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RATIONAL POINTS ON LINEAR SLICES OF DIAGONAL

HYPERSURFACES

JÖRG BRÜDERN AND OLIVIER ROBERT

Abstract. An asymptotic formula is obtained for the number of rational

points of bounded height on the class of varieties described in the title line.
The formula is proved via the Hardy-Littlewood method, and along the way, we

establish two new results on Weyl sums that are of some independent interest.

1. Introduction

The varieties alluded to in the title line are defined by pairs of equations

(1.1)

s∑
j=1

ajx
k
j =

s∑
j=1

bjxj = 0

in which the natural numbers k, s and the integers aj , bj are fixed once and for
all. We shall be concerned with deriving an asymptotic formula for the number
N(P ) = Na,b(P ) of solutions to (1.1) in integers xj satisfying

(1.2) |xj | ≤ P (1 ≤ j ≤ s).

The cases k = 1 and k = 2 are part of the classical theory: When k = 1,
the equations (1.1) describe a lattice, and the asymptotic evaluation of N(P ) is
elementary. When k = 2, one inserts the linear equation into the quadratic one to
eliminate a variable, thus reducing the problem to that of counting those integer
points where an integral quadratic form vanishes. For the latter problem, there is
a vast literature to which we have nothing to add. Thus, we concentrate on the
cases where k ≥ 3.

Theorem 1. Let k ≥ 3, s ≥ 2k + 2 and suppose that aj 6= 0 (1 ≤ j ≤ s). Suppose
that the pair of equations (1.1) has non-singular solutions in R and in Qp, for all
primes p. Then there is a positive number C(a,b) such that

(1.3) Na,b(P ) = C(a,b)P s−k−1 +O
(
P s−k−1(logP )−2

)
.

In algebraic geometry, it is more customary to count rational points on the
projective variety defined by (1.1). A rational point on (1.1) corresponds to an
integral solution with (x1;x2; . . . ;xs) = 1. The latter is unique up to sign, and its
natural height is defined by max |xj |. By Möbius’ inversion formula, the number of
rational points on (1.1) with height not exceeding P equals

1

2

∑
d≤P

µ(d)
(
N(P/d)− 1

)
.

AMS subject classification 11D45 (primary), 11L15, 11P55 (secondary).
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Subject to the conditions in Theorem 1, this expression is asymptotic to

1
2ζ(s− k − 1)−1C(a,b)P s−k−1,

as expected.
Theorem 1 should be considered as part of a programme to establish similar

asymptotic formulae for intersections of diagonal hypersurfaces, at least when the
dimension is suitably large (see [6, 9, 10, 23, 32, 33] and the references therein).
Recent ground-breaking work of Wooley [35, 37, 36] on Vinogradov’s mean value
theorem has a revolutionary impact in this area. At the time of writing, publicly
available descriptions of Wooley’s ”efficient congruencing” provide conclusions sim-
ilar to Theorem 1, but subject to a condition slightly milder than s ≥ 2(k − 1)2

when k ≥ 6. However, progress is still ongoing, and Wooley has now announced
results that have the potential to supersede Theorem 1 for all k ≥ 5. In the light
of this, the main interest is in the cases k = 3 and k = 4, but our proof for k = 4
works equally well for k ≥ 4.

When k = 3, the condition on s in Theorem 1 is s ≥ 10. As in the quadratic
case, one may substitute the linear equation into the cubic one to obtain a cubic
form in nine or more variables. For cubic forms in nine variables, important work
of Hooley [18, 19, 20] provides an asymptotic formula for the number of its integral
zeros within a suitable expanding region, provided that the form is non-singular, a
condition that may in some cases be relaxed to allow the singular locus of the form
to consist of isolated linearly independent ordinary double points. However, as one
readily checks, the projective cubic defined by

10∑
j=1

x3
j =

10∑
j=1

xj = 0

has 126 singular points, and hence provides an example covered by Theorem 1 but
not by Hooley’s work. When k = 4, one may again insert the linear equation into the
quartic one. This leads to a quartic form that one may analyse by the methods of
Birch [1] and Browning and Heath-Brown [4], but this strategy apparently requires
s to be as large as 40 or thereabouts, and is therefore is not competitive at present.

We prove Theorem 1 by a two-dimensional version of the Hardy-Littlewood
method. Our argument rests on a new mean value theorem for the generating
function

(1.4) f(α, β) =
∑
x≤P

e(αxk + βx)

that we now describe. Fix a number θ with 21−kk < θ ≤ 4
5 and then take Q = P θ.

Let m denote the set of real numbers α ∈ [0, 1] for which the inequality |qα− a| ≤
QP−k with q ∈ N, a ∈ Z is only possible when q > Q.

Theorem 2. Let k ≥ 3. Then∫ 1

0

∫
m

|f(α, β)|2
k+2 dα dβ � P 2k−k+1(logP )−2.

Theorem 2 should be compared with the celebrated estimate

(1.5)

∫
m

|f(α, 0)|2
k

dα� P 2k−k(logP )−2
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due to Vaughan (see [26], Theorem B, for k = 3 and [27] for k ≥ 4, with a slightly
different power of logP ; for refinements see Boklan [2] and Harvey [14]). Vaughan’s
approach involves a considerable refinement of the conventional proof of Hua’s
Lemma (see [29], Lemma 2.5). Certain divisor sums require treatment by mean
value estimates for Hooley’s ∆r-functions to propagate an initial saving through
an induction. The initial saving itself comes in through a sieving of the variable
of summation in (1.4) and an appeal to a paucity estimate for the diophantine
equation

xk1 + xk2 = xk3 + xk4 .

originally obtained by Hooley [15, 17, 21] (see also Wooley [34], Skinner and Wooley
[24]). We are able to keep the architecture of Vaughan’s treatment largely intact,
now building on a paucity estimate for the pair

xk1 + xk2 + xk3 = yk1 + yk2 + yk3 , x1 + x2 + x3 = y1 + y2 + y3

(Vaughan and Wooley [31] for k = 3, Greaves [11] for k ≥ 4 ; see also de la Bretèche
[3]). Once Theorem 2 is established, it is fairly routine to derive Theorem 1. We
postpone a more comprehensive discussion of several complications to the appro-
priate stage of the argument.

No direct attack on the problem considered here, via the circle method, seems
to have been launched in the past, but there is related work of Parsell [23]. Parsell
considers more generally a pair of diagonal equations

a1x
k
1 + . . .+ asx

k
s = b1x

n
1 + . . .+ bsx

n
s = 0,

and applies smooth number technology within a circle method approach to verify
the Hasse principle for this pair of equations when s is suitably large. Such a
strategy typically supplies a lower bound for the number of solutions within a box
which is of the expected order of magnitude. In the special case n = 1 which is the
theme of this paper, Parsell proves the Hasse principle for k = 3, s ≥ 10 and for
k = 4, s ≥ 17, amongst other results. It is interesting to note that in the case k = 3
his method fails to give a lower bound for N(P ) of the expected size, a defect that
is now cured by Theorem 1.

Before we move on to proofs of Theorem 1 and 2, we briefly comment on the
condition in Theorem 1 that all aj be non-zero. It suffices to require only that at
least 2k of the aj are non-zero. In fact, the presence of isolated linear variables
in (1.1) facilitates the exercise. However, it seems difficult to relax this condition
further without improving (1.5), and some lower bound on the number of non-zero
aj is definitely necessary. To see this, consider the system

(1.6) 5x3
1 + 9x3

2 + 10x3
3 + 12x3

4 = x1 + x2 + · · ·+ x10 = 0.

Here, the cubic equation (when considered in the variables x1, . . . , x4 only) violates
the Hasse principle (Cassels and Guy [7]). Thus there are real and p-adic non-
singular solutions of (1.6), but a solution x ∈ Z10 satisfies x1 = x2 = x3 = x4 = 0,
and it follows easily that there is a positive constant C such that N(P ) = CP 5 +
O(P 4), in contrast to the leading term of size P s−k−1 in Theorem 1.

Notation. Throughout this paper, small italics a, b, . . . denote integers, and q is a
natural number. The letter p is reserved for primes, and k is a natural number with
k ≥ 3. Real numbers are denoted by small greek letters α, β, . . .. These conventions
apply whenever these symbols do not obviously denote functions. Whenever ε
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occurs in a statement, it is asserted that the statement is valid for any fixed positive
value of ε. Note that if A� P ε and B � P ε, then we may conclude that AB � P ε.
The leading parameter is P , and all statements are true whenever P exceeds a
certain real number P0 that depends only on k.

Vectors are in bold face, x = (x1, . . . , xs), the dimension s will depend on the
context. To avoid ambiguity, the greatest common factor of a and b is (a; b).

The number of u ∈ Nj with u1u2 . . . uj = n is denoted by dj(n), and we write
d(n) = d2(n) for the number of divisors of n. Similarly, Hooley’s functions are
defined by

∆j(n) = max
ξ1,...,ξj−1

#{u ∈ Nj : u1u2 . . . uj = n, ξi < log ui ≤ ξi + 1 (1 ≤ i < j)},

and again we put ∆(n) = ∆2(n). Further, Ω(n) denotes the total number of prime
factors of n, counted with multiplicity. Less standard, but common in related
literature are the abbreviations

(1.7) L = logP, K = 2k−1, J = 2j−1.

Acknowledgements. The authors thank the anonymous referee for his very de-
tailed inspection of the manuscript. While this paper was refereed, further progress
with the problems considered here was made in the case k = 3, see T.D. Wooley,
Mean value estimates for odd cubic Weyl sums, arXiv:1401.7152.

2. The generating function

Central to the major arc analysis is a good approximation to f(α, β) when α, β
are near rational numbers a/q, b/q. The approximating function is built from the
expressions

(2.1) S(q, a, b) =

q∑
x=1

e
(
(axk + bx)/q

)
, v(ξ, ζ) =

∫ P

0

e(ξtk + ζt) dt.

For frequent use later on, recall the estimates of Hua

(2.2) S(q, a, b)� q(k−1)/k+ε, v(ξ, ζ)� P
(
1 + P k|ξ|+ P |ζ|

)−1/k

that are valid for any real numbers ξ, ζ and natural numbers a, b, q subject to
(q; a; b) = 1 (see Vaughan [29], Theorems 7.1 and 7.3).

Theorem 3. Let q ∈ N, a, b ∈ Z with (a; q) = 1. Let α, β ∈ R and α = a
q + ξ,

β = b
q + ζ with |ζ| ≤ 1/(2q). Then

(2.3) f(α, β) = q−1S(q, a, b)v(ξ, ζ) +O
(
q(k−1)/k+ε(1 + P k|ξ|)1/2

)
.

If further |ξ| ≤ 1/(4kqP k−1), then

(2.4) f(α, β) = q−1S(q, a, b)v(ξ, ζ) +O
(
q(k−1)/k+ε

)
.

While we still work under the condition that k ≥ 3, it may be worth pointing
out that the conclusions in Theorem 3 and their proofs below remain valid when
k = 2. However, when k = 2, a stronger version of Theorem 3 (with ε = 0) was
obtained recently by Vaughan [30]. Apparently, Theorem 3 is new for all k ≥ 3 and
the best estimate available hitherto is the special case of [29], Theorem 7.2, which
gives (2.3) with the error term inflated to 1 + P k|ξ|+ P |ζ|. It is vital for our later
work that both q and |ξ| occur in (2.3) with exponents below 1.
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Our proof of Theorem 3 is an adaptation of a standard argument for the classical
Weyl sum f(α, 0). We follow Vaughan [29], pp. 43–44, quite closely, but differences
in detail justify a moderately detailed exposition. By (1.4), (2.1) and orthogonality
of additive characters, one confirms the initial identity

(2.5) f(α, β) =
1

q

∑
−q/2<r≤q/2

S(q, a, b− r)f
(
ξ, ζ + (r/q)

)
.

We apply a truncated Poisson summation formula to f
(
ξ, ζ + r

q

)
. The phase

F (t) = ξtk +
(
ζ + r

q

)
t has derivative F ′(t) = kξtk−1 + ζ + r

q , which is monotonic

for t ≥ 0, and for 0 ≤ t ≤ P and |r| ≤ 1
2q, one has |F ′(t)| ≤ k|ξ|P k−1 + 1

2q + 1
2 .

With H = [k|ξ|P k−1] + 2, we have now verified the hypotheses of [29], Lemma 4.2,
which gives

f
(
ξ, ζ + r

q

)
=
∑
|h|≤H

v
(
ξ, ζ +

r

q
− h
)

+O(logH).

One uses this within (2.5). On writing r−qh = m and M = q(H+ 1
2 ), this produces

f(α, β) =
1

q

∑
−M<r≤M

S(q, a, b−m)v
(
ξ, ζ +

m

q

)
+ E

in which

E � logH

q

∑
|r|≤q/2

|S(q, a, b− r)|.

Here, one isolates the term m = 0 and then applies (2.2) to all other terms to
conclude that
(2.6)

f(α, β)− q−1S(q, a, b)v(ξ, ζ)� qε−1/k
∑

1≤|m|≤M

∣∣v(ξ, ζ + m
q

)∣∣+ q(k−1)/k+ε logH.

We proceed to deduce (2.4). In the admissible range for ξ, one has H = 2. We take
F (t) = ξtk+

(
ζ+m

q

)
t in Lemma 4.2 of Titchmarsh [25]. One has F ′(t) = m

q +R with

|R| ≤ 3
4q for 0 ≤ t ≤ P , so that F ′ does not change sign and satisfies |F ′(t)| ≥ |m|4q .

The estimate provided by [25], Lemma 4.2, then shows that v
(
ξ, ζ + r

q

)
� q/|m|,

and (2.4) is immediate from (2.6).
It remains to prove (2.3) for |ξ| ≥ 1/(4kqP k−1), as we now assume. Let F be

as before. Its derivative F ′(t) = kξtk−1 + ζ + m
q is still monotonic for t ≥ 0, but

may have a zero in [0, P ]. We therefore apply a stationary phase argument. For

1 ≤ |m| ≤ M , let T (m) be the set of all t ∈ [0, P ] where |F ′(t)| ≥ |m|4q . This is an

interval or the union of two intervals, so that [25], Lemma 4.2, still shows that

(2.7)

∫
T (m)

e(F (t)) dt� q/|m|.

It remains to estimate the contribution from [0, P ] \T (m). If this is non-empty,
then t ∈ [0, P ] \T (m) satisfies∣∣∣kξtk−1 + ζ +

m

q

∣∣∣ ≤ |m|
4q
·
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This implies that

(2.8)
3|m|
4q
≤ |kξtk−1 + ζ| ≤ 5|m|

4q
,

For 1 ≤ |m| ≤M , let

δ = δ(m) = |ξ|1/(2k−2)
(
|m|/q

)(k−2)/(2k−2)
.

We claim that

(2.9)

∫
[0,P ]\T (m)

e(F (t)) dt� δ−1.

To see this, first note that an argument similar to the above shows that the set

of all 0 ≤ t ≤ P with δ ≤ |F ′(t)| ≤ |m|
4q contributes O(δ−1). For the remaining

t, one has |kξtk−1 + ζ + m
q | ≤ δ, and if t1, t2 satisfy this inequality, one finds

that k|ξ||tk−1
1 − tk−1

2 | ≤ 2δ. But (2.8) together with |ζ| ≤ 1/(2q) implies that

tk−1
j ≥ |m|

4k|ξ|q , so that the binomial expansion yields

|t1 − t2| ≤
2δ

k|ξ|

(4k|ξ|q
|m|

)(k−2)/(k−1)

� 1

δ
·

Hence, the set of t ∈ [0, P ] with |F ′(t)| ≤ δ has measure O(1/δ), and (2.9) follows.
On combining (2.7) and (2.9) to an estimate for v

(
ξ, ζ + m

q

)
, we find that∑

1≤|m|≤M

∣∣v(ξ, ζ + m
q

)∣∣� q
∑
m≤M

1

m
+

∑
m≤1+2kq|ξ|Pk−1

1

δ(m)

� q1+ε(1 + P k|ξ|)1/2.

In view of (2.6), the desired bound (2.3) is immediate. �

We now apply Theorem 3 to establish a strong from of Weyl’s inequality for
f(α, β). Recall (1.4), (1.7) and the definition of m in Theorem 2.

Lemma 1. Uniformly in β ∈ R, α ∈ m, one has

|f(α, β)|K � PK−1L1+ε.

The proof is essentially that of Lemma 1 in Vaughan [26], suitably generalised
to k ≥ 3. However, our analysis relies on Theorem 3 rather than [29, Theorem 4.1],
and some care is required to accomodate the weaker error estimates. In particular,
it turns out that mimicry of the argument outlined on p. 131 of [26] leads to a
satisfactory bound only in the case when k ≥ 4, which we temporarily suppose
from now on.

Let δ = 1/(100k) and α ∈ m. By Dirichlet’s theorem, there are coprime a, q
with 1 ≤ q ≤ P k−1−δ and |qα − a| ≤ P 1+δ−k. First suppose that q ≤ Pµ where
µ = 1+ 1

k+3 . One checks that k−1
k µ < 1− 1

K holds for all k ≥ 4. Hence by Theorem

3 and (2.2),

(2.10) f(α, β)� qε−1/kP
(
1 + P k

∣∣α− a
q

∣∣)−1/k
+ P 1−1/K .

Since α ∈ m, we have q > Q or |α − a/q| ≥ Q/(qP k), and in both cases it follows
that

(2.11) f(α, β)� Qε−1/kP + P 1−1/K � P 1−1/K ,

as required.
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This leaves the case where q > Pµ. Then |α− a/q| ≤ P 1+δ−µ−k, and one checks
that 1 + δ − µ = − 1

k+3 + δ ≤ − 1
K . Consequently,

f(α, β)− f
(a
q
, β
)

=
∑
x≤P

e(βx)
(
e(αxk)− e

(a
q
xk
))
� P 1−1/K .

Thus, we are reduced to estimating f(a/q, β). We begin by observing that the
substitution y = x+ h produces

|f(α, β)|2 =
∑
x,y≤P

e
(
α(yk − xk) + β(y − x)

)
=
∑
|h|<P

e(βh)
∑

1≤x≤P
1≤x+h≤P

e
(
α((x+ h)k − xk)

)
(2.12)

≤ P +
∑

0<|h|<P

∣∣∣ ∑
1≤x≤P

1≤x+h≤P

e
(
α((x+ h)k − xk)

)∣∣∣.
Note that β is absent in this inequality. We now take α = a/q and repeat Weyl
differencing in the usual way. Then, as in [26], p. 131, one arrives at

|f(a/q, β)|K � PK−1 + PK−k
∑

1≤hj≤P
1≤j≤k−1

min

(
P,
∥∥∥k!ah1 . . . hk−1

q

∥∥∥−1
)
,

and one may then complete the estimation in the same way as in the final part of
the proof of [26, Lemma 1], but using Hall and Tenenbaum [13, Theorem 70] for
∆k−1(n) instead of referencing Hooley [16]. This completes the proof of Lemma 1
when k ≥ 4.

Now suppose that k = 3. More care is required in the part that relies on Weyl
differencing. On applying Cauchy’s inequality to

f(α, β) =

2∑
u=1

∑
x≤P

x≡u mod 2

e(αx3 + βx)

one finds that

|f(α, β)|2 ≤ 2
∑
x,y≤P

x≡y mod 2

e
(
α(xk − yk) + β(x− y)

)
,

and the substitution 2z = x+ y, 2h = x− y transforms this to

|f(α, β)|2 ≤ 2
∑
|h|≤P/2

∑
z∈I(h)

e(2βh)e
(
2αh(3z2 + h2)

)
where I(h) is the subinterval of [1, P ] described by the inequalities 1 ≤ z + h ≤ P ,
1 ≤ z − h ≤ P . It follows that

|f(α, β)|2 ≤ 2
∑
|h|≤P/2

∣∣∣ ∑
z∈I(h)

e
(
6αhz2

)∣∣∣
≤ 2P + 4

∑
1≤h≤P/2

∣∣∣ ∑
z∈I(h)

e
(
6αhz2

)∣∣∣.
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By Cauchy’s inequality,

|f(α, β)|4 � P 2 + P
∑

0<|h|≤P/2

∣∣∣ ∑
z∈I(h)

e
(
6αhz2

)∣∣∣2.
The double sum over h, z here is that same as the one estimated in Lemma 4 of
Vaughan [26] with H = P/2, except that in that lemma, 6α is 3α, and the range
for z is 1 ≤ z ≤ P . An inspection of the proof shows that these changes are
irrelevant, and that the conclusion is still valid in our context. Moreover, similar to
an earlier comment, the use of Theorem 70 of Hall and Tenenbaum [13] within the
proof of [26, Lemma 4] reduces the factor L4/π+ε in that lemma to L1+ε. Hence, on
choosing 1 ≤ q ≤ P 2−δ and a ∈ Z with |qα−a| ≤ P δ−2, the augmented form of [26,
Lemma 4] now shows that |f(α, β)|4 � P 3L1+ε holds in all cases where q > P 1+δ.
When q ≤ P 1+δ, then Theorem 3 and (2.2) yield (2.10) for k = 3, and one then
also confirms (2.11) for k = 3. The proof of Lemma 1 is complete. �

We close this section with a technical observation concerning the exponential
sum defined in (2.1).

Lemma 2. Let p be a prime, and suppose that a, b are integers with p | a and p - b.
Then, for all l ∈ N, one has S(pl, a, b) = 0.

Proof. On substituting x = pl−1y + z in (2.1), one finds that

S(pl, a, b) =

pl∑
x=1

e
(axk
pl

+
bx

pl

)
=

p∑
y=1

e
(by
p

) pl−1∑
z=1

e
(azk + bz

pl

)
= 0.

3. Preparatory mean value estimates

We begin with certain divisor sums that are routinely estimated by van der
Corput’s method. Let t ∈ N, put x = (x1, . . . , xt) and define the sums

(3.1) Λ(x,y) =

t∑
j=1

(xj − yj), M(x,y) =

t∑
j=1

(xkj − ykj ).

Lemma 3. Let t ∈ N, l ∈ N. Then, there exists positive numbers δ and η such that

∑
xj≤P, yj≤P
M(x,y) 6=0

d
(
M(x,y)

)l � P 2tLη,
∑

xj≤P, yj≤P
M(x,y) 6=0

d
(
M(x,y)

)l
eδΩ(M(x,y)) � P 2tLη,

(3.2)

∑
xj≤P, yj≤P
M(x,y)6=0
Λ(x,y)=0

d
(
M(x,y)

)l � P 2t−1Lη,
∑

xj≤P, yj≤P
M(x,y) 6=0
Λ(x,y)=0

d
(
M(x,y)

)l
eδΩ(M(x,y)) � P 2t−1Lη.

(3.3)

Proof. The first estimate in (3.2) is a special case of Theorem 3 of Hua [22],
and the second can be established by a development of the underlying method
(see also Lemma 1 of Vaughan [27]). To verify the first bound in (3.3), substitute

yt =
∑t−1
j=1(xj − yj) + xt into M(x,y). Then the sum on the left hand side of (3.3)
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does not exceed the sum∑
x1,...,xt≤P

∑
y1,...,yt−1≤P

d
( t−1∑
j=1

(xkj − ykj ) + xkt −
( t−1∑
j=1

(xj − yj) + xt

)k)l
,

and the desired bound again follows from Theorem 3 of Hua [22]. Finally, once
again a development of the method also yields the second estimate in (3.3). �

We now consider the pair of diophantine equations

(3.4) xk1 + xk2 + xk3 = yk1 + yk2 + yk3 , x1 + x2 + x3 = y1 + y2 + y3.

Let Γ(P ) denote the number of solutions of (3.4) with 1 ≤ xj ≤ P , 1 ≤ yj ≤ P
such that x1, x2, x3 is not a permutation of y1, y2, y3. Then, by Vaughan and
Wooley [31] when k = 3, and by Greaves [11] when k ≥ 4, there exists γ > 0 such
that Γ(P ) � P 3−γ . With this value of γ, this immediately implies the following
estimate.

Lemma 4. For U ⊂ {1, 2, . . . , [P ]}, let U(P ) denote the number of solutions of
(3.4) with xj ∈ U , yj ∈ U . Then

U(P )�
(
#U

)3
+ P 3−γ .

The next lemma should be compared with the classical lemma of Hua in the
theory of Waring’s problem.

Lemma 5. There is a positive number η such that whenever 2 ≤ j ≤ k, then∫ 1

0

∫ 1

0

|f(α, β)|2
j+2 dα dβ � P 2j−j+1Lη.

Proof. Let j = 2. By orthogonality, the integral equals U(P ) with U = [1, P ]∩Z
so that this case of Lemma 5 is a consequence of Lemma 4.

We now suppose that the conclusion of Lemma 5 has been established for a
particular value of j with 2 ≤ j < k, and proceed by induction. Recall that
J = 2j−1, and return to (2.12). Repeated Weyl differencing via Cauchy’s inequality
then gives

(3.5) |f(α, β)|2J � P 2J−j−1
∑
|h1|<P

. . .
∑
|hj |<P

∑
x∈I(h)

e
(
αh1 . . . hjQh(x)

)
where I(h) ⊂ [1, P ] is a suitable interval and Qh ∈ Z[X] has degree k− j. Now let
r(l) denote the number of solutions of

(3.6) h1 . . . hjQh(x) = l

with all variables h1, . . . , hj , x subject to the summation conditions in the preceding
display. Then

|f(α, β)|2J � P 2J−j−1
∑
l∈Z

r(l)e(−αl).

By (1.4),

|f(α, β)|2J+2 =
∑

xi≤P, yi≤P
1≤i≤J+1

e
(
αM(x,y) + βΛ(x,y)

)
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where Λ and M are the forms defined in (3.1) with t = J + 1. Hence, by orthogo-
nality,

(3.7)

∫ 1

0

∫ 1

0

|f(α, β)|4J+2 dα dβ � P 2J−j−1
∑
x,y

Λ(x,y)=0

r
(
M(x,y)

)
.

One has r(0)� P j , and r(l)� d(|l|)j+1 for l 6= 0. Hence the contribution to (3.7)
of all terms where M(x,y) 6= 0 can be estimated by (3.3), and does not exceed
P 4J−jLη. This leaves the solutions of M(x,y) = Λ(x,y) = 0, and by orthogonality
again, these contribute to (3.7) at most

P 2J−1

∫ 1

0

∫ 1

0

|f(α, β)|2J+2 dα dβ � P 4J−jLη.

This completes the induction step, and the proof of the lemma. �

Let κ denote a positive number sufficiently large in terms of k, and write

(3.8) D = Lκ, D′ = P 1/(6k).

Let E denote the set of all n ≤ P with no prime factor in the interval [D,D′]. Then,
uniformly for d ≤ P and m ∈ N, the number Ed,m(P ) of n ∈ E with n ≡ m mod d
satisfies

(3.9) Ed,m(P )� P log logP

ϕ(d) log(2P/D)

(see Lemma 2 of Vaughan [27] or Halberstam-Richert [12], Theorem 3.4). We now
define the exponential sum

(3.10) h(α, β) =
∑
x∈E

e(αxk + βx).

The next lemma is a considerable refinement of the preceding lemma, and crucial
for all later work.

Lemma 6. Let 2 ≤ j ≤ k. Then∫ 1

0

∫ 1

0

|h(α, β)|2
j+2 dα dβ � P 2j−j+1Lε−1− 1

2 j(j−1).

Proof. When j = 2, this follows from orthogonality, Lemma 4 and (3.9). Now
suppose the estimate is known for a particular value of j with 2 ≤ j < k, and
proceed by induction. The argument to follow is very similar to that on pp. 14–19
of [27], so we shall be brief whenever the modifications to [27] are evident.

We begin by applying Weyl differencing to (3.10). The first differencing is per-
formed as in (2.12), and delivers the initial inequality

|h(α, β)|2 ≤ #E +
∑

0<|h|<P

∣∣∣ ∑
x∈E

x+h∈E

e
(
α((x+ h)k − xk)

)∣∣∣.
Since j ≥ 2, we have to difference further to reach the inequality

|h(α, β)|2
j

� P 2j−j−1
(
#E
)j

+ P 2j−j−1
∑

1≤|hi|<P
1≤i≤j

∑
x

e
(
αh1 . . . hjQj(x,h)

)
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in which the sum over x is subject to the constraints x ∈ E and x + hi ∈ E

(1 ≤ i ≤ j), and Qj is as in (3.5). Now multiply with |h(α, β)|2j+2 and integrate.
Then, recalling that J = 2j−1, one finds that

∫ 1

0

∫ 1

0

|h(α, β)|4J+2 dα dβ

(3.11)

� P 2J−j−1
(
#E
)j ∫ 1

0

∫ 1

0

|h(α, β)|2J+2 dα dβ + P 2J−j−1
∑
x,y

Λ(x,y)=0

r
(
M(x,y)

)
where r(l) has the same meaning as in (3.6), M and Λ are defined by (3.1) with
t = J + 1, and x,y are subject to xj , yj ∈ E , M(x,y) 6= 0. By the induction
hypothesis, the first term on the right hand side does not exceed

� P 2J−1Lε−jP 2J−j+1Lε−1− 1
2 j(j−1) � P 4J−jLε−1− 1

2 j(j+1),

as required. In view of (3.11), the induction will be complete once the inequality

(3.12)
∑
x,y

Λ(x,y)=0

r
(
|M(x,y)|

)
� P 2J+1Lε−1− 1

2 j(j+1)

is established; here and later the sum is subject to same conditions as in (3.11).
Let D = Lκ be as in (3.8). The contribution to (3.12) arising from summands with
|M(x,y)| ≤ (P/D)k is small. To see this, we use Cauchy’s inequality to infer that

(3.13)
∑

Λ(x,y)=0

1≤|M(x,y)|≤(P/D)k

r(|M(x,y)|) ≤
(
T1T2

)1/2
where

T1 =
∑

Λ(x,y)=0

d(|M(x,y)|)2j

and T2 denotes the number of all 1 ≤ xi, yi ≤ P , 1 ≤ i ≤ J + 1 with

(3.14) Λ(x,y) = 0, 1 ≤ |M(x,y)| ≤ (P/D)k.

By (3.3), we have T1 � P 2J+1Lη. With any solution x,y counted by T2, we
associate the numbers

u =

J+1∑
i=2

(yi − xi), w =

J+1∑
i=2

(yki − xki ).

Let T ′2 denote the number of solutions counted by T2 where 0 ≤ u ≤ P/D, and
let T ′′2 denote the number of those solutions counted by T2 where P/D < u ≤ JP .
Then, by symmetry in x and y, it follows that

T2 ≤ 2(T ′2 + T ′′2 ).

To estimate T ′2, we consider one particular choice of x2, . . . , xJ+1, y3, . . . , yJ+1; there
are O(P 2J−1) possibilities for this. The conditions that 0 ≤ u ≤ P/D leaves
O(P/D) choices for y2. Once these variables are fixed, u is also fixed, and so
x1−y1 = u leaves O(P ) choices for the pair x1, y1. This shows that T ′2 � P 2J+1/D.

The initial treatment of T ′′2 is similar. Fix one of the O(P 2J) choices for
x2, . . . , xJ+1, y2, . . . , yJ+1 with u > P/D. This fixes u and w, and by (3.14) it



12 J. BRÜDERN AND O. ROBERT

remains to count the x1, y1 with x1−y1 = u, |xk1−yk1 −w| ≤ (P/D)k. We eliminate
x1, and consider the inequality

(3.15) |(y1 + u)k − yk1 − w| ≤ (P/D)k.

Let z1 and z2 be two solutions (for y1) of (3.15) with 1 ≤ z1 ≤ z2 ≤ P . Then

(3.16)
∣∣(z2 + u)k − zk2 − (z1 + u)k + zk1

∣∣ ≤ 2(P/D)k.

A direct computation yields

(z2 + u)k−zk2 − (z1 + u)k + zk1 = k(k − 1)

∫ u

0

∫ z2−z1

0

(z1 + ζ + ξ)k−2 dζ dξ

≥ k(k − 1)

∫ u

0

∫ z2−z1

0

ζk−2 dζ dξ = ku(z2 − z1)k−1.

Recalling that one has u > P/D in the current context, one infers from (3.16) that
z2 − z1 ≤ P/D. This shows that (3.15) has at most 2(P/D) + 1 solutions in y1.
Collecting together, we see that T ′′2 � P 2J+1/D, that T2 � P 2J+1/D, and by
(3.13),

(3.17)
∑

Λ(x,y)=0

|M(x,y)|≤(P/D)k

r(|M(x,y)|)� P 2J+1L
1
2 (η−κ).

We are reduced to estimating

(3.18) Υ =
∑

Λ(x,y)=0

|M(x,y)|>(P/D)k

r(|M(x,y)|).

Let %(n) denote the number of solutions of the system |M(x,y)| = n, Λ(x,y) = 0
with xi, yi ∈ E (1 ≤ i ≤ J+1). Then %(n) = 0 for n > (J+1)P k, and the definition
of r(n) shows that for (P/D)k < n ≤ 2JP k one has r(n) � (log logP )j∆j+1(n).
It follows that

(3.19) Υ� Lε
∑
n

∆j+1(n)%(n).

Let ν be a (small) positive number, and let δ be as in Lemma 3. Let

Y = exp
( δνL

(η + k2) logL

)
.

Let

M = {n ∈ N : p | n⇒ p ≤ Y }, N = {n ∈ N : p | n⇒ p > Y }.

Then, any n ∈ N has a unique factorisation n = n∗n† with n∗ ∈M , n† ∈ N . Note
that n∗ > P ν implies Ω(n) log Y ≥ log n∗ > νL so that δΩ(n) > (η + k2) logL. By
(3.3),

(3.20)
∑

n∗>P ν

∆j+1(n)%(n)�
∑
n

d(n)2j+2eδΩ(n)%(n)L−η−k
2

� P 2J+1L−k
2
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which is acceptable. For the complementary portion of (3.19), we have∑
n∗≤P ν

∆j+1(n)%(n) ≤
∑
m∈M
m≤P ν

∑
n∈N

∆j+1(mn)%(mn)

≤
∑
m∈M
m≤P ν

∆j+1(m)
∑
n∈N

dj+1(n)%(mn).

We now require the following simple observation.

Lemma 7. Let k ≥ 3 and ν > 0. There exists a number L0 depending only on k
and ν with the property that for any 2 ≤ j ≤ k − 1 and any n < 2JP k there is a
divisor n1 of n with n1 ≤ P ν and dj+1(n)� jL0Ω(n1).

Although not highlighted as a lemma, the conclusion of Lemma 7 is established
inter alia in [27], starting on p. 16 after [27, (3.15)]. �

We apply Lemma 7 to the inner sum in the previous display and obtain

(3.21)
∑

n∗≤P ν
∆j+1(n)%(n)�

∑
m∈M
m≤P ν

∆j+1(m)
∑
n1∈N
n1≤P ν

jL0Ω(n1)
∑

n≡0 mod mn1

%(n).

It will be convenient to write d = mn1. Then, the conditions active in (3.21) imply

that d ≤ P 2ν ≤
√
P . Further, the sum

∑
n≡0 mod d %(n) does not exceed the number

of solutions of

(3.22)

J+1∑
i=1

(xi − yi) = 0,

J+1∑
i=1

(xki − yki ) ≡ 0 mod d

with xi, yi ∈ E (1 ≤ i ≤ J + 1). Let a,b be a solution of the pair of congruences

(3.23)

J+1∑
i=1

(ai − bi) ≡
J+1∑
i=1

(aki − bki ) ≡ 0 mod d

and choose xi, yi ∈ E with xi ≡ ai mod d for 1 ≤ i ≤ J + 1 and yi ≡ bi mod d for
1 ≤ i ≤ J . Then determine yJ+1 through the linear equation in (3.22). By (3.23), it
follows that yJ+1 ≡ bJ+1 mod d, and by (3.9), we infer that the number of solutions
to (3.22) with xi, yi ∈ E and xi ≡ ai mod d, yi ≡ bi mod d (1 ≤ i ≤ J + 1) does not
exceed O

(
(P/d)2J+1Lε−1−2J

)
. We conclude that∑

n : d|n

%(n)� P 2J+1Lε−1−2Jd−1−2JS(d)

where S(d) is the number of incongruent solutions to the pair of congruences (3.23).
Since S(d) is multiplicative, we deduce from (3.21) that

(3.24)
∑

n∗≤P ν
∆j+1(n)%(n)� P 2J+1Lε−1−2JΞ1Ξ2

in which

Ξ1 =
∑
m∈M
m≤P ν

∆j+1(m)S(m)

m1+2J
, Ξ2 =

∑
n∈N
n≤P ν

jL0Ω(n)S(n)

n1+2J
.
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Further progress depends on upper bounds for S(d) that we now derive. By (2.1)
and orthogonality,

(3.25) S(d) = d−2
d∑
a=1

d∑
b=1

|S(q, a, b)|2J+2.

But j ≥ 2, so that 2J + 2 ≥ 6, and then

S(d) ≤ d2J−6
d∑
a=1

d∑
b=1

|S(q, a, b)|6 = d2J−4S0(d)

where S0(d) is the number of solutions of the congruences

3∑
i=1

(ui − vi) ≡
3∑
i=1

(uki − vki ) ≡ 0 mod d.

In particular, S0(d) is a multiplicative function. We now have

Ξ1 ≤
∑
m∈M
m≤P ν

∆j+1(m)S0(m)

m5
, Ξ2 ≤

∑
n∈N
n≤P ν

jL0Ω(n)S0(n)

n5
.

By (2.1), whenever d = (q; a; b), one has S(q, a, b) = dS(q/d, a/d, b/d). Hence,
on noting that S0(d) equals the right hand side of (3.25) with J = 2, and then
collecting terms according to (q; a; b), one readily confirms that

(3.26)
S0(m)

m4
=
∑
q|m

A(q)

where

(3.27) A(q) = q−6

q∑
a,b=1

(a;b;q)=1

|S(q, a, b)|6.

By (3.26) and Möbius inversion, A(q) is multiplicative. We shall prove momentarily
that the series

(3.28)

∞∑
q=1

A(q)dj+1(q)

q
,

∑
q∈N

jL0Ω(q)A(q)

q

converge, and that the second series (which depends on P ) is bounded above by
a constant depending only on k. Once this is established, the proof of Lemma 6
is swiftly completed. Indeed, the familiar inequality ∆j+1(uw) ≤ ∆j+1(u)dj+1(w)
now implies that

Ξ1 ≤
∑
m∈M
m≤P ν

∆j+1(m)

m

∑
q|m

A(q) ≤
∑
u≤P ν

∆j+1(u)

u

∑
q≤P ν

A(q)dj+1(q)

q
,

and by (3.28) the sum over q is bounded. Also, by Hall and Tenenbaum [13],
Theorem 70, the sum over u is O(L1+ε), whence Ξ1 � L1+ε. Similarly,

Ξ2 ≤
∑
n∈N
n≤P ν

jL0Ω(n)

n

∑
q|n

A(q) ≤
∑
u∈N
u≤P ν

jL0Ω(u)

u

∑
q∈N
q≤P ν

jL0Ω(q)A(q)

q
.
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Here again, the sum over q is bounded and∑
u∈N
u≤P ν

jL0Ω(u)

u
=

∏
Y <p≤P ν

(
1 +

∞∑
l=1

jL0l

pl

)
� (log logP )j

L0
,

so that Ξ2 � Lε. On collecting together, it follows that the expression on the left
hand side of (3.24) is O

(
P 2J+1Lε−2J

)
. But 2J ≥ 1 + 1

2j(j + 1) for j ≥ 2, and

therefore, by (3.24), (3.19) and (3.20), the sums (3.18) and (3.17) (with κ = η+k2)
are both sufficiently small to imply (3.12). This completes the proof of Lemma 6.

In preparation for the discussion of the series in (3.28), we require an upper
bound for A(q). By multiplicativity, it will suffice to consider the case where q = pl

is a prime power. In this case, one infers from (3.27) and Lemma 2 that

(3.29) A(pl) = p−6l

pl∑
a=1
p-a

pl∑
b=1

|S(pl, a, b)|6.

For a crude bound, note that whenever p - a one has p−lS(pl, a, b) � p−l/k. This
is slighly stronger than (2.1) but follows from the proof of [29], Theorem 7.1, or
Chalk [8], for example. By (3.29), it follows that

A(pl)� p−2l−4l/k

pl∑
a=1

pl∑
b=1

|S(pl, a, b)|2,

and by orthogonality, one derives the estimate

(3.30) p−lA(pl)� p−4l/k.

We proceed to establish the alternative estimate

(3.31) p−lA(pl)� p−2

that is valid for all primes p with p - k. Indeed, by Lemma 4.3 of Vaughan [29],
one has S(p, a, 0) � p1/2 whenever p - a, and when p - b, Lemma 4.1 of Vaughan
[29] gives S(p, a, b) � p1/2. By (3.29), it follows that A(p) � p−1. This already
confirms (3.31) when l = 1, and by (3.26), one also finds that

(3.32) S0(p)� p4.

Now let l ≥ 2, and consider a solution of the system of congruences

(3.33)

3∑
i=1

(ui − vi) ≡
3∑
i=1

(uki − vki ) ≡ 0 mod pl

with 1 ≤ ui, vi ≤ pl. Such a solution is said to be non-singular modulo p if the
array (

kuk−1
1 kuk−1

2 kuk−1
3 −kvk−1

1 −kvk−1
2 −kvk−1

3

1 1 1 −1 −1 −1

)
has rank 2, modulo p, and otherwise singular modulo p. Note that for p - k, a
solution is singular modulo p if and only if

(3.34) uk−1
1 ≡ uk−1

2 ≡ uk−1
3 ≡ vk−1

1 ≡ vk−1
2 ≡ vk−1

3 mod p.

It follows that there are at most (k − 1)4p5l−4 singular solutions of (3.33), because
for each of the pl choices for u1, the remaining variables will satisfy (3.34), leaving
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at most (k− 1)4p4l−4 possibilities for u2, u3, v1, v2 by the theory of power residues.
The value of v3 mod pl is then fixed through (3.33).

When p - k, we count the non-singular solutions to (3.33) with uk−1
1 6≡ vk−1

1 mod
p with the aid of Hensel’s Lemma. Indeed, each such solution, when reduced modulo
p, corresponds to one of the O(p4) solutions counted by S0(p) , and at most O(p4l−4)
of them will reduce to the same solution modulo p, because for a solution u, v of
the system

uk − vk ≡ a mod p, u− v ≡ b mod p

with p - uk−1 − vk−1, there is exactly one pair u1, v1 with 1 ≤ u1, v1 ≤ pl and

uk1 − vk1 ≡ a mod pl, u1 − v1 ≡ b mod pl.

A similar argument applies for counting non-singular solutions with uk−1
1 6≡ uk−1

2 mod
p, so that, by symmetry, there are at most O(p4l) non-singular solutions of (3.33).
It follows that S0(pl) � p4l + p5l−4. We now ignore the condition p - a in (3.29)
and use orthogonality to deduce that

A(pl)� p−4lS0(pl)� 1 + pl−4.

For l ≥ 2, this contains (3.31), as required.

We are ready to discuss the first of the two series in (3.28). The easy bound
dj+1(pl) ≤ (l + 1)j coupled with (3.30) suffices to recognise the sum

(3.35)

∞∑
l=0

dj+1(pl)
A(pl)

pl

as a convergent one, and if one uses (3.31) for p > k ≥ l ≥ 1, and (3.30) for l > k,
then this sum is seen to be of the form 1 +O(p−2). The sums (3.35) are the factors
in the Euler product for the sum (3.28), so that the latter indeed converges.

A similar argument applies to the second sum in (3.28). Rewritten as an Euler
product, this sum becomes

(3.36)
∏
p>Y

∞∑
l=0

jL0l
A(pl)

pl
.

When P is sufficiently large, one has jL0p−4/k < 1/2 for all p > Y , so that (3.30)
yields ∑

l>k

jL0l
A(pl)

pl
�
∑
l>k

( jL0

p4/k

)l
� p−4.

On using (3.31) for 1 ≤ l ≤ k as in the previous discussion, one again finds that
the Euler factors in (3.36) are of the type 1 + O(p−2), thus confirming the claims
concerning the second sum in (3.28).

4. The principal proposition

Our next result is a version of Hua’s lemma with a logarithmic saving, similar
to Theorem B of Vaughan [27].

Lemma 8. Let k ≥ 3, K = 2k−1 and t = 3
2K + 2. Then∫ 1

0

∫ 1

0

|f(α, β)|t dα dβ � P t−k−1/2Lε−3.
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Note that Theorem 2 follows on combining the conclusions of Lemmas 1 and 8.

The proof of Lemma 8 will occupy this and the next two sections. Only the
initial steps of the proof work for all values of k. Let I denote the integral that
is estimated in Lemma 8. On noting that t is the arithmetic mean of K + 2 and
2K + 2, one deduces from Lemma 5 and Schwarz’s inequality that

(4.1) I � P t−k−1/2Lη.

A similar argument may be applied to the exponential sum h(α, β). An application
of Schwarz’s inequality combined with Lemma 6 yields

(4.2)

∫ 1

0

∫ 1

0

|h(α, β)|t dα dβ � P t−k−1/2Lε−1− 1
2 (k−1)2 .

We now apply a differencing argument that reduces the estimation of I to that of
the integral considered in (4.2). The main ideas are adopted from Vaughan [27].

By orthogonality, I is the number of solutions of the pair of equations

(4.3) xk − yk =

3K/2∑
i=1

(xki − yki ), x− y =

3K/2∑
i=1

(xi − yi)

with x, y, xi, yi all constrained to the interval [1, P ]. Also, when U is a subset of
{(x, y) ∈ N2 : 1 ≤ x, y ≤ P}, let I(U ) denote the number of solutions counted by I
that have (x, y) ∈ U .

Recall the parameters D = Lκ and D′ = P 1/6k. For 1 ≤ x ≤ P , let m(x) be the
smallest prime factor of x that exceeds D if such a factor exists, and otherwise put
m(x) =∞. Consider the sets

A = {(x, y) ∈ N2 : x ≤ P, y ≤ P, (x; y) > D},
B = {(x, y) ∈ N2 : x ≤ P, y ≤ P, (x; y) ≤ D, m(x) ≤ D′},
C = {(x, y) ∈ N2 : x ≤ P, y ≤ P, (x; y) ≤ D, m(y) ≤ D′}.

If a solution to (4.3) is counted by I, but the pair (x, y) is not in the union of A ,B
and C , then we have x ≤ P , y ≤ P , (x; y) ≤ D and m(x) > D′, m(y) > D′. In
particular, x ∈ E and y ∈ E . Consequently

I ≤ I(A ) + I(B) + I(C ) + I(E × E ).

Moreover, by symmetry, I(B) = I(C ), and so

(4.4) I ≤ 4 max I(X )

where X runs through the sets A , B and E × E .
First suppose that I ≤ 4I(E × E ). Then recalling (3.10), orthogonality shows

that

I ≤ 4

∫ 1

0

∫ 1

0

|h(α, β)|2|f(α, β)|t−2 dα dβ

≤ 4

(∫ 1

0

∫ 1

0

|h(α, β)|t dα dβ

)2/t(∫ 1

0

∫ 1

0

|f(α, β)|t dα dβ

)1−2/t

.

Here Hölder’s inequality was used to infer the second inequality. The second integral
on the right is I, and therefore

I ≤ 2t
∫ 1

0

∫ 1

0

|h(α, β)|t dα dβ.
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Hence in this case, the desired estimate for I is a consequence of (4.2).
Next, suppose that I ≤ 4I(A ). We define

(4.5) f(α, β;W ) =
∑
w≤W

e(αwk + βw)

and sort the pairs (x, y) ∈ A according to the value of d = (x; y). Then, by
orthogonality, a consideration of the underlying diophantine equations reveals that

I(A ) ≤
∑
d>D

∫ 1

0

∫ 1

0

|f(αdk, βd;P/d)|2|f(α, β)|t−2 dα dβ.

The initial assumption and Hölder’s inequality yield

I ≤ 4
∑
d>D

(∫ 1

0

∫ 1

0

|f(αdk, βd;P/d)|t dα dβ

)2/t

I1−2/t.

We use the bound for I provided by (4.1), and for the remaining integral on the
right hand side here, a consideration of the underlying diophantine equations shows
that (4.1) again supplies a bound, this time with P/d in place of P . One then finds
that

I � P t−k−1/2Lη
∑
d>D

d−(2t−2k−1)/t � P t−k−1/2LηD−1/8.

Hence for κ ≥ 8(η + k2), this shows that I � P t−k−1/2L−k
2

which is acceptable.
It remains to consider the case where I ≤ 4I(B). The initial steps are along

familiar lines. Recall the definition of B and sort the solutions of (4.3) counted by
I(B) according to the value of p = m(x). Then D < p ≤ D′, and the condition
that (x; y) ≤ D implies p - y. Hence I(B) does not exceed the number of solutions
to the equation

(4.6) (pw)k − yk =

3K/2∑
i=1

(xki − yki ), pw − y =

3K/2∑
i=1

(xi − yi)

in primes p with D < p ≤ D′ and natural numbers w, y, xi, yi satisfying w ≤ P/p
and

(4.7) y ≤ P, xi ≤ P, yi ≤ P, p - y.

Let IM denote the number of solutions of (4.6) constrained to (4.7) and M < p ≤
2M , w ≤ P/M . Then, on splitting the range for p into dyadic intervals, one finds
that there is some M with D ≤M ≤ D′ and

(4.8) I ≤ 4I(B)� LIM .

We now recall (4.5) and write

fp(α, β) =
∑
y≤P
p-y

e(αyk + βy), g(α, β) = f(α, β, P/M).

Then, by orthogonality,

(4.9) IM =
∑

M<p≤2M

∫ 1

0

∫ 1

0

g(pkα, pβ)fp(−α,−β)|f(α, β)|t−2 dα dβ.
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One may reduce the estimation of I to bounding the integral

(4.10) Θp =

∫ 1

0

∫ 1

0

|fp(α, β)|K/2|g(pkα, pβ)|K+2 dα dβ,

which can be brought into play via Hölder’s inequality. Indeed, on noting that
|fp(−α,−β)| = |fp(α, β)| , one readily finds that∫ 1

0

∫ 1

0

g(pkα,pβ)fp(−α,−β)|f(α, β)|t−2 dα dβ

≤ Θ1/(K+2)
p I1−(2/t)

(∫ 1

0

∫ 1

0

|fp(α, β)|t dα dβ
) K+4
t(2K+4)

.

On considering the underlying diophantine equations, it is immediate that the in-
tegral on the far right is bounded by I. Hence∫ 1

0

∫ 1

0

g(pkα, pβ)fp(−α,−β)|f(α, β)|t−2 dα dβ � Θ1/(K+2)
p I(K+1)/(K+2).

By orthogonality, the integral on the left is non-negative. We may sum over p to
first infer from (4.9) that

IM � (IM)(K+1)/(K+2)
( ∑
M<p≤2M

Θp

)1/(K+2)

,

and then, by (4.8),

(4.11) I � LK+2MK+1
∑

M<p≤2M

Θp.

The next step is to show that whenever D ≤M ≤ D′ then

(4.12)
∑

M<p≤2M

Θp � P t−k−1/2M−K−3/2Lη.

Once this is established, it suffices to recall that D = Lκ, and to combine (4.11)

and (4.12) to finally conclude that I � P t−k−1/2L−k
2

holds in this last case as
well, provided only that κ is large enough.

We shall estimate the sum in (4.12) by a differencing argument. When k ≥ 4,
the problem at hand can be approached by combining ideas contained in Vaughan
[27] and Wooley [32]. The rather technical details are provided in the next section.
For k = 3 this argument collapses, and we present an alternative approach via the
Hardy-Littlewood method in the following section.

5. Efficient differencing

Throughout this section we suppose that k ≥ 4. Then K/4 ≥ 2, and K/4 is
even. We will use this frequently. We prepare for the differencing operation with
a technical estimate concerning certain congruences. For p > k, let Zp(a, b) be the
set of solutions z = (z1, z2, . . . , zK/4) to the simultaneous congruences

(5.1) zk1 + zk2 + . . .+ zkK/4 ≡ a mod pk, z1 + z2 + . . .+ zK/4 ≡ b mod p

with 1 ≤ zi ≤ pk and p - zi for all 1 ≤ i ≤ K/4. Also, let

Zp = max
a,b

#Zp(a, b).
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Lemma 9. Let p > k ≥ 4. Then

Zp � p
1
4Kk−k−1.

Proof. First suppose that k = 4. Then K/4 = 2. Consider the solutions w1, w2

of

(5.2) w4
1 + w4

2 ≡ a mod p, w1 + w2 ≡ b mod p

with 1 ≤ wi ≤ p − 1 (i = 1, 2). Here, one may eliminate w2. Then w1 satisfies a
polynomial congruence of degree 4 which has at most 4 solutions. For any solution
z of

z4
1 + z4

2 ≡ a mod p4, z1 + z2 ≡ b mod p

that is counted by Zp, there is a solution w of (5.2) with zi ≡ wi mod p. However,
for a fixed solution w of (5.2), there are p3 choices for z2 with 1 ≤ z2 ≤ p4 and
z2 ≡ w2 mod p, and for any such z2, there are at most four solutions of z4

1 + z4
2 ≡

a mod p4 with p - z1 and 1 ≤ z1 ≤ p4. This shows that Zp ≤ 16p3, as required.
Next, suppose that k ≥ 5. Let Z ′p(a′, b′) denote the set of solutions z1, z2, z3 of

the congruences

(5.3) zk1 + zk2 + zk3 ≡ a′ mod pk, z1 + z2 + z3 ≡ b′ mod p

with p - z1z2z3 and 1 ≤ zi ≤ pk for i = 1, 2, 3. The bound

(5.4) #Z ′p(a′, b′)� p2k−1

holds uniformly for a, b ∈ Z, p > k. This can be seen as follows. In the system of
congruences

(5.5) wk1 + wk2 + wk3 ≡ a′ mod p, w1 + w2 + w3 ≡ b′ mod p

one may eliminate w3. But wk1 + wk2 + (b′ − w1 − w2)k is a polynomial in w1, and
when 2 | k, the degree is k and the leading coefficient is 2. Hence we find at most
kp incongruent solutions of (5.5). When k is odd, and w2 6≡ b′ mod p, then the
degree is k − 1 and the leading coefficient is k(b′ − w2), so that (5.5) can have at
most (k − 1)(p − 1) solutions with w2 6≡ b′ mod p, and further p solutions with
w2 ≡ b′ mod p. Hence in all cases, there are at most kp solutions. Any solution
of (5.3) reduces to one of (5.5). There are p2k−2 choices of z2, z3 mod pk with
zi ≡ wi mod p. Now solve for z1 from the first congruence in (5.3). Since p - z1,
there are at most k solutions for z1. This confirms (5.4). To complete the proof of
the lemma, it now suffices to take

a′ = a− zk4 − . . .− zkK/4, b′ = b− z4 − . . .− zK/4
in (5.4), and to sum over z4, . . . , zK/4 trivially.

We now return to the main theme. Let p be a prime with M < p ≤ 2M . The
goal is to estimate Θp, as defined in (4.10). By orthogonality, Θp is the number of
solutions to the pair of equations

(5.6)

K/4∑
i=1

(xki − yki ) = pk
1+K/2∑
i=1

(uki − vki ),

K/4∑
i=1

(xi − yi) = p

1+K/2∑
i=1

(ui − vi)

in natural numbers xi, yi, ui, vi constrained to

(5.7) xi ≤ P, yi ≤ P, ui ≤ P/M, vi ≤ P/M, p - xiyi (1 ≤ i ≤ K/4).
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Note that solutions to (5.6) satisfy

(5.8)
xk1 + xk2 + . . .+ xkK/4 ≡ yk1 + yk2 + . . .+ ykK/4 mod pk,

x1 + x2 + . . .+ xK/4 ≡ y1 + y2 + . . .+ yK/2 mod p.

The following argument is an elementary variant of a very similar exponential
sum technique underpinning the proof of Lemma 2.2 in Wooley [32]. For given data
n,m, z1, . . . , zK/4, let Φp(z, n,m) denote the number of solutions to

K/4∑
i=1

xki + pk
1+K/2∑
i=1

uki = n,

K/4∑
i=1

xi + p

1+K/2∑
i=1

ui = m

satisfying the relevant conditions in (5.7) and xi ≡ zi mod pk, for 1 ≤ i ≤ K/4.
Then, by (5.8) and the discussion preceding this observation,

Θp =

∞∑
n,m=−∞

pk∑
a=1

p∑
b=1

∣∣∣ ∑
z∈Zp(a,b)

Φp(z, n,m)
∣∣∣2.

By Cauchy’s inequality and Lemma 9,

Θp ≤
∞∑

n,m=−∞

pk∑
a=1

p∑
b=1

Zp
∑

z∈Zp(a,b)

∣∣Φp(z, n,m)
∣∣2

� p
1
4Kk−k−1

∞∑
n,m=−∞

∑
z mod pk

∣∣Φp(z, n,m)
∣∣2 � p

1
4Kk−k−1Ψp(5.9)

where Ψp is the number of solutions to (5.6) and (5.7) with the additional con-
straints that

(5.10) xi ≡ yi mod pk (1 ≤ i ≤ K/4).

Now let

(5.11) G(α, β) =
∑

x≤P,y≤P
x≡y mod pk

e
(
α(xk − yk) + β(x− y)

)
.

By orthogonality,

(5.12) Ψp ≤
∫ 1

0

∫ 1

0

G(α, β)K/4|g(αpk, βp)|K+2 dα dβ.

By (5.11),

G(α, β) = [P ] + 2Re
∑

y<x≤P
x≡y mod pk

e
(
α(xk − yk) + β(x− y)

)
which implies that

(5.13) |G(α, β)|K/4 � PK/4 +
∣∣∣ ∑

y<x≤P
x≡y mod pk

e
(
α(xk − yk) + β(x− y)

)∣∣∣K/4.
We use this in (5.12) and apply Lemma 5 to deduce that

(5.14) Ψp � Ψ′p + PK/4(P/M)K+2−kLη
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where

Ψ′p =

∫ 1

0

∫ 1

0

∣∣∣ ∑
y<x≤P

x≡y mod pk

e
(
α(xk − yk) + β(x− y)

)∣∣∣K/4|g(pkα, pβ)|K+2 dα dβ.

By orthogonality, Ψ′p is the number of solutions of the pair of equations

K/4∑
i=1

(−1)i(xki − yki ) = pk
1+K/2∑
i=1

(uki − vki ),

K/4∑
i=1

(−1)i(xi − yi) = p

1+K/2∑
i=1

(ui − vi)

subject to (5.7), (5.10) and xi > yi. We write

zi = xi + yi, hi = p−k(xi − yi).
Then, since 2xi = zi + pkhi and 2yi = zi − pkhi, one finds that

2k(xki − yki ) = pkϕp(zi, hi)

where ϕp is the integral polynomial

ϕp(z, h) = p−k
(
(z + hpk)k − (z − hpk)k

)
,

and we may then conclude that Ψ′p does not exceed the number of solutions of the
system

K/4∑
i=1

(−1)iϕp(zi, hi) = 2k
1+K/2∑
i=1

(uki − vki ), pk−1

K/4∑
i=1

(−1)ihi =

1+K/2∑
i=1

(ui − vi)

in which the variables are subject to

1 ≤ hi ≤ PM−k, zi ≤ 2P, ui ≤ P/M, vi ≤ P/M.

Now write H = PM−k and introduce the exponential sum

Fp(α, β) =
∑
h≤H

∑
z≤2P

e
(
αϕp(z, h) + βhpk−1

)
.

Then, once again by orthogonality,

(5.15) Ψ′p ≤
∫ 1

0

∫ 1

0

|Fp(α, β)|K/4|g(2kα, β)|K+2 dα dβ.

We have now completed the first differencing step. The differencing was efficient
because the congruences (5.8) reduce the potential reservoir for the variables xi, yi
by a factor p−k−1, and one recovers this through Lemma 9. We proceed by taking
further differences. By Cauchy’s inequality,

|Fp(α, β)|2 ≤ H
∑
h≤H

∣∣∣ ∑
z≤2P

e
(
αϕp(z, h)

)∣∣∣2.
Note that β is absent from the right hand side. Thus, we may proceed as with the
usual proof of Weyl’s inequality (see Lemma 2.4 of Vaughan [29]) to confirm that
there are certain natural numbers c(l) (depending also on p which we suppress)
with

c(0)� P k−1M−k, c(l)� dk(l) (l 6= 0),

and such that

(5.16) |Fp(α, β)|K/2 ≤ PK−kM (1− 1
2K)k

∑
l

c(l)e(αl).
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At this point it might be worth recalling that in the current context one has k ≥ 4,
and that therefore β is indeed absent from this bound, for all k under consideration.
To bound the integral

V =

∫ 1

0

∫ 1

0

|Fp(α, β)|K/2|g(2kα, β)|K+2 dα dβ,

one inserts the inequality (5.16), and then separates off the contribution arising
from l = 0. This term will contribute to V at most

� PK−kM (1− 1
2K)kc(0)

∫ 1

0

∫ 1

0

|g(2kα, β)|K+2 dα dβ.

We may apply Lemma 5 to the integral on the right, and then conclude that this
contribution to V does not exceed

� (PK−kM (1− 1
2K)k)(P k−1M−k)(P/M)K+2−kLη � P 2K−k+1M (1− 1

2K)k−K−2Lη.

By orthogonality, the terms that correspond to l 6= 0 produce a term not exceeding

� PK−kM (1− 1
2K)k

∑
ui,vi

dk
(
uk1 − vk1 + . . .+ uk1

2K+1 − v
k
1
2K+1

)
in which the variables are restricted by ui ≤ P/M , vi ≤ P/M and

u1 − v1 + . . .+ u 1
2K+1 − v 1

2K+1 = 0.

By Lemma 3, this does not exceed

� (PK−kM (1− 1
2K)k)(P/M)K+1Lη � P 2K−k+1M (1− 1

2K)k−1−KLη.

Collecting together yields

V � P 2K−k+1M (1− 1
2K)k−1−KLη.

By (5.15) and Hölder’s inequality,

Ψ′p ≤ V 1/2
(∫ 1

0

∫ 1

0

|g(2kα, β)|K+2 dα dβ
)1/2

,

and another use of Lemma 5 produces

(5.17) Ψ′p � P
3
2K−k+ 3

2M
1
2 (1− 1

2K)k−K− 3
2 + 1

2kLη.

By (5.9) and (5.14), we may now conclude that∑
M<p≤2M

Θp �M
1
4Kk−k(max

p
Ψ′p + PK/4(P/M)K+2−kLη).

As is readily checked, this establishes (4.12), as was required to complete the proof
of Lemma 8.

6. Inefficient differencing

In this section we establish the case k = 3 of Lemma 8. Our approach needs
substantial revision because Lemma 4 provides optimal control on the sixth moment
of Weyl sums, and if one differences two blocks of two variables beyond this as would
be needed for efficient differencing, then one works with ten variables. But when
k = 3 one has t = 8. One could, at least in principle, study a tenth moment,
but savings can then be expected only if differencing is performed over minor arcs
only. This would entail considerable complication in detail, and we prefer an eighth
moment for consistency with our work in the previous section. Fortunately, the
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inevitable loss of a factor M in an inefficient differencing can be restored in part by
averaging over the auxiliary prime p. The technique elaborates on ideas of Vaughan
[26].

We now return to (4.10), temporarily fix a prime p with M < p ≤ 2M , and
observe by orthogonality that Θp equals the number of solutions of the diophantine
system

(6.1)
x3

1 + p3(y3
1 + y3

2 + y3
3) = x3

2 + p3(y3
4 + y3

5 + y3
6),

x1 + p(y1 + y2 + y3) = x2 + p(y4 + y5 + y6)

with variables constrained to

xi ≤ P, yi ≤ P/M, p - x1x2.

Any solution of (6.1) satisfies x3
1 ≡ x3

2 mod p3 and x1 ≡ x2 mod p. Since p - x1x2,
this implies x1 ≡ x2 mod p3. By Lemma 4, the number of solutions with x1 = x2

amount to at most O(P (P/M)3). By symmetry, it now suffices to count solutions
where x1 > x2. According to the preceding comment, we put x1 = x2 + hp3 with
h > 0, and z = x1 + x2. Then (6.1) transforms to

(6.2)
h(3z2 + h2p6) = 4(y3

1 + y3
2 + y3

3 − y3
4 − y3

5 − y3
6),

hp2 = y1 + y2 + y3 − y4 − y5 − y6.

Let Ξ denote the number of solutions of (6.2) subject to

z ≤ 2P, yi ≤ P/M, h ≤ H, M < p ≤ 2M

where H = PM−3. Then, on summing over p, the above argument yields

(6.3)
∑

M<p≤2M

Θp ≤ 2Ξ +O(P 4M−2).

Let

F (α) =
∑
z≤2P

e(3αz2), E(α, β) =
∑

M<p≤2M

e(αp6 + βp2)

and recall that g(α, β) = f(α, β, P/M). Then, by orthogonality,

(6.4) Ξ =

∫ 1

0

∫ 1

0

∑
h≤H

F (αh)E(αh3, βh)|g(4α, β)|6 dα dβ.

Note the similarity with (5.15).
We apply the Hardy-Littlewood method to estimate Ξ. Let δ > 0 be a small

parameter to be determined later. Let N be the set of all α ∈ [0, 1] where there are
coprime a, q with 0 ≤ a ≤ q, 1 ≤ q ≤ P 1+δ and |qα− a| ≤ P δ−1H−1. Let n be the
complement of N in [0, 1]. Then, by Lemma 4 of Vaughan [26], one has

(6.5) sup
α∈n

∑
h≤H

|F (αh)|2 � HPL3/2.

Unlike in [26], the actual exponent of L is of no importance for us. Next recall (4.5)
to observe that∑

h≤H

|E(αh3, βh)|2 =
∑

M<p1,p2≤2M

f
(
α(p6

1 − p6
2), β(p1 − p2), H

)
.
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The contribution of summands with p1 = p2 here is O(HM). We claim that
whenever α ∈ n and p1 6= p2, then f

(
α(p6

1 − p6
2), β(p1 − p2), H

)
� H3/4(logH)2.

Once this is established, it follows that

(6.6)
∑
h≤H

|E(αh3, βh)|2 � HM +M2H3/4(logH)2 � HM

holds for M ≤ P 1/15. To confirm these claims, let M < p1, p2 ≤ 2M with p1 6= p2

and |f
(
α(p6

1 − p6
2), β(p1 − p2), H

)
| > H3/4(logH)2. Then, by Lemma 1 (with

θ = 7/9), there are coprime numbers b, r with r ≤ H7/9 and |αr(p6
1 − p6

2) − b| ≤
H−20/9, and consequently there is a q with q | r(p6

1 − p6
2) and an a ∈ Z with

|αq − a| ≤ H−20/9. Hence q ≤ H7/9(2M)6 = 26P 7/9M11/3, and therefore α ∈ N,
as one readily confirms, and as was desired. This establishes (6.6).

By (6.5), (6.6) and Cauchy’s inequality,

sup
α∈n

∣∣∣ ∑
h≤H

F (αh)E(αh3, βh)
∣∣∣� H(PM)1/2L.

We use this in conjunction with Lemma 4 to infer that

(6.7)

∫
n

∫ 1

0

∑
h≤H

F (αh)E(αh3, βh)|g(4α, β)|6 dβ dα� H(PM)1/2(P/M)3L.

We now consider the major arcs N. When a, q are coprime with |qα − a| ≤ 1/q,
then Lemma 3.1 of Vaughan [28] asserts that∑

h≤H

|F (αh)|2 � P ε
( P 2H

q + P 2H|qα− a|
+ PH + q + P 2H|qα− a|

)
.

For α ∈ N, there are such a, q with q ≤ P 1+δ and |qα−a| ≤ H−1P δ−1, and a short
calculation then confirms that

(6.8)
∑
h≤H

|F (αh)|2 � P 2+3δH

q + P 2H|qα− a|
·

Moreover, by orthogonality,

(6.9)

∫ 1

0

|g(4α, β)|4 dβ =
∑
l

ψle(αl)

in which ψl equals the number of solutions of the pair of diophantine equations

4(y3
1 + y3

2 − y3
3 − y3

4) = l, y1 + y2 − y3 − y4 = 0

with yi ≤ P/M (1 ≤ i ≤ 4). The integral representation shows that the Fourier
series in (6.9) takes non-negative values only. Hence we may apply Lemma 2 of
Brüdern [5] to conclude that∫

N

∑
h≤H

|F (αh)|2
∫ 1

0

|g(4α, β)|4 dβ dα� P 3δ+ε
(
P 1+δψ0 +

∑
l

ψl

)
,

and the bounds ψ0 � (P/M)2 and
∑
l ψl � (P/M)3 are immediate. This gives

(6.10)

∫
N

∑
h≤H

|F (αh)|2
∫ 1

0

|g(4α, β)|4 dβ dα� P 3+5δM−2.
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Also, on using a trivial bound for E(α, β) and Lemma 5 only, we have∫
N

∫ 1

0

∑
h≤H

|E(αh3, βh)|2|g(4α, β)|8 dβ dα

� HM2

(∫ 1

0

∫ 1

0

|g(4α, β)|10 dα dβ

)1/2(∫ 1

0

∫ 1

0

|g(4α, β)|6 dα dβ

)1/2

(6.11)

� HM2(P/M)9/2Lη.

By (6.10), (6.11) and Schwarz’s inequality,∫
N

∫ 1

0

∑
h≤H

F (αh)E(αh3, βh)|g(4α, β)|6 dβ dα� P 17/4+3δM−15/4.

When M ≤ P 1/15, this bound is superior to the one in (6.7). Hence, by (6.7) and
(6.4) we conclude that Ξ� P 9/2M−11/2L. The case k = 3 of Lemma 8 now follows
via (6.3).

7. Pruning

In order to facilitate the major arc analysis within the proof of Theorem 1, the
minor arc estimate provided by Theorem 2 is to be augmented by a device that
restricts the integration for the linear equation to suitable major arcs as well. Some
notation is required to make this precise.

Let 1 ≤ q ≤ P , and let Mq denote the union of the intervals

{α ∈ [0, 1] : |qα− a| ≤ (4k)−1P 1−k}

with 0 ≤ a ≤ q and (a; q) = 1. Note that these intervals are disjoint, as are the
various Mq. Let Kq = Mq × [0, 1], and let K be the disjoint union of the Kq with

1 ≤ q ≤ P . Further, when 1 ≤ q ≤ P 1/9, let Lq be the union of the rectangles{
(α, β) ∈ [0, 1]2 :

∣∣α− a
q

∣∣ ≤ P 1/9−k,
∣∣β − b

q

∣∣ ≤ P−8/9
}

with 0 ≤ a ≤ q, 0 ≤ b ≤ q and (a; q) = 1. Then, for 1 ≤ q ≤ P 1/9, one has Lq ⊂ Kq.

Let L be the union of Lq with 1 ≤ q ≤ P 1/9 so that L ⊂ K.

Lemma 10. Let s > 3k. Then∫∫
K\L
|f(α, β)|s dα dβ � P s−k−1−1/(9k)+ε.

Proof. Let (α, β) ∈ K. Then there are a unique q ∈ [1, P ] with (α, β) ∈ Kq, and
unique a, b with 0 ≤ a ≤ q, 0 ≤ b ≤ q with (a; q) = 1 and

|qα− a| ≤ (4k)−1P 1−k, − 1
2 < qβ − b ≤ 1

2 .

Define f∗ : K→ C by

f∗(α, β) = q−1S(q, a, b)v
(
α− a

q , β −
b
q

)
.

Whenever (α, β) ∈ K, one infers from Theorem 3 that

f(α, β) = f∗(α, β) +O
(
P (k−1)/k+ε

)
.

Consequently

|f(α, β)|s � |f∗(α, β)|s + P s−s/k+ε.
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The linear measure of Mq is O(P 1−k), whence the planar measure of K is O(P 2−k).
Since s ≥ 3k + 1, it follows that

(7.1)

∫∫
K\L
|f(α, β)|s dα dβ �

∫∫
K\L
|f∗(α, β)|s dα dβ + P s−k−1−1/k+ε.

Now consider the integral on the right hand side. First, we estimate the contri-
bution from Kq with P 1/9 < q ≤ P which amounts to

(7.2)
∑

P 1/9<q≤P

q∑
a=1

(a;q)=1

q∑
b=1

q−s|S(q, a, b)|s
∫ ∞
−∞

∫ ∞
−∞
|v(ξ, ζ)|s dξ dζ.

By (2.2), we have the alternative estimates

(7.3) v(ξ, ζ)� P (1 + P k|ξ|)−1/k, v(ξ, ζ)� P (1 + P |ζ|)−1/k,

and consequently ∫ ∞
−∞

∫ ∞
−∞
|v(ξ, ζ)|s dξ dζ � P s−k−1.

By (2.2) again, the expression in (7.2) is bounded by

�
( ∑
P 1/9<q≤P

q2−s/k+ε
)
P s−k−1 � P s−k−1−(1/9k)+ε

which is acceptable.
It remains to consider the contribution from the sets Kq \ Lq with q ≤ P 1/9 to

the integral on the right hand side of (7.1), which in fact does not exceed

(7.4)
∑

q≤P 1/9

q∑
a=1

(a;q)=1

q∑
b=1

q−s|S(q, a, b)|s(B1 +B2)

where

B1 =

∫ ∞
−∞

∫
|ξ|>P 1/9−k

|v(ξ, ζ)|s dξ dζ, B2 =

∫ ∞
−∞

∫
|ζ|>P−8/9

|v(ξ, ζ)|s dζ dξ.

By (7.3), and since s ≥ 3k + 1, one has

B1 � P s
∫ ∞
−∞

(1 + P |ζ|)−1−1/k dζ

∫
|ξ|>P 1/9−k

(2 + P k|ξ|)−2 dξ � P s−k−10/9.

(7.5)

A similar reasoning yields the same bound for B2. By (2.2), it is now readily seen
that the expression in (7.4) does not exceed O(P s−k−10/9), and the lemma follows
from (7.1).

8. The proof of Theorem 1

This final section is devoted to the proof of Theorem 1 which we launch by
disposing of some simple cases. Throughout this section, let s ≥ 2k + 2, let ai 6= 0
for 1 ≤ i ≤ s, and suppose that exactly r of the s numbers bi are non-zero. Since
the equations (1.1) have a non-singular real solution, one concludes that r ≥ 1. On
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renumbering the variables, we may arrange that bi 6= 0 for 1 ≤ i ≤ r. The system
(1.1) now takes the shape

(8.1)
a1x

k
1 + · · ·+ arx

k
r + · · ·+ asx

k
s = 0,

b1x1 + · · ·+ brxr = 0.

Here, we may clear common factors in the second equation, so that we may further
suppose that b is a primitive vector.

If r = 1 then x1 = 0, and we are left with a single equation in 2k + 1 variables
that may be treated by the methods of chapter 2 of Vaughan [29].

If r = 2 and (b1; b2) = 1, then any solutions to (8.1) has b1 | x2, b2 | x1. We
substitute x1 = b2y, x2 = −b1y to infer that N(P ) equals the number of solutions
to the equation

(a1b
k
2 − a2b

k
1)yk + a3x

k
3 + . . . asx

k
s = 0

with |xi| ≤ P and |y| ≤ P/max(|b1|, |b2|). If a1b
k
2 6= a2b

k
1 , then this single equation

in s − 1 ≥ 2k + 1 variables may again be treated by the methods of chapter 2 of
Vaughan [29], the unconventional size constrained on y being readily absorbed by
the classical method that need not be commented on any further here. If a1b

k
2 =

a2b
k
1 , one has

N(P ) =
(
2P/max(|b1|, |b2|) +O(1)

)
N0

where N0 is the number of solutions to the equation a3x
k
3 + · · · + asx

k
s = 0 with

|xi| ≤ B. Now s−2 ≥ 2k. If s−2 > 2k, then we may proceed as before to establish
an asymptotic formula for N0 by the methods of chapter 2 of Vaughan [29], and
this will complete the proof of Theorem 1 in this case. This leaves the case where
s− 2 = 2k. In this case, the methods of Vaughan [27] (and in particular (1.5)) may
be combined with the singular series work in chapter 2 and 4 of Vaughan [29] to
establish that

N0 = χ∞

(∏
p

χp

)
P s−k−2

(
1 +O

(
(logP )−1

))
where the Euler product is absolutely convergent. Also, χp is non-zero if and only if
a3x

k
3 + · · ·+asx

k
s = 0 has a no trivial solution in Qp, and χ∞ is non-zero if and only

if a3, a4, . . . , as are not all of the same sign. On collecting together, this establishes
Theorem 1 in the case r = 2.

This leaves the case r ≥ 3. Here we define

(8.2) F (α, β) =

s∏
i=1

f(aiα, biβ),

and observe that the integral

(8.3) N+
a,b(P ) =

∫ 1

0

∫ 1

0

F (α, β) dα dβ

counts the solutions of (1.1) with 1 ≤ xi ≤ P (i = 1, . . . , s).
In preparation for an application of the Hardy-Littlewood method to the integral

(8.3), we define the major arcs W as the union of the boxes

(8.4) {(α, β) ∈ [0, 1]2 :
∣∣α− a

q

∣∣ ≤ P (1/8)−k,
∣∣β − b

q

∣∣ ≤ P−7/8}

with 0 ≤ a ≤ q, 0 ≤ b ≤ q, (a; b; q) = 1 and q ≤ P 1/8. This union is disjoint. When
(α, β) ∈W is in the box (8.4), we put

f∗i (α, β) = q−1S(q, aai, bbi)v
(
ai(α− a/q), bi(β − b/q)

)
.
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Note that Theorem 3 is not a suitable tool to compare f(aiα, biβ) with f∗i (α, β)
because the condition (a; q) = 1 is not met on some boxes. However, Theorem 7.2
of Vaughan [29] readily yields

f(aiα, biβ) = f∗i (α, β) +O(P 1/4+ε)

uniformly for (α, β) ∈W. When inserted into (8.2), the ”trivial” bounds f(α, β)�
P (see (1.4)) and f∗i (α, β)� P (see (2.2)) suffice to infer that

(8.5) F (α, β) =

s∏
i=1

f∗i (α, β) +O(P s−3/4+ε).

We put

(8.6) T (q) =

q∑
a,b=1

(a;b;q)=1

q−s
s∏
i=1

S(q, aai, bbi)

and integrate (8.5) over W. Since the measure of W is O(P−k−3/8), this yields∫∫
W

F (α, β) dα dβ =
∑

q≤P 1/8

T (q)

∫ P 1/8−k

−P 1/8−k

∫ P−7/8

−P−7/8

s∏
i=1

v(aiξ, biζ) dζ dξ(8.7)

+O(P s−k−9/8+ε).

Note that the main term on the right hand side of (8.7) is a product. The next
natural step is to complete the sum over q to a series, and likewise, to complete the
integral to one extended over R2. This requires some care in cases where many of
the bi are zero. In fact, when r = 3, the bounds in (2.2) are not of strength sufficient
to conclude that the integrand in (8.7) is integrable over R2. In preparation for a
debugging argument, let

v0(ξ, ζ) =

∫ 1

0

e(ξtk + ζt) dt.

By (2.1), one has v(ξ, ζ) = Pv0(P kξ, Pζ) so that an obvious substitution gives

(8.8)

∫ P 1/8−k

−P 1/8−k

∫ P−7/8

−P−7/8

s∏
i=1

v(aiξ, biζ) dζ dξ = P s−k−1J (P 1/8)

where

(8.9) J (W ) =

∫ W

−W

∫ W

−W

s∏
i=1

v0(aiξ, biζ) dζ dξ.

If ζ ≥ 1 and ζ ≥ 8k|ξ|, then d
dt (ξt

k + ζt) ≥ 3
4ζ holds for all 0 ≤ t ≤ 1. Observing

symmetry, Lemma 4.2 of Titchmarsh [25] now shows that

(8.10) v0(ξ, ζ)� (1 + |ζ|)−1

holds throughout the domain described by |ζ| ≥ 8k|ξ|. It follows that

(8.11)

s∏
i=1

v0(aiξ, biζ)�

{
(1 + |ζ|)−2(1 + |ξ|)−2 if |ζ| ≥ 8k|ξ|,
(1 + |ξ|)−3 if |ζ| < 8k|ξ|.

To see this, first note that (7.3) (with P = 1) yields v0(aiξ, biζ) � (1 + |ξ|)−1/k

because |ai| ≥ 1. Since s > 3k, this already shows the left hand side of (8.11)
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bounded by (1 + |ξ|)−3 irrespective of the value for ζ. If |ζ| ≥ 8k|ξ|, we estimate
v0(aiξ, biζ) as before for 3 ≤ i ≤ s, and this yields a factor (1 + |ξ|)−2 for the upper
bound. Now recall that b1b2 6= 0, so that (8.10) gives v0(a1ξ, b1ζ)v0(a2ξ, b2ζ) �
(1 + |ζ|)−2, as required.

The right hand side of (8.11) is an integrable function on R2, and it is immediate
that its integral over max(|ξ|, |ζ|) ≥W is O(W−1). It follows that

(8.12) J = J +
a,b =

∫ ∞
−∞

∫ ∞
−∞

s∏
i=1

v0(aiξ, biζ) dζ dξ

exists and that

(8.13) J (W ) = J +O(W−1).

The treatment of the singular series also involves an unconventional element. We
shall prove that

(8.14) T (q)� q2−s/k+ε.

The difficulty is implied by zero values of bi because then a factor S(q, aai, 0) is
present in (8.6), and when (b; q) = 1 but a = q, this factor is q and will not
contribute to the savings needed to prove (8.14). As we shall see momentarily, some
other factor in (8.6) will vanish whenever S(q, aai, 0) is unduly large. To make this
precise, we first apply the method leading from (3.26) to (3.27) to confirm T (q) is
multiplicative. Now let p be a prime, l ≥ 1 and suppose that p | a but p - b. Since b
is primitive, there is some bi with p - bi, whence Lemma 2 gives S(pl, aai, bbi) = 0.
By (8.6), it follows that

T (pl) =

pl∑
a=1
p-a

pl∑
b=1

p−ls
s∏
i=1

S(pl, aai, bbi)

because the remaining pairs a, b with (a; b; p) = 1 have p | a, and hence p - b,
and then the summand vanishes. For p - a, one may apply (2.2) to see that
S(pl, aai, bbi) � pl(1−1/k)+ε (even when bi = 0). This confirms (8.14) for prime
powers, and by multiplicativity, (8.14) holds for all q. This estimate shows that the
singular series

(8.15) S = S+
a,b =

∞∑
q=1

T (q)

converges absolutely, and that∑
q≤W

T (q) = S +O(W ε−1/k).

We may now combine this with (8.7), (8.8) and (8.13) to conclude as follows.

Lemma 11. Let s ≥ 3k + 1 and r ≥ 3. Suppose that b is primitive. Then∫∫
W

F (α, β) dα dβ = J +
a,bS

+
a,bP

s−k−1 +O(P s−k−1−1/(9k)).

It remains to consider the complementary set of the major arcs W. Let N be
the union of the intervals {α ∈ [0, 1] : |qα− a| ≤ P 4/5−k} with 0 ≤ a ≤ q, (a; q) = 1
and 1 ≤ q ≤ P 4/5, and let n = [0, 1] \N. Now define V = N× [0, 1], v = n× [0, 1].
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Note that [0, 1]2 is the disjoint union of W, V \W and v. For w ∈ {v,V \W}, and
1 ≤ j ≤ 2, 3 ≤ i ≤ s, let

Yij(w) =

∫∫
w

|f(ajα, bjβ)|2|f(aiα, biβ)|s−2 dα dβ.

Then, applying the simple inequality

|f(a1α, b1β)f(a2α, b2β)| ≤ |f(a1α, b1β)|2 + |f(a2α, b2β)|2

together with Hölder’s inequality, one infers that

(8.16)

∫∫
w

|F (α, β)|dα dβ ≤
2∑
j=1

s∏
i=3

Yij(w)1/(s−2).

We proceed by estimating Yij(w). First consider the case where w = v, and
3 ≤ i ≤ s is an index with bi = 0. Then, by orthogonality, and recalling that
b1b2 6= 0, one finds that

Yij(v) =

∫
n

|f(aiα, 0)|s−2

∫ 1

0

|f(ajα, bjβ)|2 dβ dα = [P ]

∫
n

|f(aiα, 0)|s−2 dα.

(8.17)

We now substitute α′ = α|ai|. The definition of m in the preamble to Theorem 2
shows that {α : α/|ai| ∈ n}∩ [0, 1] ⊂ m. Since |f(α, 0)| is of period 1, it follows that∫

n

|f(aiα, 0)|s−2 dα =
1

|ai|

∫
{α′ : α′/|ai|∈n}

|f(α′, 0)|s−2 dα′

≤
∫
m

|f(α, 0)|s−2 dα� P s−2−kL−2.

In the last step, we have used s ≥ 2k + 2 and (1.5). By (8.17), this yields

(8.18) Yij(v)� P s−1−kL−2.

Next consider the case where w = v and bi 6= 0. Then bibj 6= 0, and Hölder’s
inequality gives

(8.19) Yij(v) ≤
(∫∫

v

|f(ajα, bjβ)|s dα dβ

)2/s(∫∫
v

|f(aiα, biβ)|s dα dβ

)1−(2/s)

.

Here, both integrals are of the same type. A substitution argument similar to the
one in the preceding case yields∫∫

v

|f(ajα, bjβ)|s dα dβ =
1

|ajbj |

∫
{α : α/|ai|∈n}

∫ |bj |
0

|f(α, β)|s dβ dα

≤
∫
m

∫ 1

0

|f(α, β)|s dβ dα� P s−1−kL−2.

Here, we used Theorem 2 for the last inequality. Because the same argument applies
with i in place of j, we conclude that (8.18) holds in this case as well. Consequently,
by (8.16),

(8.20)

∫∫
v

|F (α, β)|dα dβ � P s−1−kL−2.
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This leaves the set V \W = U, say. A successful estimation is possible with the
aid of Lemma 10. An inspection of the definitions of the sets V,W,K and L shows
that whenever ajbj 6= 0, that{

(α, β) :
(
α/|aj |, β/|bj |

)
∈ U

}
∩ [0, 1]2 ⊂ K \ L.

Hence, whenever bj 6= 0, one notes that f(α, β) is Z2-periodic to conclude that∫∫
U

|f(ajα, bjβ)|s dα dβ =
1

|ajbj |

∫∫
{(α/|aj |,β/|bj |)∈U}

|f(α, β)|s dα dβ

≤
∫∫

K\L
|f(α, β)|s dα dβ,

and Lemma 10 estimates the last integral as O(P s−k−1−δ) where δ is any real
number not exceeding 1/(9k). By using Hölder’s inequality as in (8.19), it now
follows that whenever j = 1, 2 and 3 ≤ j ≤ r, then

(8.21) Yij(U)� P s−k−1−δ.

For r < i ≤ s, we merely use orthogonality, and use (1.5) together with a straight-
forward major arc estimate to infer that

Yij(U) ≤
∫ 1

0

|f(aiα, 0)|s−2

∫ 1

0

|f(ajα, bjβ)|2 dβ dα

≤ [P ]

∫ 1

0

|f(aiα, 0)|s−2 dα� P s−k−1.

We now take w = U in (8.16). Since r ≥ 3, the bound (8.21) applies to at least one
of the factors, so that one may deduce that

(8.22)

∫∫
U

|F(α, β)|dα dβ � P s−k−1−δ/s.

An asymptotic formula for N+
a,b(P ) is now available by combining the conclusions

in (8.20) and (8.22) with those in Lemma 11. We summarise our work so far in the
next lemma.

Lemma 12. Let s ≥ 2k + 2, r ≥ 3 and b be primitive. Then

N+
a,b(P ) = J+

a,bS
+
a,bP

s−k−1 +O
(
P s−k−1L−2

)
.

We are ready to establish Theorem 1 in all cases where r ≥ 3. Let N (0)(P ) be
the number of solutions counted by Na,b(P ) where xi = 0 for at least one index i
with 1 ≤ i ≤ s. For the remaining solutions, we have xi 6= 0 for all i, and we write
ηi = xi/|xi|. We group the solutions according to a given value of η ∈ {1,−1}s, and
substitute x′i = ηixi in (1.1). We are then reduced to count solutions in positive
integers of the system (1.1) with bi replaced by ηibi and ai replaced by ηki ai. Thus,
on writing ηb = (ηibi)1≤i≤s, ηa = (ηki ai)1≤i≤s, we find that

(8.23) Na,b(P ) = N (0)(P ) +
∑

ηi∈{±1}

N+
ηa,ηb(P ).

We shall establish the estimate

(8.24) N (0)(P )� P s−k−1−δ
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at the end of this section. Taking this for granted, the asymptotic formula (1.3) is
now available from (8.23) and Lemma 12, with

(8.25) C(a,b) =
∑

ηi∈{±1}

S+
ηa,ηbJ

+
ηa,ηb.

However, substituting −x for x in (2.1) yields S(q,−a,−b) = S(q, a, b) when k is
odd, and S(q, a,−b) = S(q, a, b) when k is even. By (8.6) and (8.15), this implies
S+

ηa,ηb = S+
a,b = S. Moreover, since T (q) is multiplicative, we have

(8.26) S =
∏
p

χp.

By (8.6) and orthogonality

χp = lim
H→∞

p−Hs
pH∑
a=1

pH∑
b=1

s∏
i=1

S
(
pH , aai, bbi

)
= lim
H→∞

pH(2−s)Ma,b

(
pH
)

(8.27)

where Ma,b

(
pH
)

is the number of incongruent solutions to the system of congru-
ences

a1x
k
1 + · · ·+ asx

k
s ≡ b1x1 + · · ·+ bsxs ≡ 0 mod pH .

In particular, it follows that χp is real and non-negative. Because the product (8.26)
converges absolutely, it now follows that there is a p0 = p0(a,b) such that

S ≥ 1
2

∏
p≤p0

χp.

Moreover, the method of proof of Parsell [23, Lemma 7.5] combines with (8.27) to
show that whenever (1.1) has a non-singular solution in Qp, then χp > 0. Hence, if
(1.1) has non-singular solutions in Qp for all primes p, then S > 0.

We may now conclude that Ca,b = SJ where

(8.28) J =
∑

ηi∈{±1}

J+
ηa,ηb.

Also, provided only that (1.1) has non-singular solutions in all Qp, we may apply
Lemma 12 together with S = S+

ηa,ηb, S > 0 and N+
ηa,ηb(P ) ≥ 0 to conclude that

J+
ηa,ηb is real and non-negative, and in view of (8.28), the same is true for J.

Now suppose that the equations

(8.29) a1ξ
k
1 + . . . asξ

k
s = b1ξ1 + · · ·+ bsξs = 0

have a non-singular real solution ξ0. By the implicit function theorem, the equations
(8.29) define a (s−2)-dimensional manifold in a neighbourhood of ξ0. Consequently,

we may choose ξ0 such that ξ
(0)
i 6= 0 for all 1 ≤ i ≤ s. By homogeneity, we may also

suppose that |ξ(0)
i | < 1, for 1 ≤ i ≤ s. Now define ηi = ξ

(0)
i /|ξ(0)

i |. Then, the proof
of [23, Lemma 7.4] confirms that J+

ηa,ηb > 0. Note that once this is established,

it follows from (8.28) and the discussion following that formula that J > 0. Then,
recalling the properties of S and Ca,b = SJ, it follows that Ca,b > 0 certainly
holds whenever (1.1) admits non-singular solutions in all completions of Q. This
establishes Theorem 1.

We are left with the task to prove (8.24). First consider the contribution to
N (0)(P ) that stems from solutions where two or more of the xi are zero. If, say,
u ≥ 2 and x1 = x2 = · · · = xu = 0, xi 6= 0 for u < i ≤ s, then these solutions of
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(1.1) satisfy au+1x
k
u+1 + · · ·+ asx

k
s = 0, and by writing their number as an integral

suitable for application of the Hardy-Littlewood method, the inequalities of Hölder
and Hua show that the number of these solutions does not exceed∫ 1

0

|f(α, 0)|s−u dα� P s−2−k+ε.

By symmetry, this argument applies when any set of u variables xi vanishes.
If exactly one of the variables vanishes, say x1 = 0, then an analysis of the signs

of the other variables similar to (8.23) reduces the problem of counting solutions to
(1.1) with x1 = 0 but 1 ≤ |xi| ≤ P (2 ≤ i ≤ s) to an estimate for∫ 1

0

∫ 1

0

s∏
i=2

|f(aiα, biβ)|dα dβ.

Note that b2b3 6= 0 (recall r ≥ 3). An argument similar to (8.16) bounds the above
integral by

3∑
j=2

s∏
i=4

(∫ 1

0

∫ 1

0

|f(ajα, bjβ)|2|f(aiα, biβ)|s−3 dα dβ
)1/(s−3)

.

When bi = 0, we use orthogonality and the classical lemma of Hua to deduce that∫ 1

0

∫ 1

0

|f(ajα, bjβ)|2|f(aiα, biβ)|s−3 dα dβ ≤ P
∫ 1

0

|f(aiα, 0)|s−3 dα� P s−k−1−δ

where δ > 0. When bi 6= 0, one may apply Hölder’s inequality again, to separate
f(ajα, bjβ) from f(aiα, biβ). An obvious substitution then reduces the problem to
that of estimating ∫ 1

0

∫ 1

0

|f(α, β)|s−1 dα dβ.

Lemma 5 coupled with Hölder’s inequality shows that this is O(P s−k−1−δ), for
some δ > 0. Hence, the contribution to N (0)(P ) from solutions with x1 = 0, xi 6= 0
(2 ≤ i ≤ s) is acceptable. The argument applies when some other variable vanishes
(note that two bj with bj 6= 0 remain active, which is crucial), and this completes
the proof of (8.24).
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