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New sharp Gagliardo-Nirenberg-Sobolev inequalities
and an improved Borell-Brascamp-Lieb inequality

Francois Bolley* Dario Cordero-Erausquin! Yasuhiro Fujital Ivan Gentil®
and Arnaud Guillin?

January 12, 2018

Abstract

We propose a new Borell-Brascamp-Lieb inequality which leads to novel sharp Euclidean
inequalities such as Gagliardo-Nirenberg-Sobolev inequalities in R"™ and in the half-space R'}.
This gives a new bridge between the geometric point of view of the Brunn-Minkowski inequality
and the functional point of view of the Sobolev type inequalities. In this way we unify, simplify
and generalize results by S. Bobkov - M. Ledoux, M. del Pino - J. Dolbeault and B. Nazaret.

Key words: Sobolev inequality, Gagliardo-Nirenberg inequality, Brunn-Minkowski inequality,
Hamilton-Jacobi equation, Hopf-Lax solution

1 Introduction

Sharp inequalities are interesting not only because they correspond to exact solutions of varia-
tional problems (often related to problems in physics) but also because they encode in general
deep geometric information on the underneath space. In the present paper, we are interested in
new functional inequalities of Sobolev type, and their links with the Brunn-Minkowski inequality

vol, (A + B)Y/™ > vol, (A)Y™ + vol,(B)'/" (1)

for non-empty Borel sets A, B in R"; here vol,,(-) denotes the n-dimensional Lebesgue measure.
Whereas it is known since [BLO08] that sharp Sobolev and Gagliardo-Nirenberg inequalities in R
may be derived using Brunn-Minkowski type inequalities, we will see that a new functional
version of (1) provides a more direct and simple answer, that allows to tackle both the cases
of R" and the half-space R'}.
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Before presenting this new functional inequality, let us discuss new sharp Sobolev type
inequalities in R™ which have inspired our line of thought.

To simplify the notation, let || f||, = || f||zr(rn) denote the LP-norm with respect to Lebesgue

. . o, _ np
measure. The sharp classical Sobolev inequalities state that for n > 2,p € [1,n), p* = p

and any smooth enough function f on R™ (that is for f belonging to the correct Sobolev space
ensuring that both integrals are finite),

. ||thp* < p>1/p.
Wy < i [over) ©)

_p_ PN
o) 1= (1 -+ [[7°T) 5"
The optimal constants in the Sobolev inequalities have been first exhibited in [Aub76, Tal76].

here

Quite naturally, these inequalities admit a generalization when the Euclidean norm | - | on R™
is replaced by any norm or quasi-norm || - || on R™. Indeed, if we use a norm || - || to compute
the size of the differential in (2), then the result remains true, namely
I )
17l < ([ s 3)
(S [1Vh[[2) R

_p_ pP—n
where [|y||. := sup| <y = - y. In this case, hy(2) := (1 +|[z[|?~T) >
In turn, a natural extension of this problem may then be the minimization, under integra-
bility constraints on a function g, of more general quantities like

/nF(Vg)g”

where F': R™ — R is a convex function (F' = W* below). Note that we have to allow a g term,
a € R since it can no longer be absorbed in the gradient term when F' is not homogeneous.

A first answer in this direction is the following optimal Sobolev type inequality.

Theorem 1 (A convex Sobolev inequality) Letn > 2 and W : R® — (0,400) such that

lim inf 4 o | (lm) > 0 for some v > 5. For any g : R" — (0, +00) with g Vg0 e L' and

e fo

/W*vg _”>n_1/W1” (4)

Moreover, equality holds in (4) when g is equal to W and is convez.

one has

Here W* is the Legendre transform of the function W, see below for details. This result
admits a “concave” analogue, as we shall see.

We shall see that the sharp Sobolev inequalities (3), for p € (1,n), easily follow from this
theorem when applied to W(z) = C(1 + ||=]|%/q), ¢ = p/(p — 1) > n/(n — 1) (v = q in the
assumptions) and to g = fP/(P=1) " Let us mention that the coefficients n and n — 1 in this



theorem are not arbitrary at all: in some aspects, they are the “good” ones to reach the Sobolev
inequality, as we shall see. This may be compared to Corollary 2 of [BLO8] which was derived
via a more involved formulation of the Prékopa-Leindler inequality, leading to a less direct proof
of the Sobolev inequalities.

As mentioned above, our work is inspired by the Brunn-Minkowski-Borell theory. In turn, we
will propose a new functional viewpoint on this theory. As already said, it has been observed by
S. Bobkov and M. Ledoux in [BL00, BLO8] that Sobolev inequalities can be reached through a
functional version of the Brunn-Minkowski inequality, the so-called Borell-Brascamp-Lieb (BBL)
inequality, due to C. Borell and H. J. Brascamp - E. H. Lieb ([Bor75, BL76]). However, one can
not use its standard functional form, as there is a subtle game with the dimension.

The standard (BBL) inequality states that, for n > 1, given s € [0,1],¢ = 1 — s, and three
nonnegative functions u, v, w : R — [0, +o00] such that [u = [v =1 and

Vx,y € R”, w(sz +ty) > (s u_l/"(:c) + tv_l/"(y))_",

/wzl.

This is the “strongest” version of (BBL) inequality (say for the parameter p = —1/n), see e.g.
[Gar02, Th. 10.2]. By a simple change of functions, the result can be re-stated as follows: let
three nonnegative functions g, W, H : R™ — [0, 4-00] be such that

then

Vz,y € R", H(sz+ty) <sg(z)+tW(y)

and [W™" = [¢g~" = 1. Then
/ o> 1 (5)

One observes that (5) is not well adapted to the Sobolev inequality, but that a version with n—1
instead of n would do the job. To solve this issue, in [BLO08] S. Bobkov and M. Ledoux cleverly
used a classical geometric strengthening of the Brunn-Minkowski inequality, for sets having an
hyperplane section of same volume.

A natural question raised by S. Bobkov and M. Ledoux is whether the Sobolev inequality
can be proved directly from a new (BBL) inequality, which moreover would be well adapted to
a monotone mass transport argument. In this work we propose an answer in the following form.

Theorem 2 (An extended Borell-Brascamp-Lieb inequality) Let n > 2. Let g, W, H :
R™ — [0, +00] be Borel functions and s € [0,1],t =1 — s be such that

Vz,y € R", H(sz+ty) <sg(z)+tW(y)

and [W™" = [¢g~" =1. Then

/Hl—” > s /gl_"+t /Wl—”. (6)

We shall see in Section 2.4 that, for small ¢, the optimal H satisfies H = g —tW*(Vg) +o(t),
so that (6) gives the above (4) in Theorem 1 and therefore the Sobolev inequalities (3) at the
first order for ¢ — 0; as mentioned the Sobolev inequalities correspond to the case W (zx) =
C(+||z)9/q),q = p/(p — 1),9 = fP/?P=™). More generally we shall see that sharp (classical



and trace) Sobolev inequalities and new (trace) Gagliardo-Nirenberg inequalities follow from it.
Moreover it can be easily proved using a mass transport argument, and we believe that this is
a way of closing the circle of ideas relating Brunn-Minkowski and Sobolev inequalities.

The Sobolev inequalities in R™ belong to the larger family of Gagliardo-Nirenberg inequalities

1fla < CUV AR IS5

Here the coefficients «, 3, p belong to an adequate range and 6 € [0,1] is fixed by scaling
invariance. These inequalities have attracted much attention these past years. Sharp inequalities
are known for a certain family of parameters since the pioneering work of M. del Pino and
J. Dolbeault [dD02]: namely, for p > 1, « = ap/(a — p) and 8 = p(a — 1)/(a — p) where a > p
is a free parameter.

This family can be recovered from Theorem 1, or rather an extension of it (see Theorem 3
and its “concave” counterpart Theorem 5). In fact this extension turns out not only to be a
natural way of recovering this family, but also allows to extend the family to parameters a < p
leading to new sharp Gagliardo-Nirenberg inequalities with negative powers

1£ll,e=2 < C IV IItha;f-

a—p

Here p > aif a > n+1, or p € (a,;,77=) if a € [n,n + 1), and ¢ is fixed by a scaling
condition. Let us note that partial results for a narrower range of such a < p have been proved
by V.-H. Nguyen [Ngul5], by another approach.

A crucial advantage of our approach is also its robustness: it can be applied to reach a new
family of sharp trace Gagliardo-Nirenberg inequalities which extend the trace Sobolev inequality
proved by B. Nazaret [Naz06]. Indeed, letting R? = {(u,z), u > 0, z € R""1} we obtain the

sharp family of inequalities
T P RYel a1 e ) Fer e

Here p > 1, a =p(a—1)/(a —p) and = p(a—1)/(a — p) where a > p is a free parameter and
again 0 € [0, 1] is fixed by a scaling argument. This is thus the analog of the del Pino-Dolbeaut
family in the trace case.

The paper is organized as follows. In the next section we state and prove the main results,
namely generalizations of Theorem 1 and 2. In Section 3 we show how these results lead to
Gagliardo-Nirenberg inequalities in R", including and extending the del Pino-Dolbeault family,
whereas in Section 4 we follow the same procedure to reach trace Gagliardo-Nirenberg inequal-
ities. Section 5 is devoted to limit forms of the (BBL) and Gagliardo-Nirenberg inequalities,
namely the classical Prékopa-Leindler inequality and classical or new trace logarithmic Sobolev
inequalities. Finally Appendix A deals with a general result on the infimum convolution, which
is a crucial tool for our proofs.

Notation: When the measure is not mentioned, an integral is understood with respect to
Lebesgue measure. For z,y € R", |z| denotes the Euclidean norm of z and x - y the Euclidean
scalar product. As already used, || f||, stands for the LP(R™) norm of a function f.
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2 Main results and proofs

Our results have two formulations, as a convex (or concave) Sobolev type inequality illustrated
by Theorem 1, and as a Borell-Brascamp-Lieb type inequality like Theorem 2.

2.1 Setting and additional tools

Our setting splits in two separate cases, the origin of which being explained below. We shall
measure the gradient using a function W on R™ in one of the following two categories:

i. Either W : R"™ — RU {400} is a convez fonction, with Legendre transform W* defined by

Wiy) = sup{w-y = W(x)}

The function W is differentiable at almost every z in its domain, with
W*(VW(z)) + W(z) =z - VIW(z). (7)

ii. Either W is a nonnegative function that is concave on its support Qy = {W > 0}.
More precisely, W is a nonnegative function such that the function W defined on R" by
W(z) =W (z) if z € Qu and —oc otherwise, is concave. In particular Qu is a convex set.
The corresponding Legendre transform is defined by

Wily) = inf {z-y—W(2))} = inf {z-y— W(2)}. (®)

z€Qy zERN

Likewise, W is differentiable at almost every x € Qy, with
W (VW (z))+ W(z) =z - VIV (x). (9)

We will later assume that W is continuous on R™ to avoid jumps on 0y .

We refer to [Roc70] for instance for these classical definitions and properties.

One rather naturally comes to such a setting if one has in mind the Brunn-Minkowski theory
of convex measures on R™ as put forward by C. Borell. We briefly recall it to put our results in
perspective, although we will not explicitly use it. A nonnegative function G on R" is said to
be k-concave with k € R if kK G* is concave on its support. In other words:

i. If k < 0, then G = W'/* with W convex on R™. The Brunn-Minkowski-Borell theory
shows that one should consider the range x € [—%,O). Below we shall let Kk = —1/a for
a > n with the typical exemples W (z) = 1+ |z|?, ¢ > 1 and then G(x) = (1+ |z]|9)*. The
results above in Theorems 1 and 2 correspond to the extremal case a = n.

ii. If Kk >0, G = WY* with W concave on its support. Below we shall let x = 1/a for a > 0
with the typical examples W(x) = (1 — |z|?)4,¢ > 1 and G(x) = (1 — |z[?)%.

The limit case k = 0 is defined as the log-concavity of G.
A central tool in our work will be monotone transportation, which by now has become a

cornerstone of many proofs of functional inequalities. So let us briefly describe the mathematical
setting and notation on this topic we shall use below, see [Vil03, Vil09] for instance.



Given p and v two (Borel) probability measure on R™ with p absolutely continuous with re-
spect to Lebesgue measure, a result of Brenier [Bre91], in a form improved by McCann [McC95],
states that there exists a convex function ¢ (the so-called Brenier map) on R™ such that v is the
image measure Vp#u of i by Vo, i.e. for any positive or bounded Borel function H on R",

/HW:/HN@W.

Assuming that du = fdz and dv = gdx then [McC97] ensures that the Monge-Ampere equation

f(@) = g(V(x)) det(Vp(x)) (10)

holds fdz-almost surely. Here V2¢ is the Alexandrov Hessian of ¢, which is the absolutely
continuous part of the distributional Hessian of the convex function ¢ (but below ¢ will belong
to I/Vlicl so there will be no singular part).

A second classical and elementary tool will be the convexity of the determinant of nonneg-
ative symmetric matrices, such as V2p(x). This splits in two cases, in accordance to the cases
discussed above.

e For every k € (0,1/n], the map H — det® H is concave over the set of positive symmetric
matrices. Concavity inequality around the identity implies

det!H <1 —nk+ktr H (11)

for all positive symmetric matrix H.

e For every k < 0, the map H — det® H is convex over the set of positive symmetric
matrices. Convexity inequality around the identity implies

det*H > 1 —nk+ktr H (12)

for all positive symmetric matrix H.

2.2 Convex and concave Sobolev inequalities

We start with a generalization of Theorem 1 and we will next establish its “concave” counterpart.
The result involves a “measurement” function W : R® — RT that will be convex in applica-

tions, and actually of the form
W(z) =1+ [[z[|/q (13)

for a norm ||-|| on R™ and ¢ > 1; its Legendre transform is W*(y) = ||y|[¥/p—1 with p = ¢/(¢—1)
and | - ||« the dual norm. We assume that negative powers of W are integrable, so when W is
convex this implies already that W is greater than |z| at infinity. We actually require a slightly
stronger super-linearity, which is trivially fullfilled in the applications of type (13).

Theorem 3 (Convex inequalities) Let n > 1. Let a > n (and a > 1 if n = 1) and let
W :R"™ — (0,+00) such that
Jwe=

and




For any positive function g € VVliCl such that g_“\VgP/(V_l) 1s integrable and

/9“21,

(a — 1)/W*(Vg)ga+ (a—n)/gla > /Wl". (15)

Moreover, there is equality in (15) if g = W and is convex.

one has

Theorem 1 and the classical Sobolev inequalities correspond to the extremal case a = n.

Much could be said regarding the assumptions on W and g in the theorem.

First, the condition (14) and [W ™% < +oc ensure that [W!7% < 4o00. Actually, W > 0
continuous (for instance convex) and (14) ensure that [ W'~ and [ W~ are finite.

Next, the integrability assumption g*a|Vg]'V/ -1 ¢ L'(R") is here for technical reasons, in
order to justify an integration by parts; we believe that the correct assumption should simply be
that f W (Vg) g~ % < 400. Note that a convex W itself has no reason to match this integrability
assumption (although it is I/Vllocl ). When we write that there is equality in (15) for ¢ = W, it
is by direct computation and integration by parts, as we shall see; then the assumption (14)
appears as the natural requirement to justify the computation.

Note that the condition v > 1 in (14), already needed for the condition on g to make sense,
ensures that W* is well defined (i.e. finite) on R".

Analogously, we assume that W is finite (i.e. the convex function W has a domain equal
to R™); this prevents us from reaching the 1-homogeneous case W*(z) = C + ||z||+, which
corresponds to the L' Sobolev inequality. In this case, extremal functions are given by indicators
of sets (given by the domain of W), and it requires to work with functions of bounded variation
and related notions of capacity. Therefore, it is to be expected that this degenerate case should
be treated separately when it comes to identification of extremal functions.

Proof
< Let ¢ be Brenier’s map such that Vo#g¢g~% = W% Then, from (10), almost everywhere

W(Ve) =g (det VQQO)l/a.

Moreover, since a > n, from (11) with £ = 1/a we have almost everywhere
1
(detVQQO)l/a <1- n + — Ap,
a a

where here and below Ay = tr (V2<p). Integrating with respect to the measure g~*dzx we get

[weare<(-2) [gesd [0

Let us assume we can integrate by parts the second term; this only requires to put some suitable
condition on ¢!~ (in our situation ¢ is at least VVZQO’CI) Actually, we can for instance establish,
when a > /(7 — 1), the following sufficient inequality

/Asog” <(a—1) /Vsa Vg g™ (16)



Assuming (16) we have

o [W(veg e <@-n) ¢+ @-1) [ Vg Vg,
But by definition of Legendre’s transform
Vg Ve <W(Ve)+ W*(Vg)

so collecting terms we have
JwEege <@-1) [WTgg+@-n [g

Finally [ W(Vp)g=® = [ W17 since Vp#g~ @ = W4, so we have

@1 [ W g)g™ +(a=m) [ o= [wi-e a7

as claimed.
This ends the proof of the inequality in the Theorem when 7' := /(v —1) < a, provided we
justify the integration by parts (16). For this, we extend the argument in [CNV04, Lemma 7]

1-3
which is given for W(x) = 1 + ||z||” and a = n. We introduce the function g. * (z) :=
min{glfV(a:/(l - 5)),9177(3:))((51’)} for a cut-off function x. The argument is then identical
to the one in [CNV04], the hypothesis ¢g~¢|Vg|"" € L' rewritten as Vgl_7 € L7 ensuring the

key fact that the sequence Vg. ' is bounded in L.

Next, we extend the result to the case v/ > a by reducing to the previous case as follows.
Fix any s > a/(a — 1), that is 1 < s’ := s/(s — 1) < a. Define W, (z) := Z.(W (z) + ¢|z|*) with
Z. such that [ W7 % =1. Since s’ </, Holder’s inequality and the integrability of g~* ensure
that g_a\Vg|s, is integrable. Therefore g and W, match the hypotheses of the previous case,
so (17) gives

(a—1)/(Ws)*(Vg)g_a+(a—n)/gl‘“ > /WQ‘“.

Note that Z. — 1 and W, — W. The right-hand side converges to f W1=¢ by dominated or
monotone convergence. For the left-hand side, since W, > Z.W, we have [(W.)* (Vg) g * <
Z. [W* (Z—f) g~ which converges to [ W*(Vg)g~* by dominated convergence. This gives the
desired inequality (17) for W and g.

Finally, it is easily proved that equality holds in (17) when ¢ = W with W convex. In
this case Vip(z) = z in the argument above. The growth condition (14) allows to perform the
integration by parts (a —1) [(z- VW)W =% =n [ W1~% which means equality in (16); together
with the crucial relation (7), this ensures equality in the argument above and in (15). >

Remark 4 In the proof above, we have separated the cases when ~' := ~v/(y — 1) is above or
below a for technical reasons. This dichotomy will actually come back when we will study the
related Gagliardo-Nirenberg inequalities.

The companion “concave” case is as follows. The notation are those given in Section 2.1. For
any nonnegative W we let W, (y) = 1(n)f {z -y —W(x)}. Note that W, is a negative function
W(x)>0

in our case of interest when W is a nonnegative continuous function concave on its support.



Theorem 5 (Concave inequalities) Letn > 1,a >0, and W : R" — [0, +00). Then for any
compactly supported function g : R™ — [0, +00) with ¢g**t! € Wt such that

fo-fo=

(a+ 1)/(—W*)(Vg)g“ - (a+n)/gl+“ > /WHG. (18)

Moreover, there is equality if g = W, with W continuous on R™ and concave on its support.

we have

Proof
<1 The proof follows the previous one. Let ¢ be Brenier’s map such that Vip#g® = We. Then,
from (12), g*-almost everywhere

R AV
W (V) = g (det V2) 2(1+a)g ~gAg.

Integrating with respect to the measure g®dx and then by parts, we find

a n a a+1 a
/W(Vw)g Z(1+a>/g +1+a/9 Vg-Ve.

We obtain inequality (18) using the g%-a.e. inequality
Vg-Ve 2z W(Ve) +W.(Vyg),

which is valid since W(V(z))® > 0 for g®-almost all x, and the fact that Vp#g®* = W
When g = W and is continuous and concave on its support, the proof above with Vop(x) = =

gives equality at all steps. Note that integration by parts is valid because W is continuous and

therefore equal to zero on {W > 0} and that we can invoque (9) in the last step. >

2.3 A new family of functional Brunn-Minkowski inequalities

Whereas Theorems 3 and 5 are convex or concave generalizations of Theorem 1 (which is The-
orem 3 for a = n), we now present two generalizations of Theorem 2.
The first one concerns the convex case.

Theorem 6 (P-Borell-Brascamp-Lieb inequality) Let a > n > 1 (anda > 1 ifn =1)
and let ® : RT™ — R be a concave function.
Let also g, W, H : R™ — [0, 4+00] be Borel functions and s € [0,1], t =1 — s, be such that
Vo, y € R", H(sx +ty) < sg(z) +tW(y) (19)

and [W~% = [¢g=*=1. Then

/@(H)Ha > s/@(g)g“+t/<1>(W)W“. (20)



Observe that Theorem 2 is Theorem 6 in the case when ®(z) = z and a = n, while the
classical Borell-Brascamp-Lieb inequality (5) is recovered for ®(z) = 1 and a = n. Roughly
speaking, there is a hierarchy between all the inequalities (20), and inequality (6) (when a = n)
appears as the strongest one.

Proof
<1 The theorem can be proved in two ways, following the ideas from R. J. McCann’s or
F. Barthe’s PhDs [Bar97, McC94].

Let ¢ be Brenier’s map such that Vo#g~% = W% Then from the Monge-Ampere equa-

tion (10), we have that almost everywhere

W(Ve) =g det(V3p)'/“,

P(z)—2(0)

Moreover, it follows from the assumptions that ® is non-decreasing and x +— ~ is

non-increasing, so that = +— ®(x)x~® is non-increasing.

First proof: This proof is a little bit formal since we use a change of variables formula without
proof. However, it is useful to fix the ideas, and helps to follow the rigorous proof below.
So, by the change of variable z = sx + tVy(z), and using both assumptions on ¢ we have

/CI)(H)H_“ = /@(H(sx +tVo(x)))H (s + tVe(z)) det(sld + tV2p(z))dx
> /(I)(sg +tW (V) (sg +tW (V) “det(sld + tV2p).

> / [s0(g) + tB(W (V)] (s + tdet(Vch)l/“)_adet(sId +tV2p) g,
Since a > n, the concavity of det® with k = 1/a, recalled before (11), yields
det(sId + tV3p) > (s + tdet(V2cp)1/“)a. (21)

Finally [®(W(V))g~* = [P(W)W ™2 by image measure property since Vp#g~® = W™
This concludes the argument, as

/@(H)H—“ > / [s@(g) +t@(W(Ve))]g* = s/@(g)g_“+t/<1>(W)W_“.

Second proof: We use the idea of R. J. McCann. From [McC94, Lem. D.1], let (p;)scp0,1) be
the density of the path between g=% and W ~¢ defined as follows: for each ¢, p; is the density

||

of the image measure of pg under sId +tT" = Vy, where ¢i(x) = s'5- + tp(x), € R". Then,
using twice the associated Monge-Ampere equations (10) for p; = Vo#po and pr = Vi#po,
together with the determinant inequality (21), we find that pp-almost everywhere

pt(Veor) < (sg +tW (V)™
Multiplying the inequality by ®(sg + tW (V¢)), then pp-a.e.
D(sg +tW(V))pr(Vepr) < B(sg +tW(Vp))(sg + tW (V)™
Hence, using both assumptions on ®, we get that pg-a.e.

[s@(g) +t@(W (V)] pe(Vior) < ®(H sz + V) H(sz+ Vo)™ = ®(H(Vipu(2)) H(Vipi(2)) .
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Since pt(Vr(x)) > 0 for pg-almost every z, we can rewrite the previous inequality as

s(gfa)) + 10V (Tp(a)) < DHECACDEEAN L) o oa ma) ~ ae

Integrating with respect to pg = ¢~% we find, using Vo#g~% = W ¢, for the left-hand side

/ (50 (g(x) + tB(W(Vip(2))) ] polz) dr = / B(g)g + 1 / (W)W
and, using Vi #po = pe, for the right-hand side

/ [Q(H(cht(ﬂs)) H(Vpi(x))~®
pe(Veor())

1pt<wt(x>)>o] pola) dr = / C(H)H™"dy < /®(H)H“.
{pt>0}
This concludes the argument. >

The concave inequality in Theorem 5 also has a Borell-Brascamp-Lieb formulation. We only
state it for power functions ® since the general case seems less appealing.

Theorem 7 (A concave Borell-Brascamp-Lieb inequality) Let n > 1 and a > 0. Let
also g, W, H : R™ — [0, +00] be Borel functions and t € [0,1] and s =1 —t be such that

Va,y € R, H(sxz +ty) > sg(x) +tW(y) (22)

and [W* = [¢*=1. Then

/H1+a > Sn+a+1/gl+a+sn+at/wl+a_i_(n_'_a)sn—&-at/gl—ka‘ (23)

Inequality (20) is optimal in the sense that if ¢ = W and is convex, then one can exhibit
a map H which depends on s such that inequality (20) is an equality. This is not the case for
inequality (23) which is less powerful than (20). Nevertheless the linearization of (23), for ¢
going to 0, becomes optimal and gives optimal Gagliardo-Nirenberg inequalities in the concave
case: see Section 3.2.

Proof
<1 We start as in the proof of Theorem 6, sticking to the first formal argument for size limitation.
As above, the argument can be made rigorous following McCann’s argument.

Let ¢ be Brenier’s map such that Vp#g* = W?. Then almost surely,

9" = W(Vp)* det(Vep).
By assumption on ¢ and the concavity inequality (21) we have
/HH“ = /HH“(S:U +tVip(z)) det(sId + tV3p(x))dx
> / (sg +tW (V)T det(sId + tV2p)

> / (sg +tW (V) te (5 + t(det VQ@)I/")n.
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Now we keep only the order zero and one terms in the Taylor expansion in ¢ of both terms above:

t W(Vi)y 1+a
(g sp)) > s'Tg1 T 4 (a4 1)s%g "W (Ve);

(s + t(det V2 )1/”)n =s"[1+ ! J "y > 5" 4 ns" 1t J "
14 - s\ W (V) - W(Ve))

(sg +tW (V)T = (89)1”(1 +-

Hence

H1+a > Sn+a+1/gl+a+ 1+a SnJrat/gaW ch +nsn+at/gaw V(,O ( g
/ (1+0) (Vo) ) (e

n+a
n

Then in the last term we apply the inequality
anTHZ(n—i—a)X—a, X>0
with X = g/W (V). We obtain the desired inequality. >

2.4 Dynamical formulation of generalized Borell-Brascamp-Lieb
inequalities and derivation of Sobolev inequalities

Borell-Brascamp-Lieb inequalities admit an equivalent dynamical formulation given by the
largest possible function H given g and W. For that, consider the following inf-convolution,
defined for functions W, g : R" — (0, +oc], h = 0 and = € R™ by

oo - | 2 s () | o (24)
g(x) if h=0

or equivalently
QN (9)(@) = inf {g(x —he) + MW (2)},

Then the constraint (19) implies that the inf-convolution
H(z) = sQy),(9)(x/s),  z€R"

if the largest function H satisfying (19). From this observation, the ®-Borell-Brascamp-Lieb
inequality (20) can be rewritten as follows.

Theorem 8 (Dynamical reformulation of ®-Borell-Brascamp-Lieb inequalities) Leta >
n>1(amda>1in=1)and let & : R — R be a concave function. Let also
g, W :R™ — [0, +00] be Borel functions such that [W™% = [ g% =

Then for any h > 0 the ®-Borell-Brascamp-Lieb inequality (20) is equivalent to

a+n [o(i ol @)l o) = 1y [ewe+ 1y [emwe @

In particular, when a = n and ®(x) = z, the extended Borell-Brascamp-Lieb inequality (6)

18 equivalent to
Wh > 0, /Qh 1”>/1”+h/W1” (26)

Moreover equality holds in inequalities (25) and (26) when g = W and is convez.

12



For the equality case, note from (24) that

e = (). eer

when g = W and is convex. Hence, equality holds in (25) and (26) in this case, as claimed.

Inequalities (25) and (26) are equalities when h = 0. Moreover, for h — 0 we have in general
that

QY g=g—hW*(Vg)+o(h)

as explained in Appendix A, so that Theorem 8 admits a linearization as a convex inequality.
With the same conditions on the function ® as in Theorem 8, from inequality (25) we obtain

{/WWVQ<J%@—@ﬂw>g“+/(w—n+U¢@I—Mﬂmkz“>/¢@WW’“ (27)
for a class of functions g and W (which we do not try to carefully describe for a general ®). Of
course again inequality (27) is optimal: equality holds when g = W and is convex.

In the case ®(z) = x, it is shown in Appendix A how to deduce the inequality (15) of
Theorem 3 (and therefore Theorem 1) from (25) for a restricted class F¢ of functions (g, W),
inspired by [BLO8] and given in Appendix A.2, Definition 25. In the case of interest of the
Sobolev inequality (2) for W(z) = C(1 + ||z||%/q),q = p/(p — 1), it is shown in [BLO8] how to
recover the Sobolev inequality from this restricted class. For, it is classical to be sufficient to
prove (2) for C!, nonnegative and compactly functions f, and this case can be recovered by
using

0:(@) = (£(&) + <L+ el )" e (1 o)

which is in the restricted class.

Remark 9 Likewise, the classical Borell-Brascamp-lieb inequality (5) admits the following dy-
namical formulation: if W, g : R™ — (0, +00) are such that [W™" = [ ¢g~™ =1, then

/Qhw(gr” >1,  h>0.

For h tending to 0 we recover the convexity inequality (15) with a = n + 1, namely

W), o)
rRe 9"

which had been derived in [BGG15]. As can be seen from Section 3 below, this inequality implies
the Gagliardo-Nirenberg inequalities only for the parameters a > n+1. In particular, it does not
imply the Sobolev inequality, as pointed out in [BLOS8], and this was a motivation to our work.

It has recently been proved in [Zugl7] that the two formulations (5) and (28) are in fact
equivalent.

The concave Borell-Brascamp-Lieb inequality (23) also admits a dynamical formulation with
the sup-convolution instead of the inf-convolution. For W, g : R” — [0, +00) and h > 0 we let

r—y )
sup < g(y —|—hW< >} if h >0, n
RY (9)(r) = R{ ) h v €R".
g(z) if h=0,

13



Then the constraint (22) implies that the best function H if given by the sup-convolution,
H(zx) :st}/s(g)(x/s), x € R".

From this observation, the “concave” Borell-Brascamp-Lieb inequality (23) admits the equiva-
lent following dynamical formulation: if [ W%z = [ g*dx =1 then for all h > 0,

/R,?(g)““ > /gl+“+h/W1+a+ (n+a)h/gl+a. (29)

Similarly to the convex case, inequality (18) can be recovered from (29) by taking the
derivative in h, at h = 0. We do not give more details on this computation.

3 Sharp Gagliardo-Nirenberg-Sobolev inequalities in R"

A family of sharp Gagliardo-Nirenberg inequalities in R"™ was first obtained by M. del Pino and
J. Dolbeault in [dD02]. The family was generalized to an arbitrary norm in [CNV04] by using
the mass transport method proposed in [CE02] by the second author.

The del Pino-Dolbeault Gagliardo-Nirenberg family of inequalities, which includes the Sobolev
inequality, is a consequence of Theorems 3 and 5. In this section we prove in a rather direct
and easy way that our extended Borell-Brascamp-Lieb inequality (6) implies the del Pino -
Dolbeault Gagliardo-Nirenberg family of inequalities, but also a new family. As recalled in the
introduction, S. Bobkov and M. Ledoux [BLO8] have also derived the Sobolev inequality from
the Brunn-Minkowski inequality, but we believe that our method is more intuitive than theirs.

Below, || - || denotes an arbitrary norm in R™ and for y € R" we let [|y||. = sup|z<12 -y
its dual norm. Recall that the Legendre transform of  — ||x||?/q (with ¢ > 1) is the function

y = llyllZ/p for 1/p+1/q=1.

3.1 From Theorem 3 to convex Gagliardo-Nirenberg inequali-
ties
Letn>1,a>n (a>1ifn=1)and ¢ > 1. Let W be defined by

REK

W (z) .

+C, x €R"
where the constant C' > 0 is such that [ W~* = 1. Then

ey = I n
W (y) - Cv Y € R
p
where 1/p+1/qg = 1.
We apply Theorem 3 with this fixed function W. First, let us notice that C' is well defined
and [ W1~ is finite whenever

{Ifa}n—l—l then p > 1

If a€nn+1) then 1 <p< 54— =p (p=n when a=n).

(30)

These constraints are illustrated in Figure 1 in the case n = 4: Equation (30) is satisfied
whenever the couple (a,p) is in the black or the grey area.

14



arn/(n+1-a)
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3 4 35 6 7 8
Figure 1: Ranges of admissible parameters (a,p) with n =4
Let us note that, under (30), the condition (14) on W in Theorem 3 is satisfied with v = q.

Assuming that the parameters a and p are in this admissible set, then for any function
g : R™ —]0, +o0[ such that [¢g~% =1 and Vglf? € LP, inequality (15) in Theorem 3 becomes

-1 {:
D< ap /vaiH —i—(a—n)/gl_“. (31)

Here D = (a — 1)C + [ W'=% is well defined, W and a > 1 being fixed. This inequality is the
cornerstone of this section.

Sobolev inequalities: As a warm up, let us consider the case a = n, n > 2 and p € (1,n).
Then inequality (31) becomes
Dy [l
n—17" g

for any positive function g such that [ ¢~ =1 and Vglf% € LP. Letting f = g%, this gives

p
n—p
‘ g/nwnzz
p

Dp
n—1

for any positive function f such that [ f 75 =1and V f € LP. Removing the normalization we
n—p

get -
) p(/ff—’%)”s/||w||z.

The inequality is of course optimal since equality holds when ¢ = W or equivalently when
p—n

flz) = (C + w> ? . Classically removing the sign condition we recover

Dp
n—1

Theorem 10 (Sobolev inequalities) Let n > 2, p € (1,n) and p* = np/(n — p). The in-
equality

1

(Jir)" <cn(f15E)"

holds for any function f € LP" with Vf € LP; here Ch.p 15 the optimal constant reached by the

p—n
function x — (1 + ||z||?) » .
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Gagliardo-Nirenberg inequalities: Consider now the case a > n and p # a satisfying

conditions (30). Letting h = gl_% = g%, inequality (31) becomes
a—1
1< Dz/HVh|]§+ (a—n)/hpap

for any positive function h such that | har =1 and Vh € LP , where Ds is an explicit positive
constant. Removing the normalization, the inequality becomes
—p 1-p

</ha‘”;>aa ng/HVth+(a_n)/hpg; (/h) —

for aby positive h for which the integrals are finite.
To obtain a compact form of this inequality, we replace h(x) = f(Az) and optimize over
A > 0. For another explicit constant D3 we get

P

(/f)<> _ Dg(/uvmz) (/f )m ty ke

where w = 1;(1;(‘17;;1)” € (0,1). There are now two cases, depending on the sign of (1 - i;g w) =
_a_lazn=Upin 4 a=l, If p < a then both coefficients are positive, as one can check by
a—p pla—n)+n a—p

considering the cases a < n+1 and @ > n + 1: this leads to the first case in Theorem 11 below.
If p > a, then under the constraints (30) both coefficients are negative: this leads to the second
case below.

Removing the sign condition we have obtained:

Theorem 11 (Gagliardo-Nirenberg inequalities) Letn > 1 and a > n.

e For any 1 < p < a, the inequality

e, N S
([15125) 7 < g [1one) (1) (32)

holds for any function f for which the integrals are finite. Here 0 €]0,1[ is given by

a—p n—p a—p
=0 1-6 33
- — (A=) — (33)
and D}, , is the optimal constant given by the extremal function x +— (1 + HxH‘Z)p;

o Ifp>awhena>2n+1, orifpe ( a, n!{ﬂ) when a € [n,n + 1), then the inequality

/

(f1r=) D (/ qup)i( / |fra“”p)a“”p(10/) (34)

holds for any function f for which the integrals are finite. Here 6" €]0,1[ is given by

p_azglp_n+(1_0/)p_a’
a—1 n a

and D . is the optimal constant given by the extremal function x — (1 + ||x|]q)p%

Pa
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Remark 12 e Inequalities (32) form the del Pino-Dolbeault family of Gagliardo-Nirenberg
inequalities in R™. They correspond to parameters (a,p) in the black area in Figure 1.

o Inequalities (34) are Gagliardo-Nirenberg inequalities with a negative exponent, that is
p% < 0 and % < 0. To obtain such inequalities with the same optimal functions, the
range of parameters (30) seems to be optimal. They correspond to parameters (a,p) in the
grey area in Figure 1. Let us note that this family, with a smaller range of parameters
(a,p), has been obtained by V.-H. Nguyen [Ngulh, Th. 3.1 (ii)]. To our knowledge, the
family (34) is new except for the part of the family derived by Nguyen.

e In [BGL14, Th. 6.10.4] it has been shown how to deduce sharp Gagliardo-Nirenberg in-
equalities from the Sobolev inequality, but only for the parameters a = n+ m/2, m € N.
The idea is to work in higher dimensions, for instance R™"*™ with a function g(x,y) =
(h(x)+|y||P)~+7m=2/2 and to use the scaling property of the Lebesque measure. From in-
equality (15) of Theorem 3 we can also use higher dimensions to reach the whole family (32)
of Gagliardo-Nirenberg inequalities. As in [BGL14], we consider g(z,y) = h(z)+||y||" and
Wi(z,y) = ||z||P + ||y||" + C in R™™™ for a parameter r > 1. The additional parameter
r > 1 allows to reach the full sharp family (32).

3.2 From Theorem 5 to concave Gagliardo-Nirenberg inequali-
ties
Let n > 1. Let a > 0 and ¢ > 1, and define

C
W(z) = g(l—lll‘llq)% zeR"

where C is such that [ W® = 1. From the definition (8), we have

_QH p_C
yll if |lylls <C n
Wely) = ’ ¢ yeR
—llyll« if lyll« = C,
where 1/p+ 1/q = 1. In particular from the Young inequality
ci-r C
Wely) 2 ———llli =7 yeR" (35)

Then the inequality (18) with this function W gives

cl-»p C
; /\|Vg|£ga+q<a+1>—/wa+1

(a—|—n)/g1+a’§(a—|—1)

for any nonnegative and compactly supported function g such that [ ¢* =1 and gtte e wht,
a+p

Let us notice that %(a +1) — [WTldx > 0. Letting now f =g » we obtain
plia
[ #7%5 <pu [1osie+ Do,

_ap lta
for any nonnegative and compactly supported function f such that [ f atr = 1 and fPatr €
Wh1: here Dy and Dy are explicit constants. Removing the normalization, this gives

14+a

/fpiiZng/HVin’ (/ftfﬁf»)TJrDz(/h(m) .
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We can now remove the sign condition and optimize by scaling to recover the following result
of [dD02] (and [CNV04] for an arbitrary norm).

Theorem 13 (Concave Gagliardo-Nirenberg inequalities) Let n > 1. For any p > 1
and a > 0 the inequality

a+p

a+1 P(aaitpl) % ap ap (1-6)
( / rf\pw) gDnvp,a( / HVfH%:) ( / \f|a+P)

holds for any compactly supported function f with Vf € LP. Here 6 €]0,1] is given by

OED _gn =P (1 _g)2tP
a+1 n a

atp
and Dy, p q is the optimal constant given by the extremal function x — (1 — [|x||?),” .

The obtained inequality is optimal since (18) is an equality when g = W. Moreover, when
g = W, then almost surely ||Vg||« < C, so that (35) is an equality.

4 Sharp trace Gagliardo-Nirenberg-Sobolev inequal-
ities on R’}

Our aim here is to explain how our framework allows to recover known and obtain new trace
Sobolev and Gagliardo-Nirenberg inequalities on R}, in sharp form. In the above denomination
we shall restrict to the convex case. As before, we have two possible, equivalent, routes. One is
to establish an abstract convex Sobolev type inequality using mass transport, and the other one
is to establish a new functional Brunn-Minkowski type inequality on R’, and derive Sobolev
inequalities from it, by linearisation. Since the second one is formally more general (although
it requires technical, non-essential, assumptions on the functions), we will favour it.
Let us fix some notation. For any n > 2, we let

R" = {z = (u,z), u> 0,2 € R" '},
Then OR? = {(0,z), z € R"!'} =R""!. For e = (1,0) € R x R""! and h € R we let
The = R% + he = {(u,x), u> h,x € R" .
The Borell-Brascamp-Lieb inequality (20) with ®(z) = x takes the following form in R} .

Theorem 14 (Trace Borell-Brascamp-Lieb inequality) Let a > n, g : R} — (0,+00)
and W : R}, — (0, +00) such that fRi g = fo W= =1. Then, for all h > 0,

asnen [ Qs [ geen [ wie (30

n n n
R-Hze R+ R+6

where, for (u,x) € RY,

QY (g)(ww) = int {g(v,y) . hw<“;”, “’;y)},

(v,y)ERY, 0<v<u—h

Moreover (36) is an equality when g(z) = W(z +e) for any z € RY and is convex.
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Proof .
< Let g:R™ — (0, +00] and W : R™ — (0, +00] be defined by

v f glz)if z € R} = | W(x)if x e RY,
g(z) = { +o0 if z ¢ RY} and W(z) = +o0 if z ¢ RY,. (37)

Then fRn g *= fRn W~ = 1. Hence, we can apply the dynamical formulation (25) of Theo-
rem 6 with ®(z) = = and the functions §, W. For any h > 0 we obtain

asnen [ Q@ [ gt [ wie
R" R? R?,
where
U—v r—Y

=t iy +mv (LI e

(v,y)ER™
From the definition of g and W, the infimum can be restricted to 0 < v < u — h, so that
Q1Y (3)(u, x) is equal to +o0o when u < h, and to Q) (g)(z) otherwise. It implies
@@= i@ = ek

n n
R+he R+he

which gives inequality (36).
When g(z) = W(z + e) and W is convex, then by convexity

QY (9)(u,z) = (h+ 1)W<Zj:’hj_1>

for any (u,z) € R%, . Then inequality (36) is an equality. ©>

As observed in Section 2.4, a Borell-Brascamp-Lieb type inequality on R™ implies a convex
inequality. It is also the case on R’}, by computing the derivative of (36) at ~ = 0 and using
the identity

/ QY (9) = / Q1Y (9)'*(u, z)dudz.
RY e h  JRn—1

Assume now that (g, W) is in F¢ as in Definition 21. Then by Theorem 24 in the appendix,

d o0 .
L@ wadite == [ i@ [ T
dhlh=0 h Rn—1 8Ri R:l_ ga
where we recall the definition of the Legendre transform:
W*(y) = inf {o-y-W()}, yeR™ (38)

z€R™,
So we have obtained:
Proposition 15 (Trace convex inequality) Let a > n. Let g : R — (0,400) and W :
R%, — (0,400) belong to F§ (see Definition 21 of Section A.1) with W convex and fRi g 4=
fRie W=%=1. Then
(a—1) W*(Vg)ﬂa—n)/R

- gl > Wi=edz +/ gi—e (39)
R 9 R7?, ORT

n
+

Moreover (39) is an equality when g(z) = W(z +e) for z € R, and is convex.
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Remark 16 Inequality (39) can also be directly proved by mass transport and integration by parts.

We follow Section 3 to get trace Gagliardo-Nirenberg inequalities from Proposition 15.

Let a > n,p € (1,n) and ¢ = p/(p — 1). Let also W(z) = C’W for z € R}, where the
constant C' > 0 is such that [, W~* = 1. We first observe that Conditions (C1)-(C2) of
+e

Definition 21 hold with v = ¢ since ¢ > n/(a — 1) for a > n. Moreover, for y € R™,

q q p
W*(y) = sup {w‘y—C”Z” }S sup {w-y—C”qu }zclp”yH*. (40)

zeRY, T€R" p
Hence Proposition 15 implies

-1 {k’
Cl*pa / HviH +(a_n)/
p Jr Y R

n
+

g > /
R

for any function g satisfying [pn ¢~ = 1 and (C3)-(C4) with v = ¢, so that (g, W) belongs to
Fa, ’

It has to be mentioned that inequality (41) is still optimal, despite inequality (40). For,
when g(z) = W(x + e) for € R}, then the minimum in (38) at the point Vg(z) is reached in
R", and then (40) is an equality.

Inequality (41) is again the cornerstone of this section.

Wi 4 / g™ (41)
OR™

n n
+ +e

Trace Sobolev inequalities: Again, as a warm up, let us assume that a = n. Then (41) gives

_ P
/ gl—n < Cl—p n—1 / HViH* o Wl—n
IR P Jr 9 R7,

n
+

for any function g satisfying [pn g~ = 1 and (C3)-(C4) for v = ¢q. For f = g%, so that
+

fRi f 75 = 1, this inequality becomes

(n—1) -1 P
| scﬂp”( P ) [owse- [ wi (42)
OR™ p n—p R R”

We now need to extend this inequality to all C! and compactly supported functions f in R%Y
(it does not mean that f vanishes in OR'}). For this, consider a C' and compactly supported
function f in R’} and let

fe(z) =¢elz + e\_% + c.f(x),

pn

__pP
where ¢, is such that [p, f'7 = 1. Then g. = f. """ satisfies (C3) and (C4). Moreover ¢, — 1
+

when & goes to 0 and then inequality (42) holds for the function f.
Removing the normalization in (42) we have, for any f,

/’f%xSA/|Vﬂmkmﬂ—Bﬂ,
oR™ R
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Equivalently, with v = g =2l and v = ﬁp (which satisfy u,v > 1 and 1/u+1/v=1)

A _ 1 .
R P pP—pP _ 3P
20 | wszer - 2s

n
+

—_

Now the Young inequality zy < x%/u + y /v with

A -
562/ IVfIE and y=pP?
B’U Ri

1/p _n—p_ 1/p
- Al/p n — p(n—1)
(/ f”) <o (228 (/ ||Vf|rzi> .
OR™ (Bu)ptn=1 \" ~ R}

The proof of optimality it is a little bit technical and will be given below in the more general
case of Theorem 18. It is also given in [Naz06]. Equality holds when g(z) = W(z + €) or

yields

_n=p .
equivalently when f(z) = <CW) =02+ eH_Ff for z € R’. Removing the sign
condition we have thus obtained the following result by B. Nazaret [Naz06], who promoted the

idea of adding a vector e to the map W. We have derived it for C! and compactly supported
functions, but by approximation it is possible to extends it to the appreciate space.

Theorem 17 (Trace Sobolev inequalities from [Naz06]) For any 1 < p < n and for p =
p(n —1)/(n —p) the Sobolev inequality

1/p 1/p
(/ \f\ﬁda:> gDmp(/ ku%:dz>
OR™ RY

holds for any C' and compactly supported function f on R’. Here Dy, is the optimal constant
given by the extremal function

hp(2) = ||z +el[ 71, z€RL.

Trace Gagliardo-Nirenberg inequalities: Assume now thata >n >p > landlet h = g%.
Then the inequality (41) can be written as

a=1 -1 p
/ hpaédxgcl—pa< P )/ HVhHZZdz—ir(a—n)/
OR™ p a—p R R

for any C' and compactly supported function A in R" such that [5. ha-s = 1. In this case we
+

WP apds — / Wi-ed,
R

n n
+ +e

use the same argument as for the Sobolev inequality above to replace the conditions (C3) and
(C4) of Definition 21.

Removing the normalization, we get

a— — p - a— a—

/ P gclpal< b ) / IVh|[P g7 _/ Wlaﬁpa;—l—(a—n)/ =
IR p \a—p R7 R?, R

(43)
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with now
a—p

pa ap
B = / hardz | .
R}

Let v = %=X and v = %=1 which satisfy u,v > 1 and 1/u + 1/v = 1. As for the Sobolev

a—p -1

inequality we rewrite the right-hand side of (43) as

_ P _ -
o (N engp s - [ wiepis
p a—p R7 NG

A p=1 1 a—_
—Bu |20 [ VRS - 1S
BU Ri v
with »
-1
A= Cl—Pa< P > and B= [ Wi
p a—p R7,

From the Young inequality applied to the parameters u,v and

A p=1
x:/ [[Vh|P and y= gPe=r (44)
Bv R™
+
we get
a a—1
_1 p p—1 a—1 Ar - o
et (L) [ emipa - [ wepis < S 4R
p \a—p R7 R%, (Bv)ﬂa_l R?
(45)
and then
a—1 a-!
a1 Aa=r a-— o =
/ hpa-édxgp_l”< / IVhH%ZdZ) ta-w [ WSe o
IR (Bv)er @~ 1 \Jry R7

from (43). For any A > 0, we replace h(z) = f(Az) for z € R’,. We obtain

a—1

a—1

- (a=m)(p=1) Aa- - o a—
fPvde <A e 27P ( / v f||§:dz> A Ya—n) | frivde
oRy (B)a=r @~ 1\ Ury :

Taking the infimum over A > 0 gives

Dy » (1-0) 5t
a—1 pla=1) P a1 pa—1)
fPerdx <D / |V f|[2dz / fPa=rdz :
IR™ R R

for an explicit constant D and 6 €]0, 1] being the unique parameter satisfying

—la-— _ _
e Bt L A ) (47)

n aflz n a—1

Removing the sign condition, we have obtained:
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Theorem 18 (Trace Gagliardo-Nirenberg inequalities) For any a > n > p > 1, the
Gagliardo-Nirenberg inequality
a—p

a—1 P D a1 (1=0)5a=n
/ P da < Dy / IV f|dz / = (48)
8Ri Ri Ri

holds for any C' and compactly supported function f on R . Here 0 is defined in (47) and D, p 4
is the optimal constant, reached when

LSS

F(z) = hy(2) = ||z +el 7T, zeRL

When a = n, then § = 1 and we recover the trace Sobolev inequality of Theorem 17.

Proof
< From the above computation we only have to prove that the inequality (48) is optimal.
First, it follows from Proposition 15 that inequality (43) is an equality when

Vz € R, h(z) = hy(z) = ||z + || 7T,

the function h, not needing to be normalized. Moreover, if inequality (45) is an equality, then
it is also the case for (46) and then (48). So, we only have to prove that (45) is an equality
when h = h;,, which sums up to the fact that the Young inequality is an equality. This is the
case when x = y*~! in (44), that is,

A p=1\ v—1
el i, _ (P
[ 9= = (55)

or equivalently
a—=p

A _ ap_ e
A\ hipdz = / ledel 7).
BU Ri R"

+

Let now Zy, = [ ||z + e]|"%dz for a > 0. Then
R
+

N\ P
c=-L 7Y B=Tg3T.. and / |Vh|[Pdz = (”) T as
R™ p—1) 7

p—1 p=1 =1 Pp=1 p—1

from their respective definition. Then, from the definition of A, equality in the Young inequality
indeed holds. This finally gives equality for the map h. It has to be mentioned that the case
a = n gives the optimality of the trace Sobolev inequality of Theorem 17. >

Remark 19 e In a first version of this work we conjectured that the function hy is the only
optimal function up to dilatation and translation. Since that, in [Ngul7] V.-H. Nguyen
has answered affirmatively to this conjecture.

e As for the Gagliardo-Nirenberg in R™, the inequality (48) can be proved by using inequal-
ity (39) with a = n in higher dimension, as proposed in Remark 12.

e Trace Gagliardo-Nirenberg inequalities on convex cones have recently been derived in [Zug17].
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5 Remarks on the logarithmic Sobolev inequality

In their work [dD03] on Gagliardo-Nirenberg inequalities (where only the Euclidean norm is
considered), M. del Pino and J. Dolbeault observed that when the parameter a goes to infinity
the sharp Gagliardo-Nirenberg inequality (32) in R™ yields the LP-Euclidean logarithmic Sobolev

inequality
n JIVfIEdz
Entg, (f7) < p/n fPdx log <£pffpdx> (49)

for any positive function f. Here 1/p + 1/q = 1, L, is the optimal constant attained for
f(l') = efanq and

Entg, (f?) := fp logff

This bound is an instance, when V' (z) = ||z|| +C, of the following general inequality of [Gen03,
Gen08]: for any V, f : R® — (0, +00) such that [e~/ = [~V = 1, there holds

[ G4V @me! zn, (50)

with equality when f =V and is convex. Inequality (50) has been derived in [Gen03, Gen08|
from the Prékopa-Leindler inequality, which is a consequence of the classical Borell-Brascamp-
Lieb inequality (5). It says that for F,V, f : R" — R and u € [0,1] such that [ e f = [eV =1
and

Vr,y € R", F((1-uwz+uy) <(1—u)f(z)+uV(y), (51)

/n e ' >1. (52)

As above for the Borell-Brascamp-Lieb inequalities, (52) can be rewritten in a dynamical form:

then

/ U D > 14, B0 (53)

Then, as for above inequalities, this formulation can be linearized as h — 0, recovering (50).

Our new Borell-Brascamp-Lieb inequality (20) also yields the Prékopa-Leindler inequal-
ity (51)-(52) for ® = 1 and a going to infinity. For that, it suffices to apply (20) with
9= 2,0+ f/a),W = Z,"/*(1 + V/a) for Zy = [(1+ g/a)~® and Zy = [(1 + V/a)~°,
s=uZy"/(uZy" + (1 —u)Z/) and H = (1 + F/a)/(uZy'* + (1 —u)Z/), and then to let a
go to infinity.

In the derivation of (49) from the sharp Gagliardo-Nirenberg inequality, the argument
in [dD03] is based on the key fact that the exponent # in equation (33) goes to 0 when a — +oo.
In the case of the half-space R’}, the exponent 6 in equation (47) goes to 1/p when a — +oo:
hence this method does not seem to adapt easily to the R} case. Hence, to get a trace logarith-
mic Sobolev inequality in R’} we rather resort to the argument of Section 4, as follows.

Let then W : R}, — R and ¢ : R} — R such that fRie e W = IJM e9 =1, and define W

and ¢ as in (37). Then by (53)

/ e_lJ%hQ’vy(g)(z)dz = / / e TR @O@a) gy, gy > (1+h)".
R h Rn—1
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In the limit A — 0 we get the bound corresponding to (50) in the trace case, namely

J

whenever the function g is in a appropriate set of functions. We will not give here more details.
As in Section 4 again, let now ¢ > 1, || - || be a norm in R", and let W (z) = C||z||%/q for

_ll=[|?
z € RY,, where C' = (fm e o da)?™ is such that fRie e~ = 1. Then W*(y) < C'P||y|[2/p
for y € R, with 1/p+1/q = 1. Let then f be a positive function on R such that [o. f? =1,
+

and apply inequality (54) to g = —plog f. After removing the normalization we obtain

(g+ W (Vg))e? > n+ / (54)

7 oR;

c\'?
Entys( ) < (p) /RiHVfH{k’dx—n/Ri fpdac—/am . (55)

Inequality (55) is a trace logarithmic Sobolev inequality. It does not have a compact expression
as does inequality (49) in the case of R™, where the scaling optimization can be performed.
Nevertheless, in R}, it improves upon the usual (49) if we consider functions on R}

A Time derivative of the infimum-convolution

The time derivative of the Hopf-Lax formula (24) has been treated in different contexts, namely
for Lipschitz (as in [Eva98]) or bounded (as in [Vil09]) initial data. In our case the function g
grows as |z|P with p > 1 at infinity and thus these classical results can not be applied. We will
thus follow the method proposed by S. Bobkov and M. Ledoux [BLO0S8], extending it to more
general functions W and also to the half-space R'}.

We give all the details for the half-space R’} which is the more intricate.

A.1 The RY case
Let a > n and let g : R — (0,400), W : R, — (0, +00) such that fRi g% and fRie W~ are

finite. The functions g and W are assumed to be C! in the interior of their respective domain
of definition. Moreover we assume that W goes to infinity faster that linearly:

W (z)

2€R7, |z| o0 |7

= +o0. (56)
Our objective is to give sufficient conditions such that the derivative at h = 0 of the function

R* > hw— /h - QY (9)%(u, z)dudz

is equal to
—/ g' 7%z + (a—1) &avg)dz
ORT rR? 9
where
W*(y) = sup {z-y-W(z)}, yeR" (57)

xERie
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For this, let us first recall the definition of Qhwg: for z € RY,,,,

. r—y .
inf +hW | —= if h >0,
it = { v P, [0 07 (57
g(x) if h=0.
or equivalently, for h > 0 and x € RY, |
W _ : _ _ - _ i
@ g(z) = zeRﬁe,lgfhzeRi{g(x hz) + hV(2)} zeRihelgcf—zeRi {g(x 2)+hW <h>}

First, we have

[}
Lemma 20 In the above notation and assumptions, for all x € R}

D1 Qlgla) = —W*(Vg(a)). (58)

Proof

< We follow and adapt the proof proposed in [BLO8]. Let x € R} be fixed.
By definition of Q,‘;Vg, for any z € R", and i > 0 small enough so that x — hz € R}, one has

QY g(x) —g() _ g(w—hz) — g(x)
h

< A + W(z).

Since g is C', then for all z € R%,

w —
lim sup @ 9(@) = 9(x) < —Vyg(z) - z+W(z).
h—0 h
Then, from the definition (57) of W*,
w _
lim sup @ 9(x) = 9(x)
h—0 h

< -W*(Vg(x)).

We now prove the converse inequality. Let
App ={z€RY,, WW(z) < g(x — he) + hW(e)}.
For a small enough h > 0 such that x — he € R we have Q}Y g(z) < g(z — he) + hW (e), so

Qhwg(x) = inf {9(z — hz) + kW (z)}.

2€A, 1, z—hz€RY}

Hence

QY g(x) — g(x) ) g(z — hz) — g(z)
h h zeAI,hfgﬁhZGRi { h + W(z)}

- inf {=Vyg(x) - z+ ze,(hz) + W(z)},

2€Ag h, T—hz€RY

where €,(hz) — 0 when hz — 0. It implies

A 9 iut (o) -2 + 2200 + W)
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By the coercivity condition (56) on W and since g is locally bounded, the set A, j is bounded
by a constant C, uniformly in h € (0,1). In particular for every n > 0, there exists h, > 0 such
that for all h < h,, and z € Ay 3, |ex(hz)| < 1. Moreover, for all A < hy,

w —
Qh g(xf)l 9(z) A A=Vole) 24 W)} =Cn> b {~Vo(e) =+ W(z)} = Cn

= —W*(Vg(x)) — Cn.

Let us take the limit when h goes to 0,

w _
lim inf Qh g(x) — g(x)
h—0 h

> —W*(Vg(z)) — Cn.
As 7 is arbitrary, we finally get equality (58). >
Our assumptions on the couple (g, W) are summarized in the following definition.

Definition 21 (the set F{ of admissible couples in R"}) Let n > 2, g : R} — (0,400)
and W : R}, — (0,+00). We say that the couple (g, W) belongs to F§ with a > n if the
following four conditions are satisfied for some y:

(C1) v > max{-"+,1}.

a—1’
(C2) There exists a constant A > 0 such that W(x) > Alz|" for all x € R} .
(C3) There ezists a constant B > 0 such that |Vg(z)| < B(|z|""' 4+ 1) for all z € R"}.
(C4) There exists a constant C such that C(|z|" + 1) < g(x) for all x € R}

n

In the following, we let C'; denote several constants which are independent of 4 > 0 and x € R,

but may depend on v, A, B.

Lemma 22 Assume (C1)~(C4). Then, we find a constant hy > 0 such that, for all h € (0, hq)

and T € Rihe

—Cih(1 + [2]7) < Q) g(x) — g(x) < Coh(|a| ™" +1).

Proof
<0 1. Let us first consider the easier upper bound. For any i > 0 and x € R, then z—he € R},
so that

Q) 9(x) — g(x) < gl — he) — g(x) + W ().
On the other hand, for any « € R} and y € R" such that x +y € R’} we have from (C3),

lg(z +y) — g(z)]

1 1
= | [ Vata+00)- 90| < 1ol [ VoG -+ 0las < oyl + ol ). (59)

n

From this remark applied to y = —he with h € (0, 1), one gets for any x € R}, |

Q1 g(x) — g(z) < Cah(|z["~" + 1) + hW (e) < Csh(lz|*~" + 1). (60)
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n

2. For the lower bound, we first need some preparation. Thus, fix h € (0,1) and z € R

+he
arbitrarily. Let § € R,  be a minimizer of the infimum convolution
Woin) — i _ IV = gz — 0 y
Qp 9(z) = jof [g(w y) +hW (hﬂ g(x =) +hW (h> :
Such a gy surely exists by (C2) and (C4). From (60) and (C2) we have (recall that h < 1),
el < 1w () < g(o) gl = )+ Collal ™™+ 1), (61)
From inequality (59),
l9(2) — g(z — §)| < Celgl[la"~" + 91" +1]. (62)

From (62) and (61),

A
hr—1
Choose a small constant 0 < A1 < 1 so that

91" < Colgl(ja =" + 19~ + 1) + Cs(Ja ™! + 1)

1< —06.

-1
hi
When 0 < h < h1, we have
9"
9] +1

< [1 + ’x"yfl]

so that
1g] < Cs (14 |z]).

3. Then, fix h € (0,h;) and x € R, arbitrarily, where h; is the constant defined in step 2.

+he
By the arguments in step 2, we see that
w . Y
— = f —y)— +AW (=] 63
Qn (@) =~ 9(@) yeRihevxfyeJllgh\yISCs(HIxI) [g(:v v) =~ 9(@) (h)} (63)
As in (59), we have
1

@) =ga =) <ol [ Vota—ou)lao. (64)

When |y| < Cg(1+|z|) and 0 < 0 < 1, we have |z —0y| < (1+Cs)(1+]x|), so that [Vg(x—0y)| <
Co(1+|z|7~1) by (C3), uniformly in 0 < § < 1. Thus, when |y| < Cs(1 + |z|), we have, by (64),

g(z) = g(x —y) < Co(1+ [ [yl.
Hence, by (63) and (C1), we obtain

W o (z) — > inf —Co(1 + |z |y + W (Y

_ A
> Colt+ Ja ") ol + |

> inf
yeRY ., [y|<Cs(1+]x])

A
S i v—1 Y
> ylean [Cg(l + x| |y| + A1 |y ]

= —Choh(1+ |z~ 1)7 1.
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The last equality is a direct computation. Therefore, we conclude that
QY g(x) — g(x) = —Ciih(1+ |a").

The proof is complete. >

Lemma 23 Assume (C1)~(C4). Then, we find constants Co,ha > 0 such that for all h €
(0,h2) and x € RY,

Qug@) ™ —g@)'™| _ G
h S 11 e
Proof
< First, for any o, 5 > 0 and a > 1, then
o™ = 817 < (a = 1) — Bl (@™ + 579). (65)

Indeed, if for instance § > « > 0, then for some 6 € (a, §) we have
" =g = (a - 1)(B- ) < (a—1)(8 - a)a"
By inequality (65) and Lemma 22, we have

QY g(x)t=* — g(x)'
h

IN

w xXr) — i
(a—l)‘Qh g( })l g( ) [Qth(x)—a+g(x>—a]

< Ki(1+ ]2 [Q) g(x)™® + g(2)™9]

for all h € (0,h1) and x € RY, .
On the other hand, by (C4) and Lemma 22, we have for all h € (0, h;) and x € R"

+he
Q1 g(x) = g(x) — Crh(1+ |z7) = (C = Crh)(|2[" + 1),
Choose a small constant h3 so that

%S C — Cihs.

and let ho min{hy, hs}. Then, for all

Q

QY g(x) = o (|27 +1)

2
whence, again using (C4),

QY g(x)' = — (g(x))'

) < Co(1 4 Jaf)!

for all b € (0,h2) and z € RY, . >

We can now state and prove the main result of this section:

Theorem 24 In the above notation, assume that the couple (g, W) is in F¢. Then

d o0 s
dh‘ho/h /}Rn1 QY (9)(u, ) dudz = _/ e + (a— 1) W*(Vg)

a
ORY R7 g
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Proof
<1 One can write the h-derivative as follows:

f1L</h°° - QY () (u, x)dudz — /" gla(u,x)dudx>

(/ / (u, x)dudz —/ gla(u,x)dudaf>
Rn— 1 n
1 l—a

+ - QY (9)t%(u, x)dudr — “(u, x)dudzx
h h Rn—1 Rn— 1

</ /]R”l uxdudw—/n (um)dud:ﬂ):—/ /Rnl “(u, z)dudz,

which goes to — [pn—1 9" 70, )dx = — [p. '~ when h goes to 0. Secondly,
+

oo
1(/ Qh()lauxdudx/ / u:cdud:c)
h h Rn—1 Rnl

:/n[ p (@) (u, z) gl_a(u’x)]1u>hdudm. (66)

First

By Lemma 20 the function in the right-hand side of (66) converges pointwisely to W*(Vg)g~
as h — 0. Moreover, since y(a — 1) > n, by Lemma 23 it is bounded uniformly in h by an
integrable function. Hence by the Lebesgue dominated convergence Theorem the left-hand-side
of (66) converges (when h — 0) to

(a—1) | W*(Vg)g~
R}

The proof is complete. >

A.2 The R" case

We only give the result and conditions for the R" case.
We let g, W : R" — (0, +00) such that gis C' and [g" = [W =1

Definition 25 (the set F* of admissible couples in R") Let g : R" — (0,400) and W :
R™ — (0,400). We say that the couple (g, W) belongs to F™ with a > n (a > 1 if n=1) if the
following four conditions are satisfied for some y:

(C1) v > max{-"3,1}.

(C2) There ezists a constant A > 0 such that W (z) > Alz|” for all x € R™.

(C3) There exists a constant B > 0 such that |Vg(z)| < B(|z["~! 4+ 1) for all z € R™.
(C4) There ezist a constant C such that C(|z|” + 1) < g(z) for all z € R".
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Theorem 26 Assume that the couple (g, W) is in F*. Then, the derivative at h = 0 of the map

(0,+00) 3 h / QY (g)'

(1a)/VV*;an)‘

1s equal to
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