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Most bacterial regulatory RNAs exert their function
through base-pairing with target RNAs. Computational
prediction of targets is a busy research field that offers
biologists a variety of web sites and software. However, it is
difficult for a non-expert to evaluate how reliable those
programs are. Here, we provide a simple benchmark for
bacterial sRNA target prediction based on trusted E. coli
sRNA/target pairs. We use this benchmark to assess the most
recent RNA target predictors as well as earlier programs for
RNA-RNA hybrid prediction. Moreover, we consider how the
definition of mRNA boundaries can impact overall
predictions. Recent algorithms that exploit both conservation
of targets and accessibility information offer improved
accuracy over previous software. However, even with the best
predictors, the number of true biological targets with low
scores and non-targets with high scores remains puzzling.

Introduction

Identification of regulatory small RNAs (sRNAs) in bacterial
species is rapidly advancing owing to recent improvement of bio-
informatics and sequencing technologies.1 Bacterial sRNAs act
usually through sequence-specific binding to target mRNAs,
leading to altered stability or translational repression/activation
of their targets.2 In the order of 100 to 200 sRNAs are present in
a typical bacterial genome and each sRNA may regulate a dozen
or more targets, making the sRNA/mRNA interaction network a
significant part of the overall gene regulation network. Biological
functions controlled by sRNAs are diverse, related to stress

responses as well as carbon and amino acid metabolism, virulence
and cellular development.3

As sRNA collections build up, the main bottleneck in under-
standing bacterial sRNA function has now shifted to the question
of target prediction. Experimental validation of specific sRNA/
mRNA pairs using reporter gene assays or compensatory muta-
tions of binding sites is labor intensive,4 and high throughput in
vitro screens are subject to high rates of false positives.5 On the
other hand, computational target prediction is challenging since
sRNAs and their target often form imperfect and relatively short
RNA-RNA hybrids that are not easily distinguishable from many
other hybrids formed by random pairs of transcripts. Yet, compu-
tational methods have recently benefited from new algorithms
and the introduction of RNA accessibility and conservation
information that improved their performances.6-8

Here, we evaluate computational target prediction methods
using a collection of trusted, experimentally validated sRNA/
mRNA pairs in E. coli. We designed a benchmark system so that
wet lab scientists can easily interpret it for practical purposes. We
also evaluated program speeds and abilities to locate the actual
duplex region in each sRNA/mRNA pair.

Results

Target predictors
Programs for the identification of RNA-RNA interactions can

be grouped in 3 main categories that we term “alignment-like,”
“inter-RNA” and “independent fold.” The “alignment-like” cate-
gory includes programs such as Guugle9 and RIsearch10 that can
quickly scan large sequence files for reverse complements of a
given RNA sequence. While Guugle looks only for stretches of
Watson-Crick or G:U matches, RIsearch implements a Turner-
like energy model11 and allows gaps in the base paired segments.
The “inter-RNA” category includes predictors that use a nearest
neighbor thermodynamic model restricted to interactions
between sRNA and mRNA, neglecting intramolecular base-pairs.
Representative programs in this class are Pairfold,12,13 RNAco-
fold,14 TargetRNA,15 RNAplex,6 RNAhybrid,16,17 and RNAdu-
plex.18 These programs identify intermolecular contacts and
compute a binding free energy for the interaction. RNAcofold
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and Pairfold achieve this by considering the joint structure pre-
dicted after concatenating the 2 RNA sequences. The
“independent fold” approach analyzes the secondary structure
folding landscape of each RNA independently and models the
total binding energy as a sum of 2 contributions. RNAup19 and
IntaRNA7 are the major programs in this class. Finally, a recent
generation of programs including CopraRNA20,21 and Tar-
getRNA222 combine the benefits of the “inter-RNA” class of
programs to the use of conservation information. While Tar-
getRNA2 requires conservation of the sRNA region involved in
target binding, based on observations by Peer and Margalit,23

CopraRNA uses the conservation of the interaction itself.
Another, more practical, categorization of RNA target identi-

fication software has on one hand actual target predictors, i.e.
programs that identify and score the most favorable local interac-
tion (CopraRNA, IntaRNA, RNAplex, RNAup, TargetRNA2)
and on the other hand programs that model the full hybrid
formed between the small RNA and the longer RNA (RNAhy-
brid, RNAduplex, RNAcofold, Pairfold). While the latter cate-
gory can be suitable to microRNA/mRNA binding analysis,
where the 21 nt RNA can be bound almost entirely to its target,
results are more difficult to interpret when dealing with bacterial
sRNAs that are generally over 100 nt long and are bound to the
target over a small fraction of their size.

The pros and cons of sRNA target prediction algorithms have
been reviewed.24 The goal we set here is to evaluate the ability of
programs to differentiate a bona fide sRNA/mRNA regulatory
pair from a random duplex that may form between any tran-
scripts in a cell. To this aim, we need to rank RNA-RNA
duplexes and thus to rely on scores or free energy values provided
by the programs. This requirement excludes programs whose
energy model is too simplistic, such as Guugle or RIsearch.
Although RIsearch does computes free energy values, the authors
recommend the program to be used for fast screening of potential
pairs, but not to evaluate specific interactions.

We included in our comparison programs from the major cate-
gories above, including the most recent bacterial sRNA target pre-
dictors CopraRNA, TargetRNA (in its last implementation
TargetRNA222) and IntaRNA, programs for local hybrid prediction
that can deal with both bacterial sRNAs and miRNAs (RNAup,
RNAplex also known as its web server implementation RNApreda-
tor25), and programs predicting full RNA-RNA hybrids, including
Pairfold, RNAcofold, RNAhybrid and RNAduplex.

We ran IntaRNA, RNAplex, RNAup, RNAhybrid, RNAdu-
plex, RNAcofold and Pairfold using Unix command line versions
and CopraRNA and TargetRNA2 from their respective web serv-
ers (see Suppl. Methods).

Benchmark sets and search domains
Escherichia coli is the organism with the highest number of

experimentally validated sRNA/target pairs. We compiled a list
of 102 “trusted” sRNA/target pairs involving 22 different sRNAs
(Table S1), each one bing supported by at least one published
experimental evidence from the list described in Methods. This
includes E. coli pairs from the datasets of Peer and Margalit23

and Wright et al.,20 plus a few additions from the literature.26,27

Bacterial small RNAs are known to interact preferentially with
mRNA 50 regions with few exceptions to this rule (e.g., see
ref.28,29). Within our data set, all pairs, except one, are found to
occur in the mRNA region located ¡150/C100 nucleotides (nt)
around the start codon (Fig. S1). A common practice that con-
sists in restricting sRNA target searches to the ¡200/C100
region (e.g., see ref.20) around the start codon of all mRNAs is
thus justified at least for enteric bacteria. Indeed, restricting the
search space to the 50 region efficiently reduces false positive
occurrences and computing time. However, bacterial mRNAs
often have short 50 UTRs that do not extend much upstream of
the Shine-Dalgarno sequence. Therefore, since the long 200 nt
upstream region may be a source of false positives, this artifact
can be avoided when exact transcription starts are known. Such
information requires massive, strand-specific sequencing of tran-
scripts and is still rarely available. However, this situation is
quickly changing and, for certain bacteria including E. coli, accu-
rate UTR information is already available.30 Thus, we asked
whether a precise delineation of UTRs could improve target
identification. When possible, we performed predictions on 2
target data sets: one made of arbitrary ¡200 / C100 nt regions
around each start codon (hereafter named “default UTRs”) and
one made of regions predicted from publicly available strand-spe-
cific RNA-seq data (hereafter named “real UTRs”). Note that we
also included in our analysis 50 regions of open reading frames
located in polycistronic genes, as these regions are also subject to
regulation as exemplified by the manXYZ operon mRNA targeted
at 2 locations by the sRNA SgrS,31 or the Staphylococcus aureus
opp3 operon mRNA containing at least 2 RsaE-binding sites.32

Details of the 50 UTR definition procedures are provided in
Methods and Suppl. Methods.

Rank-based prediction performance
Our first performance measure aimed at addressing the fol-

lowing question: how many putative targets for a given sRNA
should be experimentally tested (for instance using a reporter
assay) before finding the first true target? Programs were run
using the best options suggested by authors. RNA accessibility
information, which is known to improve target prediction signifi-
cantly, was selected when possible.19,33 Programs from websites
(i.e., CopraRNA, TargetRNA2) were run using preselected
mRNA target sequences that correspond to “default UTRs” as
defined above. These servers cannot take arbitrary lists of target
sequences as input. Therefore tests with “real UTR” targets were
limited to programs ran from the command line. Parameter
details are presented in Suppl. Methods.

Putative targets were ranked by scores or free energy values
provided by each program. The median rank is the median posi-
tion of the highest ranking validated target among predicted tar-
gets for all sRNAs in the dataset (Fig. 1A–B). Median ranks
range from 4 (CopraRNA) to 1340 (RNAcofold). Expectedly,
programs designed for evaluating local interactions (CopraRNA,
intaRNA, RNAplex, RNAup, TargetRNA2) perform far better
than programs computing complete hybrids. In this latter cate-
gory, RNAhybrid, RNAduplex, perform significantly better due
to their free energy scores restricted to intermolecular base-pairs.
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The least performing programs RNAcofold and Pairfold are both
“concatenation” algorithms that are not intended to evaluate the
binding energy of the complex and therefore cannot perform any
better than a random ranking.

Our test probably underestimates the performance of pro-
grams since some of the pairs ranking before the first confirmed
target are also possibly true targets. Nevertheless, some sRNA/tar-
get pairs rank very poorly, even by the best performing predictors
(Fig. 1A), which questions their presence in our benchmark set.
Indeed, some sRNA/target pairs are part of the trusted pair list
because target expression is affected by the amount of the corre-
sponding sRNA. However, this effect may occur indirectly in the
absence of any contact between the 2 RNAs. To test whether
putative indirect pairs may have impacted our benchmark, we
considered only pairs for which we had direct evidence of sRNA/
target interaction (82 pairs, see Table S1 and Methods). There
was no improvement of prediction accuracy over the full data set
(Fig. S2A), suggesting the presence of indirect pairs in our dataset
is not a reason for the low ranking of some actual targets. Further
inspection of poorly ranked trusted sRNA/target pairs shows that
the same pairs tend to be missed by all predictors. Typical mis-
predictions involve pairs with target sites located 50 of upstream

genes such as in RyhB/furmRNA34 and hybrid structures formed
by double kissing complexes such as in OxyS/fhlA mRNA.35

We tested the effect of using the “real” UTR sequences (RNA-
seq-based UTRs) of mRNAs instead of arbitrary upstream
regions (¡200 nt before AUG codon) on prediction perfor-
mance (Table 1). Using “real” UTRs improved results moder-
ately (AUC gains of 4.9% to 17.5%) albeit not significantly for
most predictors. We observed a significant AUC improvement
(Wilcoxon P D 0.03) only for concatenation methods RNAco-
fold and Pairfold, however this should be put into perspective as
these methods had a very small AUC to start with. Yet, we may
hypothesize that more accurate mRNA boundaries can improve
free energy estimations of the hybrid in some cases.

The best prediction accuracy overall was obtained using
CopraRNA, suggesting an advantage to a method using both
RNA accessibility and conservation information, in line with the
authors own estimation.20 Although CopraRNA performed best
overall, it should be noted that its use is limited compared to other
programs since it requires an homolog set for each sRNA of inter-
est and targets are evaluated only in a predefined list of genomes.

Assessing other predictor qualities
While the above comparison used the ranks of the best scoring

targets of each sRNA, we found interesting to analyze ranks of all
trusted targets combined. When all 102 trusted targets are con-
sidered, median ranks for all programs increase mathematically
(Fig. S3). However, considering that our test set contains only 4-
5 targets per sRNA, these new median ranks ranging from 50 to

Figure 1. Two representations of target predictor performances. (A) Rank distribution of trusted targets (lower=better). For each program, the distribu-
tion shows the ranks of the best ranking target of each sRNA (22 sRNAs). Horizontal lines and numbers indicate median ranks, red dots indicate mean
ranks. (B) ROC-like curves. For each program, the curve shows the number of trusted pairs predicted by the program (Y axis) among the X best ranking
predictions (X-axis).

Table 1. Area under ROC-like curve (AUC) for target prediction with 9
programs, using default UTR or “real” RNA-seq-derived UTRs

Program AUC default UTR AUC real UTR AUC gain (%)

CopraRNA 46.41 na* na*

IntaRNA 27.02 28.83 6.3
RNAplex 20.81 21.88 4.9
RNAup 22.75 27.59 17.5
TargetRNA2 18.52 na* na*

RNAhybrid 4.14 4.38 5.5
RNAduplex 3.86 3.55 ¡8.7
RNAcofold 0.57 1.42 59.9
Pairfold 0.25 1.22 79.5

*Programs CopraRNA and TargetRNA2 can be run only using default UTRs.

Table 2. Recall of experimentally demonstrated base pairs (%)

IntaRNA/CopraRNA* 76.7
RNAplex 73.6
TargetRNA2 55.9
RNAup 78.9

*IntaRNA and CopraRNA predict the same hybrid region.
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600 for the best predictors are a good indication of how predicted
target sets remain populated mostly by unconfirmed targets.

We also tested how accurately each program was able to deter-
mine the correct hybrid regions assuming a correct sRNA/
mRNA pair was detected. Since experimental validations of
sRNA/target pairs do not always specify the duplex structure, we
focused on the set of 55 pairs supported by compensatory muta-
tions (see Methods). We excluded from this test all programs
that predict a hybrid structure involving the full sRNA. Table 2
shows the fraction of compensatory mutations that are indeed
found within the predicted hybrid regions. Interestingly, this
ratio is far from perfect (56% to 79%) even though we only con-
sidered correct RNA/target pairs.

Finally, we compared the speed of the different programs
(Table 3). Program Texte vary by 2 orders of magnitude, the fast-
est programs are able to match a sRNA to the complete set of E.
coli mRNAs in about one minute while some require one to
2 hours to complete the same task. The best performing predic-
tors are generally the slowest, with the exception of RNAplex,
which achieves both high prediction accuracy and fast running
time.

Conclusion

RNA target prediction programs have improved continuously
over the past 10 years owing to algorithmic innovation, as well as
the exploitation of structural and evolutionary constraints. We
confirm here that CopraRNA, a predictor that uses both RNA
accessibility and evolutionary conservation of the interaction out-
performs other programs in terms of ranking actual sRNA/
mRNA pairs. However, conservation data is not often available
and programs that predict sRNA targets based on sequence alone
are still much needed. IntaRNA, RNAplex and RNAup are the
best predictors in this class. The presence of RNAplex in this
shortlist is surprising as this program is up to 100 times faster
than competitors owing to a simplified structural model. Further-
more, our tests do not show significant accuracy gains from using
RNA-seq derived UTRs instead of fixed-length 50 regions, sup-
porting the common practice for defining mRNA target regions.

In spite of software improvements, this study is also a
reminder that the list of highest scoring mRNAs for a given
E. coli sRNA remains populated by a majority of unconfirmed
targets. One possible explanation for this could be that many

true targets have not been validated yet, which is unlikely in this
well-studied bacterium. Alternatively, in vivo sRNA-mRNA
interaction can be positively affected by RNA-chaperon pro-
teins (e.g. Hfq), which may significantly confuse computed
targets ranks. Another reason that may explain the relatively
poor ranking of many true targets is related to the way pro-
grams score an RNA-RNA pair. Predictors score targets based
on binding free energy values (as well as conservation for
CopraRNA and targetRNA2). However, a high binding
energy does not necessarily imply an efficient processing of the
mRNA target by the Hfq–sRNA complex. The situation in
bacteria could be similar to that of miRNA-target pairs in
eukaryotes, where, due to miRNA turnover36 lower stability of
the microRNA/target duplex may favor transient interactions
and therefore an efficient down-regulation of multiple tar-
gets.37 The large accuracy gain of CopraRNA obtained by
introducing phylogenetic conservation in its scoring system
illustrates again that there is much more than thermodynamics
in understanding sRNA-based regulation.

Methods

Definition of UTR regions: «default» UTR regions were auto-
matically extracted from MG1655 E. coli K12 genome, selecting
the ¡200/C100 fragments around each start codon (4317
regions). «Real» UTR regions were extracted based on RNA-seq-
derived transcriptional start site (TSS).30 For each TSS, the
region from the TSS to 100 nt past the start codon was extracted.
Further details are provided in Suppl. methods.

Experimentally validated pairs (Table S1) were classified as
described based on supporting experimental evidence23: (a)
sRNA affecting the level of a protein or a translational fusion; (b)
sRNA gene affecting the level of a targeted mRNA; (c) sRNA
and mRNA forming a stable duplex in vitro; (d) sRNA mutation
affecting a regulation; (e) sRNA mutations affecting a regulation
rescued by compensatory mutations; (f) in vitro chemical/enzy-
matic probing of the sRNA/target duplex; (g) sRNA/target
duplex cleaved by RNase III; (h) sRNA preventing or allowing
ribosome binding demonstrated by toe-printing assay. We con-
sidered that the criteria c) to h) demonstrated direct or near-
direct interactions for 82 sRNA/mRNA duplexes

Performance measures (Fig. 1 and S2) were obtained by run-
ning target predictors with each sRNA against the complete set
of E. coli mRNAs (using “default” or “real” UTRs). Ranks of
trusted targets (Fig. 1A and S2A) were computed based on the
best ranking target of each sRNA. For the “random” distribution,
we performed for each sRNA a set of N random draws between
one and the total number of E. colimRNAs, where N is the num-
ber of known targets for this sRNA, and kept the lowest ranking
value. Receiver operating characteristic (ROC)-like curves
(Fig. 1B and S2B) were obtained by counting the number of
true targets found among the best X candidates (shown on X
axis). Program versions, options and command lines are provided
in Suppl. methods. Accessibility information was computed prior

Table 3. Average run time for matching 1 sRNA to all 4317 E. colimRNAs

TargetRNA2 (web site) 1 min
RNAplex (incl. accessibility calculation) 1 min
RNAhybrid 2 min
RNAcofold 23 min
RNAup 55 min
IntaRNA 66 min
RNAduplex 75 min
CopraRNA (website) 105 min
Pairfold 120 min
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to RNAplex runs using RNAplfold.14 CopraRNA requires
homologous sRNA sequences from other species and we used
those provided by the CopraRNA server whenever possible. For
IstR, RseX, RydC we provided our own sets (see Suppl. Files).

Recall of experimentally validated base pairs: 55 sRNA/target
pairs have experimental support in the form of compensatory
mutations. For each pair, we measured the ratio of experimen-
tally validated bps that were included in the predicted hybrid
region. This ratio was then averaged over all 55 sRNA/target
pairs to produce percentages in Table 2. As TargetRNA2 could
predict only 49 of the 55 experimentally supported pairs, the
average value was corrected accordingly.
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