(N"HN)?|Ex (2, w, No)| -

N>0
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Lemma 5.4 (Coercivity of the modified energy). Let0 < a <1,8> 8,,0<T <1
and —3 + 2 < o < min(0, s — 2 Jrﬁa). Let z € Y and w € Zy be a solution of
(5.1). Then for No > (1 + ||z||gs)= it holds
(5.19)

1

|B7 (2w, o) = 5 (N> (N)?| Pyw3,

1 .
<3 > (NN Pywl3s -,

N>0 N>No
Proof. We infer from (5.18) and the triangle inequality that, for Ny > 1,

~ 1
|B7 (2w, No)=5 >~ (M) (N 72| Pyw 3

N>0
(5.20) < >0 NT|EN(zw)| + Y N*IER (z,w)] .
N>Ng N>Ny

Thanks to Young and Bernstein’s inequalities we have for N > Ny > 1,
~ 1
N¥[Ex(zw)| S D N> (NN T'NE [0z, |l ez lwan |72
(5.21) Ni<N
SN+ Nz s |wan g -
Similarly we bound the contribution of £2 for N > Ny > 1 by
N*|EX(zw)| S D NOTHmON (NS TN
N1 <N

X Nlwn, e lz~n | g lwen | g

(5.22) S NE Mwligs lzwnlla oy g

Finally, we conclude the proof of (5.19) gathering (5.20)-(5.21)-(5.22) and the fact

that Jwlzs ~ Y (N)* (N2 Pywl|7,. O
N>0

Proposition 5.5. Let 0 < o < 1. Let s > $o, 0 < T < 1 and f% +3 <0<
min(0,s — 2+ 3a). Let z € Yj and w € Z7 be a solution of (5.1). Then it holds

o o 3 Sq—S
sup. 7 ((0) w(®). No) S E7(=(0),w(0). No) + (TN + NG ™) 2l vzl
te]o0,

—(5$)+ Sa—S —2v+(a—1
(5.23) +(Ng BT NG 4+ N2 (ullf + ol ol
wherevzs—2+%a—a>0.

Proof. We argue as in the proof of Proposition 4.5. To deal with the low frequencies
N < Ny, we use equation (5.1) to deduce

%gN(z(t),w(t)) = /RPNGZ(Zw)PNw

for any t € (0,T]. Integrating this on (0,t) it follows after a dyadic decomposition
of Py(zw) that

> > 3
[En (2(1), w(t))| S [En(2(0), w(0))] + N2 Tz nll g 2 lwg vl oo pallwn [l g 2

3
+ Z N2T|lzn, s rzllwan loser2 lwn || e 2
N1>N

=: [En(2(0), w(0))| + In + Iy .
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On the one hand, we infer
_ 3
(N"H2N)* Iy STN= HZ”L%?LEE||wHL§f’ﬁ;HwNHL§S’ﬁ; g

by using that (N~')(N)7[lwey|lpeere < ||wHL%cﬁa. On the other hand, recalling
that 0 < —o < s, we get

(N"HHNY IIy S (N)(NTYNE 2] oo

wllzg mgllwnl g -
Therefore, we deduce by summing over N < Ny that

Y (NN (2(8), w(D))]

N<No
~ 3
S D NTHAN)PIEN (2(0), w(0))| + TN ||Z|‘L%°H§Hw||i§9ﬁ:-
N<No

We consider now the case N > Ny. We take the extensions w = pr(w), 4 =
pr(u) and 0 = pr(v) defined in (4.8), and we drop the tilde in the sequel. Arguing
as in the proof of Proposition 4.5, we get

(NTHHNY7EN () = (NTHN)?En(0) — Tn + KN + GLy
with
In = (N"H2(N)> / P (2w) Py 0w
R¢
and

¢ ¢
_ d ~ _ d ~
R =i [ L8, By =R [ L@,
Proceeding as in the Section 4.3, we split TN as jz{, + jﬁ, + jﬁ’, with
j]%[ - ]\720/]R H%(az'Z(vaNN)wNNv
t

72 2 2
jN =N U/ H%(w<<N,ZNN>8I’LU~N,
R

jﬁ[:]\ﬂg Z / PN(ZNI’LUNNl)aszv
R;

N2 N

~ _  1/a—1\2 —~ _ov=n2 ()27 o
where X1 = —5(N7")?x1 and x2(&1,&2) = (N71) (T) dx (&1 + &2).

Estimate for T 3. We infer from Proposition 3.5 that

1 o

(TS Y NoTE RN
N12N

S NC 2y fwll g,

vellwan |z [lwn || 2o

where in the last step we used that —s —o + (1 —a)+ < —(s — s4)+ < 0 to sum
over Ny. Therefore we get

(5.24) ST TR S NS 2|

N>Ng

wHQZG.

Ys
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Estimate for —jﬁ, + & Kn. We deduce using equation (5.1) that

2
¥

By = _N% /R ? (E) (61, £2)i€1 (Was1 (61) + War1 (€2) — Waur1 (€))7an (1) TN (€2)Ton (—€)
N / (g;)(&,&)glp@a (u? + 02) (60BN ()TN ()
e [ ? () @@l mv6) Pvo o)) Tw (-9
e [ ? (&) @ @06 TR (@) P Tu)(-9

= Tk + Kk + K% + K.

2

We choose ¢; = —1 so that the first term on the right-hand side cancels out with
—J% and it suffices to estimate KL + K3 + K3

Estimate for KX,. The contribution of K4 may be treated exactly as K} in the
proof of Proposition 4.5. We obtain

(5.25) SRR S (NG + N&T* ) (|luf

N>N,

ve ol ) llwlZe -

Estimate for IE%V + IE?V We decompose Py (zw) into dyadic pieces as follows:
(5.26)
PNN(Z’LU) = Z<<N’LUNN+N_1H%(612<<N, ’LUNN)+PNN(ZNN1U§N)+PNN(Z>>N’U}>>N).

As in the proof of Proposition 4.5, this leads to estimate ijl IE‘;’\? where IE‘;’\?
denotes the contribution to K% + K% of the jth term in the RHS of (5.26).
Estimate for IE}O’\} and IE?VQ Since in these terms, both occurrences of w are local-

ized at frequency ~ N, they may be estimated as K3 and K3 in the proof of
Proposition 4.5. We infer that

(5.27) ST URR +IKR)) < (Ng 4+ NE ) 1213wl %o
N>Np

FEstimate for IC33 It suffices to consider the contribution IC331 of IE?V to 16%;0’ since
the contribution to K3 % can be estimated in exactly the same way.

Bt = v [ (8] 6 Q6T 6 Povarleo g @) ()

= Z Z NQU N Na) 1N N/ X 331 (leawNzaZNN)wNN
N1<N N, <N

where

NiN¢ & §2+§3
Do(&1,8 + &) Ny

Xre (§1,82,83) = ix1(€, 62 +&3) dn (€2 +E€3)
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satisfies (2.11). Estimate (3.15) gives

~ 1y _a 1y _a
KEUS Y Y N@otmed N () E NG (o)™ |2, [lyvo lwws [l 70 | 2w lyvo w20
N1<N No<N

3 a_sar(3)- -9-0
< NomsHma NS N (N T NG () 2y w2 iz s o 2o
N1<N N, <N

Slnce%—z—s<0and ——%—0>0, this yields
(5.28) D IKRYS YD NI |z)3 w], < NS

N>Ng N>Ng

Estimate for IE?\? Again, we only estimate the contribution of

gan — 2o /RZ (N) (€1, 62)E1 7 n (61) Pan O (25 nws v ) (E2) o (—€)

- Z Z NQUNNQ) 1NN/ X 341(ZN1’ZN2’ NN2> W~N -

N1<N Nx2>N

It follows from estimate (3.15) that

K& S 3 Nt N N (N =50 o vl 2 e o, | 2o w2
Ni1<N No>N

S N4z 5 w3,
where in the last step we used that s+ o > 0 and % — 3 — 5 < 0. We conclude that

(5.29) SRR S NETI el ] e
N>Np

Estimate for ,jﬁ[ + CEZN. Using equation (5.1) we rewrite EN as

Ly=—-N% /R% (5%) (&1,&2)i(61 + &) (War1(61) + War1(&2) — wat1(€)Wen (£1)2n (E2)Wan (—E)
= (& N 02 () (61) R (€) TN (-
+%N2a (é—) (&1, &) (& + &) wen (&) P, N]v/a'\(wz)(&)wNN( &)

s [ ( (61, £)(E1 + E2)Tw (60) Pundn(22)(E2) TR (—6)

2

e [ (Q ) (616006 + &)@ €)@ PondrTeu)(—6)
= —J%+ Ly + Ly + L + Lh
where we used that z = u + v solves

(O — Lay1)z = 8, (u® +22) = %(az(w% +0,(22)).

Taking ¢z = —1 it remains to estimate 2?21 Efv
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Estimate for Z}v We may rewrite this term as

Be= YT NN NN, / Pu (g, T2 (s o)
N1<N N3,N3 Ry
with
NiN“ £+ &
(=& — & &) N M
The contribution £ of the region where NoV N3 < N is estimated thanks to (3.15)
by

Xr (&1, &) = ixa(—&1 — 52,51)92

ERIS S S0 N NG Ny T NG () N
N1<N NpVNs<N
X lznallys lwnsll zo lzan |y s [wenll 2o
S NE= iz]lye|[w]| ze | 2o | ye [[wnn ]| 22
where we used that % -9 —s5<0and % — ¢ — o > 0. For the other contribution
L£12 we must have Ny ~ N3 and by virtue of (3.15) again, we deduce that

ERIS D> 3 NN CTONT ey
N1<N Na~N3>N

wng || zo |z~ n |l vs lwan ]| zo

S N2 2 |ly Jwll 2o [zl [lw ] 2=,

where we used that s +¢0 >0 and —s+ 1 — %a < 8o — s for a < 1. Therefore we
infer that

(5.30) > IEN S NSz w2

N>No
Estimate for £2;. We need to bound

L3 = Z Z N20+2(N1N°‘)71/ PNN(wNQU}Ns)H?)ZLQ(le’wNN)
N1<N N2,N3 Ry

where

NiN“ £6+6
Do(&, & —&)N Ny -

We may always assume No < Ns. The contribution Z?Vl of the sum over Noy ~
N3 > N is estimated thanks to Proposition 3.8 by

~ (1 _ _
122 Y Y NN N [ gollwy [y oy s w2
Ni1<N No>N

S N30 | [w] 2.

Xr2(61,62) = %)?2(& —& — &)

where in the first step we used that ¢ < s —2+ %a and in the last step we used that
o> —% +3 > —%7. We also used the weight (Nf1> of Z° to sum over N; < 1.
This leads to
~ (sa—s—142) -
(5.31) D ILNIS N R lwl§ wlGe S NG w5
N>No
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Similarly, we bound the contribution E%VQ of the sum over N7 < Ny and N3 ~ N
by

~ 43 —(1H_ _1_a
21 < S N NS (NG T | ol |l 0w [
N1<K<N2<N3~N

5 N2(afs+27%a)+(a71)+ lel%a ||’LU| 2YSa

where in the last step we used that o > —1. We also used the weight (N, Y of Z°7
to sum over Ny < 1. Setting v =s— 2+ %a — o > 0, this leads to

= —2y+(a—1
(5.32) D LR S NG e
N>No
To deal with the last region N3 ~ N and No < Nj, we use estimate (3.15) to get
LRIS > > NN () TN (o) o 2o o | e [
Ni<N N, <N,

< N2 g0 (1 4 NE2) 2.

2
Ys -

2

Yo
where in the last step we used that %f% —o > 0 since o < 0 and that f% —3-0<0
since o > ¢ — % It follows that
Y —27+2(a—1 Sa—S
(5.33) S ILRI S (NG PO L NG w3 G,
N>No

and we deduce gathering (5.31)-(5.32)-(5.33) that

= —29v+(a—1 Sa—S
(5:34) Y LS NG NG T (il ol lwl

N>No

Estimate for E?v + Zjlv Performing a dyadic decomposition for P.y(z?) and
Py (zw), we get from (4.27) and (5.26) that

5
LY+ Ly =) L¥

=1
with
LAl — N2 /R? (g—z) (£1,8) (& + &)wen (€1)
<[00 2 €T (~6) + T (€2)s () ()]

g vt [ () (6.@) @+ @)mmm(6) R0 Oy ) )TN (-9

+ 20N (€2) Fr (0.1 (p 2 v, w)) (=€) ]

L3 = %NQ"/ <%) (&1, &) (E14+E)wan (§1) Fu (0 Pun (25 v 25 ) (E2) Wn (—E),
rz \

B = [ (g;—) (61, €2)(6 + E2) TR (€1)78 (€2)Fo (9 P (2o wen))(~0),

R?
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and

£ =8 [ (§2) 6 06+ TR () TR @) R0 P (a6

Estimate for E‘}\} Arguing as for the term K3 in the proof of Proposition 4.5, we
obtain

~, Nj V N

41 2. 1 1 2 ~3

Ly = E N o+ WGt(levaN;ZNwwwN)'
Ni,No<KN

The contribution E‘}\}l of the sum over No < Nj is bounded thanks to Proposition
3.6 by

(5.35) LS D0 YD NN (N NG (V)
N1<<NN2§N1
X [lwn, [l ze |z~n [y | 28, [y e [[wan || 2

(5.36) S NE=IH 25wl

Using Proposition 3.8, the other contribution £4!2 is estimated by

o

~ o —(1y_ 1_o_
Z8% s S NN O () 0w, [ ooy lon v w22

N1 N2 <N
(5.37)
S Nﬁ(%)*||2|\2ys|\w||2*a-
since s > 2 — 2, 0 — s +2 < 3a and where we also used the weight (N; ') of il
to sum over N; <1 Combmmg estimates (5.36)-(5.37) we infer that
(5.38) > NS (NG 4 NG B el e
N>No

Estimate for Z‘}\% Noticing that

542 — § N20’+1
N1,Na<N

No

3
NlNO‘ Gt (le,ZNN, ZNZ,'LUNN),

it is clear that we may follow the same lines as the estimate for E‘}Vl to prove

Sa—s (5
(5.39) 3 IERI S (NSO 4 Ny )|l w2
N> Ny

FEstimate for Z‘}\?’, Z‘}\‘} and E‘}\? It is not too hard to check that Z‘}\?’ and Z‘}\? may
be estimated as L3} above, whereas we can deal with £} by following the bounds
on £3? and £3}. Thus we get

—2 a—1 Sa—S
(540) > (LRI + LR +IL8]) < (Ng 2D 4 NEm4) 23wl |-
N>Np

This concludes the proof of Proposition 5.5.

6. PROOF OF THEOREM 1.2

Let us fix 0 < o < 1.
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6.1. Lipschitz bound and uniqueness. Let s > s,, 0 <7 < 1 and assume that
u € Y} and v € Y are two solutions to (1.8) on |0, T associated with initial data

ug,v9 € H*(R) such that ug—vg € 32(R). We fix —2+2 < o <min(0,s—2+ 3a)
and set w = u —v. It is clear that w(0) = wy € H’ and the continuous embedding
from Y7} into Z7 ensures that w € Z7. Now, from Duhamel formula we have

t
Poyw(t) = P<1Uq(t)wo +/ Un(t — ') P<10,(u? — v?)(t') dt’
0

and thus ,

Z1y sl
1P<rwll sz S IP<iwll oz S llwollzz + D N(NTHNF | Py (u? = 0?)l| g p1
N<1
S llwollgz + lulferz + lol7se 2 -
Moreover, classical linear estimates in the context of Bourgain’s space (cf. [5], [10])
lead to
IP<rwllge-1a S llwollg2 + | P<a(u® = v)lpz, < llwollze + lullZe 2 + Ivlliz 2
These estimates combined with (5.16) and the fact that w € Z%, ensure that
w e 7;
Combining Corollary 5.1, Lemma 5.4 and Proposition 5.5, we obtain that, for
2
any No > (1+ ||zllzgmz) =,

3 —(g Sa—S —2 a—1
ol e S lwoliye + (TNG + Ny 7 4 NP 4 N2+t
X (1 [lulldy + 0132 Nl e

where v = s — 24 3a — 0 > 0. Taking Ny > (1 + [Ju]

Vot |\v||§/;)% with
5= min{(%),,(s—sa),,(l —a)_+29}>0.

This forces

(6.1) loll oo 77o < lwollze

for 0 < T S min{ (1 + [[ul}3; + o]2,)~%,T}.

Therefore, taking ug — vg = 0, we obtain that u = v on |0,7"[. Noticing, that
equation (1.1) ensures that us, v; € L>(0,T; H*~2(R)) and thus u,v € C([0, T]; L*(R)),
it follows that v(7") = u(T"). Repeating this argument a finite number of times we
extend the uniqueness result on |0, 7.

6.2. A priori estimates on smooth solutions. According to [31] (see also [4]
to get the continuity of the flow-map) for any ug € H?(R), with 6 > 3, there exists
a positive time T = T(||ug|| r3) and a unique solution u € C([0, T]; H(R)) to (1.8)
emanating from ug. Moreover, for any fixed R > 0, the map ug — u is continuous
from the ball of HY(R) of radius R centered at the origin into C([0,T]; H’(R)).

Let up € H*™(R). From the above result uo gives rise to a solution u €
C([0, T*[; H*(R)) to (1.8) with T* > T'(||ug||g3) and

(6.2) tl/l‘I%l* |w()]| gz = 400 T* < 0.
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Let 0 < T < T*. Since u € C([0,T]; H*(R)) is a solution to (1.8), we must have
ug € L°(0,T; H*(R)) and thus it is easy to check that u € Y2 for any 6 € R and

(6.3) A Hlellyg = lluoll o
In the sequel, k > 0 and Cy > 1 are the constants appearing in Corollary 4.1.

We claim that there exist Ag > 0,0 < 3y < 1 such that 7™ > A0(1+||u0||Hsr)7%o
and, for any s, < s’ < 3,

(6.4) [l

vt < 2Coluoll g with T = Ag(1+ o]l ) o
Indeed, fixing s, < s’ < 3, it follows from (6.3) that
Ay ={T €0, 7" [Jull},, < 2°CFlluollF. }

is a non empty interval of RY . Let us set Ty = sup Ay/. We proceed by contradiction,

_1
assuming that Ty < Ao(1 + |Jug|| )~ Po since otherwise we are done. Note that
by continuity

HUH;S,; < 2°CF ||uoll3;. -
According to Corollary 4.1, Lemma 4.4 and Proposition 4.5, there exist C7,Cy > 1
and 0 < g9 < 1 such that for any s > so, No > C1(1 + |luo||g=«)? and any
_1
0<T< min{sOHuOHH:, , To}, it holds

3 Sa—s’ —«
(6.5) flully < 4CTuollFr + Co(TNG + Ng™ % 4+ Ny ) (1 + [Juoll o) ull3

1

We take Ag < g0 and By < & so that min{eo|luol|,%,To} = To and thus, by
continuity, (6.5) is satisfied with T' = Ty. Now, applying (6.5) with s = 3, Ny =

3
[8Co(1 + ||ugll )23 T, where § = min{a, s’ — s}, and T' = min{Tp, (8C, N2 )},
we get

(6.6) [ull3 < 8CF luolls -

Therefore, taking Ay < g9 and [y < k small enough so that

3 (55)+7-1 _1
(5CaNE) ™ = [8Co (8Co(1 + uoll o)) ] > Ap(L+ ol )P0

we obtain that (6.6) is satisfied with T'= Tp. In view of (6.2), this forces T* > Ty.
Now taking s = s’ and proceeding in the same way we get

lull},. < 8CF|luoll. -
To

But since T* > Ty, by continuity this ensures that HuH?,S/ < 24C3Juol|?,., for some

To < T < T* which contradicts the definition of Ty . TT his concludes the proof of
(6.4).

Note that Lemma 4.4 and Corollary 4.2 then ensure that for any Ny > Ci(1 +
l|to|| froa ) # , it holds

(67)  IPongull} s S IPongtioll 3 + (Ng 4+ Ng™ 7)1 + Juoll )

where T' > 0 is defined as in (6.4).
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6.3. Local existence in H*(R), s > s,. Now let us fix s > s, and ug € H*(R).
We set ug,, = P<puo and we denote by w,, € C([0,T7); H*(R)) the solutions to
(1.8) emanating from ug . Setting

(6.8) T'=Ao(1+ [Juolm=) Po,
it follows from (6.4) that for any n € N*, T > T and
(6.9) [unllyz < lluollms -

Let —3 + 2 < o <min(0,s — 2+ 3a). For n > m > 1, clearly ug,, — uo,m € E2(]R)
and thus (6.1) ensures that

lun = umllLe, g S llwon = vwomllzs S 1 Pomuollme

where 0 < T = T"(|luo|| ) < T. This last inequality combined with (6.7) ensure
that

2 —
(610) [l — wnlfo, . S No T NPany (tn — w)ll7 s, g

+HPZNUUWH%;O,,H; + ”PZNoUmH%;O,,H;

S NG| Po o[ 3 + 1| Po ool 3
(6.11) H(N ot + NE I+ [uol )t

for any No > Cy(1 + |Juo| zr=« )= . This proves that {u,} is a Cauchy sequence in
C([0,T"); H*(R)) and thus converges to some w in this space. It is then not hard to
check that u € Y%, and is a solution to (1.8) emanating from ug. By the uniqueness
result, this is the only one. Repeating this argument a finite number of times we
obtain that actually {u,} converges to u in C([0,T]; H*(R)) with T" defined in (6.8).

6.4. Continuity of the solution-map. Finally, to prove the continuity with re-
spect to initial data, we take a sequence {u}} C Bp=(0,2[|uo||z=) that converges
to ug in H*(R). We denote by respectively v/ and u, the associated solutions to
(1.8) emanating from respectively u, and P<,uj. Noticing that

; J _
o sup [1Pom (up)l[ = = 0,

we infer from (6.11) that

. S
s gz =0.

with 77 = T" (||ug|| =) > 0. From
/= ullLserrs < [0/ — w)llse s + 1w, — tnllLeoms + lltn — ull Lo mrs

and the continuity with respect to initial data in H3(R) (note that P<,uo and
P<,uq belong to H®(R)), it follows that uw/ — w in C([0,T"]; H*(R)). Iterating
this process a finite number of times we obtain that v/ — w in C([0,7]; H*(R))
with 7" defined in (6.8) which completes the proof of Theorem 1.2.
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