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On the fourth derivative test for exponential sums

Olivier Robert

Abstract

We give an upper bound for the exponential sum
∑M

m=1 exp(2iπf(m))
where f is a real valued function whose fourth derivative has the order of
magnitude λ > 0 small. Van der Corput’s classical bound, in terms of M
and λ only, involves the exponent 1/14. We show how this exponent may
be replaced by any θ < 1/12 without further hypotheses. The proof uses
a recent result by Wooley on the cubic Vinogradov system.

Let C ≥ 1 be a real constant fixed once and for all. Let a ∈ R, M ∈ N with
M ≥ 10. Let 0 < λ4 < 1/10 be a real number and let f : [a, a + M ] → R be a
C4 function such that

λ4 ≤ |f (4)(x)| ≤ Cλ4 for x ∈ [a, a+M ]. (1)

We are interested in bounding the exponential sum

Sa,M (f) :=
∑

a<m≤a+M

e(f(m)), (2)

with the usual notation e(t) := e2iπt for t ∈ R. Under the previous assumptions,
van der Corput’s result asserts that setting θ4 = 1/14 and β4 = 4/7, one has

Sa,M (f)�C Mλθ44 (3)

uniformly for a ∈ R, M ≥ λ−β4

4 and f satisfying (1).
The purpose of this paper is to improve on the exponent θ4 in (3). Our

result is the following.

Theorem 1 Let a ∈ R, M ∈ N with M ≥ 10. Let 0 < λ4 < 1/10 be a real
number and let f : [a, a + M ] → R be a C4 function satisfying (1). Then for
each ε > 0, and with the notation (2), one has

Sa,M (f)�C,ε M
1+ελ

1/12
4 +M

11
12+ε

uniformly for a ∈ R, M ≥ λ−3/5
4 and f satisfying (1).

Remark. Theorem 1 is not the first improvement of Van der Corput’s result.
Here is a brief history of these results under the hypothesis (1) alone :
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• Sargos [4] proved that for θ4 = 1/14, β4 may be replaced by 3/7. Moreover,
in the same paper, he also proved that θ4 could be replaced by any θ < 3

40
provided that β4 is replaced by 3/5.

• Robert & Sargos [1] proved θ4 may be replaced by any θ < 1
13 provided

that β4 is replaced by 8/13.

Note that our Theorem 1 implies that θ4 may be replaced by any θ < 1/12
provided that β4 is replaced by 1.

It should also be mentioned that more generally when k ≥ 2 is fixed, van der
Corput proved that if f : [a, a+M ]→ R is Ck such that λk ≤ |f (k)(x)| ≤ Cλk,

then Sa,M (f)�C Mλθkk for M ≥ λ−βk

k with θk := 1/(2k− 2), βk := 2k−1/(2k−
2). For k = 2, the example of the Gauss sums shows at once that θ2 = 1/2 is
optimal. For k = 3, the exponent θ3 = 1/6 is conjectured to be optimal even
for M ≥ λ−1

3 (see [4]). For k ≥ 5, explicit better exponents can be produced
(see for example [3] for an exposition of the recent results for 4 ≤ k ≤ 10).

Proof of Theorem 1. By a classical series of transforms, the proof reduces to
estimating the number Js(N) of solutions of

s∑
j=1

(
xrj − yrj

)
= 0 (r = 1, 2, 3) 1 ≤ xj , yj ≤ N. (4)

The only novelty in the proof of Theorem 1 is the use of Wooley’s recent break-
through [5] where he proved Vinogradov’s cubic conjecture, namely that for
each integer s ≥ 1 and each ε > 0 one has

Js(N)�ε N
s+ε +N2s−6+ε (N ≥ 1). (5)

The preliminary transform of Sa,M (f) is taken care of by the following result,
which is a particular case of Lemme 1 of [3] with k = 4.

Lemma 1 Let a ∈ R, M ∈ N with M ≥ 10. Let 0 < λ4 < 1/10 be a real
number and let f : [a, a+M ]→ R be a C4 function satisfying (1). Then setting

N := bλ−1/5
4 c, and with the notation (2), one has for each s ≥ 1

|Sa,M (f)|2s �s,C M2sλ4

(
1 +

1

Mλ4

)(
Js(N)

N2s−6

)
logM

uniformly for a ∈ R, M ≥ λ
−3/5
4 and f satisfying (1), where Js(N) has been

defined in (4).

The proof of Theorem 1 is now straightforward : we use Lemma 1 with
s = 6, and we bound J6(N) using (5). This completes the proof of Theorem 1.
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