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New sharp Gagliardo-Nirenberg-Sobolev inequalities and an
improved Borell-Brascamp-Lieb inequality

Francois Bolley* Dario Cordero-Erausquin! Yasuhiro Fujital Ivan Gentil®
and Arnaud Guillin?

February 10, 2017

Abstract

We propose a new Borell-Brascamp-Lieb inequality which leads to novel sharp Euclidean
inequalities such as Gagliardo-Nirenberg-Sobolev inequalities in R™ and in the half-space R}.
This gives a new bridge between the geometric pont of view of the Brunn-Minkowski inequality
and the functional point of view of the Sobolev type inequalities. In this way we unify, simplify
and generalize results by S. Bobkov - M. Ledoux, M. del Pino - J. Dolbeault and B. Nazaret.

Key words: Sobolev inequality, Gagliardo-Nirenberg inequality, Brunn-Minkowski inequality,
Hopf-Lax solution, Hamilton-Jacobi equation

1 Introduction

Sharp inequalities are interesting not only because they correspond to exact solutions of varia-
tional problems (often related to problems in physics) but also because they encode in general
deep geometric information on the underneath space. In the present paper, we shall be inter-
ested in rather general new functional inequalities of Sobolev type, and their links with the
Brunn-Minkowski inequality:

vol, (A + B)Y/™ > vol, (A)Y™ + vol,(B)'/" (1)

for every non empty Borel bounded measurable sets A in R"™, where vol, () denotes Euclidean
volume. If it is now classically known that sharp Sobolev inequalities (see e.g. [BLO8]) may
be derived through this Brunn-Minkowski inequality, we will see that via a new version of its
functional counterpart, namely the Borell-Brascamp-Lieb inequality, we will be able to tackle
both R" case and half-space R"} case for sharp Sobolev and new Gagliardo-Nirenberg inequalities,
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in a rather simple and direct manner. In order to present this novel inequality, let us first
introduce the general Sobolev inequalities in R™ which have inspired our line of thought.

To simplify the notation, let || ||, = ||f||z»®n) denote the LP-norm with respect to Lebesgue
measure. The sharp classical Sobolev inequalities state that for n > 2,p € [1,n), p* = & and

n—p’
every smooth function f on R"”,

* [ < >/
Il < o 2 v )

with -

hp(x) := (1 + |a[r=T) » . (3)
The optimal constants in the Sobolev inequalities have been first exhibited in [Aub76, Tal76].
Quite naturally, these inequalities admit a generalization when the Euclidean norm | - | on R™

is replaced by any norm or quasi-norm || - || on R™. Indeed, if we use a norm || - || to compute
the size of the differential in (2), then the result remains true,

* I < )/
Wy < e JROZ: 0

. _p_ p—n
where [|y||« := supj;<1 = - y- In this case, hp(x) := (1 + [[z|[»-1) »
A natural generalization of this problem may then be the minimization, under integrability
constraints on a function g, of more general quantities than [p, ||Vg|[¥, say of the form

F(Vg)g®
Rn

where F': R" — RU {+00} is a convex function. Note that we have to allow a term g%, o € R
because it can no longer be put inside the gradient if F' is not homogeneous.

A first answer in this direction, which is in fact an example of our main results, is the
following in term of Sobolev type inequality.

Theorem 1 (A first convex inequality) Let n > 2 and W : R™ — (0,400) satisfying
le_” < +00. Then for any smooth function g such that [ W* (Vg)g_” < 400, fgl_” < 400

and
Jooe e

/W*(Vg)g_n > nil /Wl—n’ (5)

with equality if g is equal to W and is convex.

one has

Here W* is the Legendre transform of the function W (see below for details).

We shall see that the family of sharp Sobolev inequalities (4), for p € (1,n) easily follows
from this theorem. Let us mention that the coefficients n and n — 1 in this theorem are not
arbitrary at all: in some aspects, they are the “good” ones to reach the Sobolev inequality,
as we shall see. This may be compared to Corollary 2 of [BLO8] which was derived via the



Prekopa-Leindler inequality, leading to a more involved formulation and proof of the Sobolev
inequalities.

As mentioned above, our work is inspired by the Brunn-Minkowski-Borell theory. In turn,
we are going to shed new light on this theory. It has been observed by S. Bobkov and M. Ledoux
in [BLOO, BLOS8] that Sobolev inequalities can be reached through a functional version of the
Brunn-Minkowski inequality, the so-called Borell-Brascamp-Lieb inequality, due to C. Borell
and H. J. Brascamp - E. H. Lieb ([Bor75, BL76]). However, one can not use the standard
functional version of the inequality. Indeed, there is a subtle game with the dimension. The
standard version states that, for n > 1, given s € [0,1] (and ¢ = 1 — s) and three positive
functions u, v, w : R — (0, 4+oc] such that [u = [v =1 and

Vx,y € R”, w(sz +ty) > (s u_l/"(:v) + tv_l/n(y))_",

/le.

Let us remark that we have stated here the “strongest” version of Borell-Brascamp-Lieb in-
equality (say for the parameter p = 1/n), see e.g. [Gar02, Th. 10.2]. By a simple change
of functions, it turns out that the result can be stated as follows: let three positive functions
g, W, H : R" — (0, +00] such that

then

Vz,y € R", H(sz +ty) < sg(x) +tW(y),

and [W™™ = [¢g~™ = 1. Then
/ H > 1 (6)

One observes that (6) is not strong enough to imply the Sobolev inequality. A version with
n — 1 instead of n would do the job. To solve this issue, S. Bobkov and M. Ledoux used a clas-
sical geometric strengthening of the Brunn-Minkowski inequality, for sets having an hyperplane
section of same volume.

A natural question raised by S. Bobkov and M. Ledoux is whether the Sobolev inequality
can be proved directly from a new kind of Borell-Brascamp-Lieb inequality. We will exhibit such
a new functional inequality, that we believe is the correct one, in the sense that sharp (trace-)
Sobolev inequalities (and actually the above Theorem 1) follow from it, and more generally
new (trace-) Gagliardo-Nirenberg inequalities; moreover it can be easily proved using a mass
transportation argument. Its main form is the following:

Theorem 2 (An extended Borell-Brascamp-Lieb inequality) Let n > 2. Let g,W, H :
R™ — (0, +00] be Borel functions and s € [0,1] andt =1 — s be such that

Vo, y € R, H(sz+ty) <sg(z)+tW(y)

and [W™" = [¢g~" =1. Then

/Hln >s /gln—i—t /Wln. (7)

As we shall see, Theorem 1 appears as a linearization of Theorem 2 for ¢ — 0.



There are more general families of Sobolev type inequalities that have attracted much at-
tention these past years, namely the Gagliardo-Nirenberg inequalities in R™ of the form

1fla < CUVAIR 115

Here the coefficients «, 3, p belong to an adequate range and 6 € [0,1] is fixed by a scaling
condition. Sharp inequalities are known for a certain family of parameters since the pioneering
work of M. del Pino and J. Dolbeault [dD02]: namely, for p > 1, @« = ap/(a — p) and 8 =
p(a —1)/(a — p) where a > p is a free parameter.

This family can be recovered by Theorem 1, or rather an extension of it (see Theorem 4).
In fact this extension turns out not only to be a natural way of recovering this family, but
also allows to extend the family to parameters a < p leading to the new Gagliardo-Nirenberg
inequality with negative powers

a—p -

1Fllyezs < CUV IR IIfIIg-

Here p > aif a > n+1, or p € (a,;,77=) if a € [n,n + 1), and ¢ is fixed by a scaling
condition. Let us note that partial results for a narrower range of such a < p have been proved
by V.-H. Nguyen [Ngul5], by another approach.

A crucial advantage of our approach is also its robustness: it can be applied to reach a
new family of trace Gagliardo-Nirenberg-Sobolev inequalities which extend the trace Sobolev
inequality proved by B. Nazaret [Naz06]. Indeed, letting R” = {(u,z), u > 0,z € R"'} we
obtain the sharp family of inequalities

£l zoors) < CIVFIEon 11| 5 )

Here p > 1, a =p(a—1)/(a —p) and f =p(a—1)/(a — p) where a > p is a free parameter and
again 0 € [0, 1] is fixed by a scaling argument. This is thus the analog of the del Pino-Dolbeaut
family in the trace case.

The paper is organized as follows. In the next section we state and prove the main re-
sults, namely generalizations of Theorem 1 and 2. In Section 3 we show how these results
imply the Sobolev type inequalities: in Section 3.1 we propose a new proof of the Gagliardo-
Nirenberg-Sobolev inequalities, including and extending the del Pino-Dolbeault family, whereas
in Section 3.2, we follow the same procedure to reach trace Gagliardo-Nirenberg-Sobolev in-
equalities. Section 4 is devoted to classical geometric inequalities such as the Prékopa-Leindler
or the classical Borell-Brascamp-Lieb inequalities, with an application to a trace logarithmic
Sobolev inequality. Finally Appendix A deals with a general result on the infimum convolution,
which is a crucial tool for our proofs.

Classical inequalities such as Gagliardo-Nirenberg-Sobolev are valid in R with some restric-
tion on the dimension n. For each result, the dimension n will be specified.

Notation: When the measure is not mentionned, an integral is understood with respect to
Lebesgue measure. In R™, for any z,y € R", |z| denotes the Euclidean norm of z and z - y the
Euclidean scalar product. As already used, || f||, stands for the LP(R™) norm.
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hospitality and participants for discussions on this and related works.
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author is supported in part by JSPS KAKENHI # 15K04949.



2 Main results and proofs

Each result presented in this paper has two formulations : the first one as a convex (or con-
cave) inequality illustrated by Theorem 1 and the second one as a Borell-Brascamp-Lieb type
inequality like Theorem 2.

2.1 Setting and additional tools

To explain this and state our result, let us first fix the setting we are going to work with. It has
two separate cases, the origin of which will be explained below. We are going to measure the
gradient using a function W on R™ that will belong to one of the following two categories:

i. Either W : R — R U {+o0} is a conver fonction. We shall let W* denote its Legendre
transform,

W*(y) = xseuﬂgb{x Yy —Wi(z)}.

For almost every x in the domain of W the function W is differentiable at x and one has
W*(VW(x)) + W(x) =z - VW (z). (8)

ii. Either W is a nonnegative function that is concave on its support Quw = {W > 0}.
More precisely, W is a nonnegative function such that the function W defined on R™ by
W(z) = W(z) if € Qu et —oo otherwise, is concave. In particular Qy is a convex set.
The corresponding Legendre transform is defined by

Wi(y) = inf {z-y—W(z))}= inf {z-y—W(z)} R (9)
z€Qw reR™
As above, W is differentiable at almost every x € Qy with
W (VW (x))+W(x) =z - VW(z). (10)
We refer to the classic book [Roc70] by R. T. Rockafellar for these classical definitions.

One rather naturally comes to such a setting if one keeps in mind the Brunn-Minkowski
theory of convex measures on R" as put forward by C. Borell. Although we will not explicitly
use it, we feel it is necessary to briefly recall it to put our results in perspective. A nonnegative
function G on R" is said to be k-concave with k € R if K G* is concave on its support. In other
words, the definition splits into two categories:

i. If Kk < 0, then G = W'/ with W convex on R”. The Brunn-Minkowski-Borell theory
shows that one should consider the range x € [—1,0). Below we shall let k = —1/a for
a > n with the typical exemples W (z) = 1+ |z|?,¢ > 1 and then G(x) = (1 + |z]|?)~*. The
results above in Theorems 1 and 2 correspond to the extremal case a = n.

ii. If kK > 0, G = W% with W concave on its support. Below we shall let x = 1/a for a > 0
with the typical examples W(z) = (1 — |z|?)4,¢ > 1 and G(z) = (1 — |z]?)%.

The limit case k = 0 is defined as the log-concavity of G.

Crucial arguments in our proof are optimal transportation tools (including Brenier’s map).
So let us briefly describe the mathematical setting and notation on this topic we shall use below.



We let P2(R™) be the space of probability measures p in R™ with a finite second moment,
that is [ |z|?du(x) < +o0o. On the optimal transportation side, Brenier’s Theorem [Bre91] is the
cornerstone of many proofs of functional inequalities. It says that for any probability measure
p and v in Py(R™) with p absolutely continuous with respect to Lebesgue measure then there
exists a convex function ¢ (the so-called Brenier map) on R™ such that v is the image measure
Vp#u of u by Vo, i.e. for any bounded function H on R",

/HWz/HW@@.

From the map ¢ one can define a displacement interpolation from pu to v, introduced by McCann
in [McC97], that is, the path (i1)icp,1) in P2(R™) defined by pt = ((1 —t)Id +tVp)#u, ie. for
any bounded function H

/Hdut - /H((l )+ IV (@) dpa(x). (11)

It is now classical that Brenier’s map gives a value of the Wasserstein distance between p and
v and (f1t);e(0,1) is the geodesic in the Wasserstein space between p an v. These facts will not
be used in our paper.

Assuming that dyu = fdz and dv = gdzr then [McC97] ensures that fdz-almost surely, the
Monge-Ampére equation holds:

f(@) = g(Ve()) det(Vp(2)). (12)

Here V2 is the Alexandrov Hessian of o, which is the absolutely continuous part of the dis-
tributional Hessian of the convex function ¢. Below we shall let Ap be the trace of VZp. All
these notions are explained in full details in [Vil03, Vil09] for instance.

Finally, our last tool will be convexity on the determinant of matrices which we recall now
(see [BV04] for instance).

Lemma 3 (Classical inequalities on the determinant)

o For every k € (0,1/n], the map H — det® H is concave over the set of positive symmetric
matrices. Concavity inequality around the identity implies

det"H <1 —nk+ktrH

for all positive symmetric matriz H.

o For every k < 0, the map H — det® H is convex over the set of positive symmetric
matrices. Convexity inequality around the identity implies

det® H >1—-—nk+ktrH

for all positive symmetric matriz H.

2.2 Convex and concave inequalities (Generalization of Th. 1)

The next two results are called conver and concave inequalities since extremal functions are
convex in the first case and concave in the second one.



Theorem 4 (Convex inequalities) Let n > 1. Let a > n (and a > 1 if n = 1) and let
W :R™ — (0,400) such that [ W1=% < +00. Then for any positive and smooth function g such
that [ W*(Vg)g™® < +oo, [¢'™* < +00 and

Jore e

(a— 1)/W*(Vg)g_a+ (an)/gl_a > /Wl_“, (13)

with equality if g =W and is convex.

one has

Proof
< Let ¢ be Brenier’s map such that Vp#g~% = W~ Then, from (12), almost surely,

W(V) = g (det V) Ya,
Moreover, since a > n, from case one in Lemma 3 with k¥ = 1/a we have almost surely
(detV2g0)1/a <1- L ngp.
a a

Integrating with respect to the measure g~ *dz we get
—a . E 1—a } l1-a
WVelg™ < (1-—) [ 97+ [ Apg™,

o [W(veg e <@-n) [¢+@-1) [ Vg Vg
by integration by parts, justified as in [CNV04, Lem. 7]. But

that is,

Vg-Veo <W (V) +W*(Vg)
almost everywhere, so collecting terms we have
/WVgo e a—l/W*Vgg +(a—n)/g1 e,

Finally [W(Vp)g~® = [ W!7% since Vp#g~* = W~ This ends the proof of the inequality.
Now, when g = W and is convex, then the relation (8) and integration by parts ensures that
inequality (13) is an equality. >

The companion “concave” case is as follows.

Theorem 5 (Concave inequalities) Letn > 1,a >0, and W : R” — [0, +00). Then for any
nonnegative smooth function g such that

fr=

(a+1) /W* Vg)g* + (a +n/ e < /W”a (14)

with equality if g = W and is concave on its support (in the sense above).

we have



Proof
<1 The proof follows the previous one. Let ¢ be Brenier’s map such that Vp#g* = W, Then,
from case two in Lemma 3,

e s (14 ™), L
W (V) = g (det V) 2(1+a)g ~gAg.

We obtain inequality (14) again by integrating with respect to the measure g%dz, integrating
by parts and using the almost everywhere inequality

Vo Vg = W(Ve) +W.(Vg).

When g = W and is concave on its support, the inequality is an equality by (10). >

2.3 Generalization of the Borell-Brascamp-Lieb inequality

If Theorems 4 and 5 appear as convex or concave generalizations of Theorem 1 (which is The-
orem 4 for a = n), we now present two generalizations of Theorem 2 in the sense of Borell-
Brascamp-Lieb type inequality.

The first one concerns the convex case.

Theorem 6 (P-Borell-Brascamp-Lieb inequality) Let a > n > 1 (anda > 1 ifn =1)
and let ® : RT — RT be a C'-concave function.
Let also g,W, H : R™ — (0, +0c| be Borel functions and t € [0,1], s =1 —t, be such that

Va,y € R, H(sxz +ty) < sg(x) +tW(y) (15)

and [W=%= [g~*=1. Then

/CD(H)H“ > s/(I)(g)ga—i-t/(I)(W)Wa. (16)

Proof
<1 The theorem can be proved in two ways, following the ideas from F. Barthe or R. J. McCann’s
PhDs [Bar97, McC94].

Let ¢ be Brenier’s map such that Vo#g~% = W% Then from the Monge-Ampere equa-
tion (12), we have that almost surely

W (Vo) = g det(VZp)'/",

Moreover, it follows from the assumptions that ® is nondecreasing and then R™ > z
®(x)z~“ is nonincreasing.

First proof: This proof is a little bit formal since we use a change of variables formula without
proof. However, it is useful to fix the ideas, and helps to follow the rigorous proof below.
So, by change of variable and using both assumptions on ® we have

/CI)(H)H“ = /@(H(sm +tVo(z)))H (sz 4+ tVip(z)) det(sId + tV3p(z))dx
> /CID(sg +tW (V) (sg +tW (V) “det(sld + tV3p).

> / [s@(g) + t2(W (V)] (3 + tdet(VQcp)l/a) - det(sId + tV3p) g~



Since a > n, the first case in Lemma 3 with k = 1/a yields
det(sId 4 tV2¢) > (s + tdet(V24p)1/a)a. (17)

Finally [ @(W(Ve))g~® = [ ®(W)W ™ by image measure property since Vo#g™ % = W™
This concludes the argument, as

Jeunmes [0 + @ ©ols =5 [+t [arwe

Second proof: We use the idea of R. J. McCann. From [McC94, Lem. D.1], let (pt)icp0,1) be
the density of the geodesic path between ¢g~* and W~%; as defined in (11); then almost surely

pi(Veor) < (sg +tW (V)™
where @y (x) = 5@ + tp(x), z € R™. Multiplying the inequality by ®(sg + tW(V)), then a.s.
P(sg +tW(Ve))p(Vipr) < @(sg +tW (V) (sg +tW (V)™
Hecne, using both assumptions on ®, we get

[s@(9) +t@(W (V)] pe(Vior) < ®(H sz + Vi) H(sz+ Vo)™ = ®(H(Vipu(2)) H(Vepu(2)) "

Now Vi, 0 Vi =1d by convex analysis (a.s. in R”, see for instance [Vil03, Thm. 11 (iv)]) and
the inequality can be written as

[s@(g9(Ve})) + t2(W(Vep(Vp)))] e < ©(H)H .

Then inequality (16) follows by integration, since from (11)

/ [s0(g(Vg})) + tB(W (Vo (V)] e = s / B(g)g "+t / (W (Vi))g ™

:s/cp(g)g—a+t/q>(W)W—a.

Theorem 2 is then a particular case of Theorem 6 when @ is the identity function and
a = n. Roughly speaking, there is a hierarchy between all the family of inequalities (16) and
inequality (7) (when a = n) appears as the strongest one.

The concave inequality in Theorem 5 also has a Borell-Brascamp-Lieb formulation. We only
state it for power functions ® since the general case is less appealing.

Theorem 7 (A concave Borell-Brascamp-Lieb inequality) Let n > 1 and a > 0. Let
also g, W, H : R™ — [0,4+00) be Borel functions and t € [0,1] and s =1 —t be such that

Vo, y € R", H(sx +ty) > sg(z) +tW (y) (18)

and [W* = [g* =1. Then

/H1+a > 8n+a+1/gl+a+sn+at/wl+a+(n+a)8n+at/gl+a. (19)



Inequality (16) is optimal in the sense that if ¢ = W and is convex, then one can exhibit
a map H which depends on s such that inequality (16) is an equality. This is not the case for
inequality (19) which is less powerful than (16). Nevertheless the linearization of (19) (when ¢
goes to 0) becomes optimal and gives optimal Gagliardo-Nirenberg inequalities in the concave
case (cf. Section 3.1.2).

Proof
<1 We start as in the proof of Theorem 6, sticking to the first formal argument for size limitation.
Let ¢ be Brenier’s map such that Vop#g* = W®. Then almost surely,

g* =W (V) det(V2<p).

By assumption on ¢ and the concavity inequality (17) we have

/HH“ —/HH“(sx+tV@(x))det(sld+tv290(“"))dx
> / (sg + W (V)" det(s1d + 1 V)

> / (sg + tW (Vi) <s + #(det v%)l/")”.

Now we keep only the order zero and one terms in the Taylor expansion in ¢ of the two terms
above:

t W 1+a
(sg + tW(ch)Ha = (Sg)H'“(l + S(gVSO)) > gltaglte 4 (a+ 1)s"g*W (Vo);

( —l—t(d tv? )1/n)n7 n l—i-f 9 “/n n> n n—1ly g o/n
S e (%2 =S s W(Vgp) =Z 8 ns W(VSO) .

Hence

/H1+a > Sn+a+1 /gl-HZ + (1 + a)5n+at/gaW(v<p) + n8n+at/gaW(Vg0)< g
Then in the last term we apply the inequality
nX " > (n+a)X —a,

for X > 0 with X = g/W (V). We obtain the desired inequality. ©>

2.4 Dynamical formulation of generalized Borell-Brascamp-Lieb
inequality

Borell-Brascamp-Lieb inequalities admit a dynamical formulation given by the largest function
H. Consider the following inf-convolution, defined for any functions W, g : R" — (0,00], h > 0

and x € R” by
. r—y .
Q (9)@) = { S {g(” * hW( h > } =0 (20)
g(z) ifh=0

10



or equivalently
Qn (9)(x) = Inf {g9(z — hz) +hW(2)}.

Then the constraint (15) implies that the inf-convolution

H(z) = Q. (9)(x/s), xR

if the best function H satisfying (15). From this observation, the ®-Borell-Brascamp-Lieb
inequality (16) admits an equivalent dynamical formulation.

Corollary 8 (Dynamical formulation of ®-Borell-Brascamp-Lieb) Letn > 1 and g, W :
R"™ — (0,+00] and ® as in Theorem 6.

Ifa>nand [g7 = [W™% =1 then for any h > 0 the ®-Borell-Brascamp-Lieb inequal-
ity (16) is equivalent to

a+n (ol @)l 0 = 1y [ewe+ 11y [emw @

In particular, when a = n and ®(zx) = z, the extended Borell-Brascamp-Lieb inequality (7)
1 equivalent to

Vh >0, /QhW(g)ln > /gln + h/Wln. (22)

We assume that g is such that all quantities are well defined in the previous two inequalities.
Let us notice that when g = W and is convex then inequalities (21) and (22) are equalities.

We have nothing to prove since inequality (21) is only a reformulation of (16). We only have
to check the optimal cases. When g = W and is convex then, from (20),

vz € R™, QY (g)(z) = (1+ h)W<hi1>.

It follows that, in this case, inequalities (21) and (22) are equalities.
Inequalities (21) and (22) are equalities when h = 0. Moreover, as explained in Appendix A,
generally for h — 0 we observe that

QY g=g—hW*(Vg)+o(h),

so that Theorem 6 admits a linearization as a convex inequality. With the same conditions on
the function ® as in Theorem 6, from inequality (21) we obtain

[ (™2 - 2@))a + [ (- nt D2t - g @)a > [amrwe, @)

for a class of functions g and W (which we do not try to carefully describe for a general ®). Of
course again inequality (23) is optimal: equality holds when g = W and is convex. For the case
®(x) = x, Appendix A justifies (23), starting from (21), for (g, W) in the space F* described in
Appendix A.2, Definition 22. This is the most important case, and then we recover Theorem 4.
When a = n and again ®(z) = 2 we recover Theorem 1.
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The concave Borell-Brascamp-Lieb inequality (19) also admits a dynamical formulation with
the sup-convolution instead of the inf-convolution. Consider W, g : R™ — [0,00), h > 0 and

z € R™ and let
T—y .
sup 4 g(y +hW( )} if h >0,
RY (g)(x) = R{ ®) h

g(x) it h=0.

Then the constraint (18) implies that the best function H if given by the sup-convolution,
Vz € R", H(x) = SRF//S(Q)(QZ/S).

From this observation, the “concave” Borell-Brascamp-Lieb inequality (19) admits the equiva-
lent following dynamical formulation: if [ W%z = [ g*dx = 1 then forall h > 0,

/RhW(g)H-a 2/gl+“+h/Wl+a+(n—i—a)h/g““. (24)

Similarly to the convex cas, the properties of the semigroup (R}VLV)DO ensure that the deriva-
tive of (24) in h (at h = 0) implies inequality (14). We will not give more details on this
computation.

3 Applications to sharp Euclidean inequalities

The main purpose of this section is twofolds: first we will see that the results of Section 2 imply
new sharp Gagliardo-Nirenberg-Sobolev inequalities in R™. Secondly, we will give the first sharp
Gagliardo-Nirenberg inequalities on the half-space R}, which semm completely new.

In all this section, || - || denotes an arbitrary norm in R" and for y € R™ we let ||y||, =
SUP||g||<1 Z - ¥ its dual norm. Recall that the Legendre transform of  — |[z|[?/q (with ¢ > 1) is
the function y — ||z||%/p for 1/p+1/q = 1.

3.1 The R" case

A family of sharp Gagliardo-Nirenberg-Sobolev inequalities in R™ was first proved by M. del
Pino and J. Dolbeault in [dD02]. The family was generalized to an arbitrary norm in [CNV04]
by using the mass transportation method proposed by the second author in [CE02].

The del Pino-Dolbeault Gagliardo-Nirenberg family of inequalities (including the Sobolev
inequality) is a consequence of Theorems 4 and 5. We will prove in a rather direct and easy
way that our extended Borell-Brascamp-Lieb inequality (7) implies the Gagliardo- Nirenberg-
Sobolev inequalities, in the known range but also a new range of parameters. As recalled in the
introduction, S. Bobkov and M. Ledoux [BL08] have also derived the Sobolev inequality from
the Brunn-Minkowski inequality, but we believe that our method is more intuitive than theirs.

3.1.1 From Theorem 4 to convex Gagliardo-Nirenberg-Sobolev inequalities

Letn>1,a>n(a>1ifn=1)and g > 1. Let W be defined by W (z) = quHq +C for x € R”,

where the constant C' > 0 is such that [[W~ = 1. Then, for any y € R", W*(y) = % -C
where 1/p+1/q = 1.

12



We would like to apply Theorem 4 with this fixed function W. First, let us notice that C is
well defined and [ W1= is finite whenever

{Ifa}n—Fl then p > 1

If a€ln,n+1) then 1<p< 4= =p (p=n when a=n),

(25)

These constraints are illustrated in Figure 1 with the case n = 4, Equation (25) is satisfied
whenever the couple (a,p) is in the black or the grey area.

arn/(n+1—a)

14F
12F
10F

ara

o N b O ©
T

3 4 nil 6 7 8

Figure 1: Ranges of admissible parameters (a,p) with n =4

Assuming that the parameters a and p are in this admissible set, then for any smooth
function g : R — R* such that [ ¢~® =1, inequality (13) in Theorem 4 becomes

. P
D< ap 1/”23”* —|—(a—n)/gl_“. (26)

Here D = (a —1)C + [ W1 is well defined, W and a > 1 being fixed. This inequality is the
cornerstone of this section.

Sobolev inequalities: As a warm up, let us consider a = n, n > 2 and p € (1,n). Then

inequality (26) becomes
by [l
n—1" qg"
for any smooth function g such that [ ¢~ = 1. Letting f = g%, then the inequality becomes

p
n—p
‘ s/!lvflli’
D

Dp
n—1

_np_
for any smooth function f such that [ f7=» = 1. Removing the normalization we have

p(/fﬂ)n;psjuwue.

The inequality is of course optimal since equality holds when ¢ = W or equivalently when
p—n

f(z) = (C’ + W) ? . This classical result can be summarized as follows.

Dp
n—1

n—p
p

13



Theorem 9 (Sobolev inequalities) Letn > 2, p € (1,n) and p* = np/(n—p). The following

inequality
1

([ gcn,p(/wmzz);

holds for any smooth function f such that quantities are well defined; here C,, ,, is the optimal

constant reached by the map R"™ > x — (1 + HJZH‘I)%

Gagliardo-Nirenberg inequalities: Consider now a > n (the case a = n corresponds to

Sobolev) and p # a satisfying conditions (25). Letting h = g%, inequality (26) becomes

1 3D2/||Vh||z+<an>/hp33%7

_ap_
for any smooth function h such that [ha=» = 1, where Dy is an explicit positive constant.
Removing the normalization, the inequality becomes

ap ? a—1
</h“p> SDz/HVth—i—(a—n)/hpap

for all smooth h (such that inequalities are well defined)

1-p

(jo7)"

To obtain a compact form of this inequality, we replace h(xz) = f(Az) and optimize over
A > 0. We get for another explicit constant Dj

(/fa“’%)a“_”p(l_i_zw)<pg(/ |er||§:) (/ i )“ v (21)

Z](I(JIL;)T:)-?’I, (0,1). There are now two cases, depending on the sign of (1 — Lop w) =

a—p
aap% and 2= }Dw If p < a then both coefficients are positive, as one can check by

considering he cases a < n+ 1 and a > n + 1: this leads to the first case in Theorem 10 below.
If p > a, then under the constraints (25) both coefficients are negative: this leads to the second
case below.

Results obtained can be summarized as follows,

where w =

Theorem 10 (Gagliardo-Nirenberg inequalities) Let n > 1 and a > n.

e For any 1 < p < a, the inequality

ap af;p % a—1 pcg%pl(l_e)
() o ()=

holds for any smooth function f such that quantities are well defined. Here 0 € [0,1] is the
unique solution of

a—7p n—p a—p
- 0 - +( 9)@_1 (29)

and D;fp o Us the optimal constant given by the extremal function R™ 3 x — (1 + ||x\|q)%

14



e [fp>awhena>n+1, orifpc (a ) when a € [n,n + 1), then the inequality

_n_
'n+l—a

/

( / fpiii) = b ( / ||Vf||%:) ’ ( / f) Ea (30)

holds for any smooth function f such that quantities are well defined. Here ' € [0,1] is
the unique solution of

p—a p—n npb—a
=0 1—-0")—— 31
a—1 n + ) a (31)
and D, ,, , is the optimal constant given by the extremal function R™ > x + (1 + ||x\|q)p%

In this case, the exponents in the integrals are negative.

Remark 11 o Inequalities (28) is the del Pino-Dolbeault family of optimal Gagliardo-Nirenberg
inequalities in R™. It correspond to parameters a and p in the black area in Figure 1.

e Inequalities (30) are Gagliardo-Nirenberg inequalities with a negative exponent, that is
pg%zl) < 0 and % < 0. To obtain such inequalities with the same optimal functions, the
range of parameters (25) seems to be optimal. In this case, the couple (a,p) is in the grey
area in Figure 1.

Let us note that this family, with a smaller range of parameters (a,p), has been obtained
by V.-H. Nguyen [Ngul5, Th. 3.1 (ii)]. To our knowledge, the family (30) is new except
for the part of the family proved by Nguyen.

e In [BGL14, Th. 6.10.4] it has been shown how to deduce sharp Gagliardo-Nirenberg inequal-
ities from the Sobolev inequality, but only for the parameters a = n+ m/2, m € N. The
idea is to work in higher dimensions, for instance R™"™ with a function g(x,y) = (h(z) +
[y|[P)~(+m=2/2 and to use the scaling property of the Lebesgue measure. From inequal-
ity (13) of Theorem 4 we can also use higher dimensions to reach all the whole family (28)
of Gagliardo-Nirenberg inequalities. As in [BGL14], we consider g(z,y) = h(z)+||y||" and
W(x,y) = ||z||” + ||ly||"” + C in R™*™ for a parameter r > 1. The additional parameter
r > 1 allows us to reach all the full sharp family (28).

3.1.2 From Theorem 5 to concave Gagliardo-Nirenberg inequalities
Let n > 1. Let a > 0 and ¢ > 1, and define

C
(1 =1{l2[1)+,

Ve e R", W(x)=—
q

where C'is such that [ W* = 1. From the definition (9), we have

1— .
—CP e —C it il < C

—[lyll« if ||yl >C

where 1/p + 1/q = 1. In particular from the Young inequality

ct-p C

Vy e R", Wi(y) 2 yll¥ — . (32)

15



We can now apply inequality (14) with this function W: for any smooth and nonnegative
function ¢ such that [ ¢ =1,

C

1-p C
/||vm|fzga+q<a+1>—/wa+1.

(a+n)/gl+a§(a+1) ”

atp
Let us notice that %(a +1)— fW“‘Hdaz > 0. Let now h = ¢ . then, for any nonnegative
function h such that [ hatr = 1,

14+a
/hp‘:“f' §D1/||Vh|’€+D27

where D1 and Do are explicit constants. Removing the normalization, one has, for any smooth
and positive function h,

1-p 1ta
p1+7a _ap a _ap a
[ <oy fiwne ([n#) " wpa( f5) "

It is enough to optimize by scaling to get an inequality with a compact form. We have obtained
the result proved in [dD02].

Theorem 12 (Concave Gagliardo-Nirenberg inequalities) Let n > 1. For any p > 1
and a > 0 the inequality

atp L3 atp (1_g)
pa+1 p(a+1) P P ap ap
Jrate < Dnpa IV FIIE fotp (33)

holds for any smooth and nonnegative function f. Here 6 € [0,1] is the unique solution of

a+p_9n—p+(1_9>a+p

— 34
a+1 n a (34)

atp
and Dy, p q is the optimal constant given by the extremal function R™ > x — (1 — |[|z|[?)," .

The obtained inequality is optimal since (14) is an equality when g = W. Moreover, when

g = W, then almost surely ||Vg||« < C which implies that (32) is an equality.

3.2 The R case, trace inequalities

For any n > 2, let
R" = {z = (u,z), u> 0,z € R" '},

Then OR? = {(0,z), z € R"'} =R""!. For e = (1,0) €e R x R"! and h € R we let

Mhe =R + he = {(u,x), u>h,x € R"}.

16



3.2.1 Convex inequalities in R}
The Borell-Brascamp-Lieb inequality (16) with ®(z) = x takes the following form in R}.

Proposition 13 (Trace Borell-Brascamp-Lieb inequality) Let a > n, g : R} — (0,00)
and W : R%, — (0,00). Assume that f]M g %= fRie W~—%=1. Then, for all h > 0,

Arner [ Qg s / g rn [ wie, (35)

n n n
R+he R+ R+E

where for any (u,z) € RY, ,

QY (g)(wx)= inf {g(v,y)+hW<u;U,x;y>}.

(v,y)ERY, 0<v<u—h

Moreover (35) is an equality when g(z) = W(z +e) for any z € R} and is convex.
Proof .
< Let g: R™ — (0,00] and W : R™ — (0, 00| be defined by

v [ glx)if z e R} =« | W(x)if x € R,
9lz) = { tooit g Ry M W@ = iR, (36)

Then fRn g *= fR" W-e = 1. Hence, we can apply the dynamical formulation (21) of Theo-

rem 6 with ®(x) = x and the functions g, W. For any h > 0 we obtain

A+ [ Q@) > / den [ wie
R™ R

n n
+ R+e

where

V(u,z) €R", QY (§)(u,z) = int {g(%y) n hW(u v o= y) } _
(v,y)eR™ h h
From the definition of g and W, the infimum can be restricted to 0 < v < u — h, so that
QY (3)(u,z) is equal to +o0o when u < h, and to Q}Y (¢9)(x) otherwise. It implies

V~V~1fa_ W~1fa_ W 1—a
- Qp (9) = /Rihe Qp (9) = /Rﬁhe Qp (9%

which gives inequality (35).
When g(z) = W(z + €) and W is convex, then by convexity

QY (9)(u,z) = (h+ 1)W<Zj:’hj_1>

n

for any (u,z) € RY,,.

Then inequality (35) is an equality. >
As observed in Section 2.4, a Borell-Brascamp-Lieb type inequality on R™ implies a convex
inequality. It is also the case on R}, since

oo

QY (9)t = / QY (9)' " (u, z)dudz

R7,. h JRe-1

17



and we can compute the derivative of (35) on h = 0.
Assume that (g, W) is in F¢ as in Definition 22. Then by Theorem 25 in the appendix,

d o0 .
dh‘ = / / Qy (9)' " (u, z)dudz = / gdz + (a — 1) L(a vQ)dz,
e OR% R?

where we recall the definition of the Legendre transform: for any y € R",

Wi(y) = inf {z.y—W(x)}. (37)

z€RY,

So we have obtained:

Corollary 14 (Trace convex inequality) Let a > n. Let W : R}, — (0,00) be a con-
vex function such that fRie W= =1. Let g : Rt — (0,00) be a smooth function satisfying

Jgn 7% = 1. Assume that the couple (g, W) belongs to F¢ (see Definition 22 of Section A.1).
+

Then
(-1 [ V9 (V9)+(a—n)/R o= [

_ Wl=dz + / gt (38)
RT 9 oR™
Moreover (38) is an equality when g(z) = W(z +e) for z € R, and is convex.

n n
+ +e

Remark 15 Inequality (38) can also be proved directly by mass transportation and integration
by parts.

We follow Section 3.1 to get trace Gagliardo-Nirenberg-Sobolev inequalities from Corol-
lary 14. To use inequality (38) we need to assume that the couple (g, W) is in F§ as in
Definition 22.

First we need to extend inequality (38) to a reasonable couple of functions (g, W).

Let a > n and ¢ > 1. Let W(z) = CW for any z € R"} ., where the constant C' > 0 is such
that [z, W~% = 1. Condition (C2) of Definition 22 is not necessarily satisfied if for instance
+e

a € [n,n+1)and =7 2 q > 1. To remove this restriction we need to approximate the function
W: for any € > 0 we let v > max{_-"7,1} and

IElIS

We(z) = C; +elz|?,

where C. is such that [p, W7 % =1.
+e

Then the function W, satisfies (C2) and + satisfies (C1). Then inequality (38) is valid with
the function W, for any function g satisfying [pn g~ = 1, (C3) and (C4). Moreover C. — C
+

and W (y) — W*(y), y € R", when € — 0. Then for any function g satisfying [pn g7% = 1,
+

(C3) and (C4), inequality (38) is valid with the function W.
Now, for any y € R",

q q p
W*(y) = sup {m-y—C”Z” }s sup {”“’-y—C”qu }:Cl_p”yH*' (39)

z€RY, zeR? p
where 1/p + 1/g = 1. From this observation, Corollary 14 implies

-1 {k’
Cl*pa / HviH +(a_n)/
p Jr Y R

n
+

glfa 2 W1a+/ glfa (40)
RY, OR’}

n
+

18



for any function g satisfying fRi g *=1, (C38)and (C4).

It has to be mentioned that inequality (40) is still optimal, despite inequality (39). Indeed,
when g(z) = W(z +e) (x € R}), then the minimum in (37) at the point Vg(z) is reached in
R, and then (39) is an equality.

Inequality (40) is again the cornerstone of this section.

Sobolev trace inequalities: Again, as a warm up, let us assume that a = n. Then the
inequality (40) becomes

_ P
/ glfn < Cl*p n—1 / Hv:rng* _ Wlfn
IR p Jrr 9 R7,

n
+

for any smooth function g satisfying [ ¢~™ =1 and (C3) and (C4). Assume now that p € (1,n)
and let f = g%. Then this inequality becomes

(n=1) -1 p
| gcl—P”( P ) L= [ i (41)
OR™ p n—p R R%

under the condition fRi f nr = 1.

We now need to extend the previous inequality to all smooth and compactly supported
function f in R} (it does not mean that f vanishes in OR’} ). For this, consider a smooth and
compactly supported function f in R’} and let

n—p

fe(x) =clz+e| 7P +cof(n),

pn

__pP
where 7 satisfies (C1) and ¢, is such that [p, f&'" = 1. Then g. = f. """ satisfies (C3) and
+

(C4). Moreover c. — 1 when € goes to 0 and then inequality (41) is then valid for the function f.
Removing the normalization we have for any smooth function f,

/ fPde < A / IV flIndz 877 — BAP,
oR? R?

where
n—p
-1 pn_ b —1 P
p=2r=l g / frrdz| Azcl—P”( P ) and B:/ Windz,
n—p R? p n—p R”,
Equivalently, with u = % = Z—:IIJ and v = f)fp (which satisfy u,v > 1 and 1/u+1/v=1)
_ A - 1 -
£ <Bo|o [ v - 6.
IR Bv Jrn v

Now the Young inequality zy < z*/u + y¥/v with

A N
x=/ VAP and y— P
B’U R:—

orY ~ (By)itin \n— 1 RY )

+

yields
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The proof of optimality it is a little bit technical and will be given below in the more general
case of Theorem 17. It is also given in [Naz06]. Equality holds when g(z) = W(z + ¢€) or

_n—p
equivalently when f(z) = (C@) " for z e R%.

We have thus obtained the following result by B. Nazaret [Naz06], who promoted the idea
of adding a vector e to the map W.

Theorem 16 (Trace Sobolev inequalities from [Naz06]|) For any 1 < p <n and for p =
p(n —1)/(n — p) the Sobolev inequality

1/p 1/p
( / fﬁdx) snn,p( / uwuw)
OR™ R}

holds for any smooth function f on Rl such that quantities are well defined. Here

(o, W) i

(Jus I19R22) "

Dy p =
1s the optimal constant, with
hp(2) = |z +el[ 71, z€RL.

Gagliardo-Nirenberg trace inequalities: Assume now thata >n >p > 1andlet h = g%.
Then the inequality (40) can be written as

a=1 -1 p
/ hpaidxgclpa< P )/ HVhH{fdz—l—(a—n)/
OR™ p a—p R” R

for any smooth and compactly supported functions i in R’} such that fR” har = 1. In this
+

a—1 _
hPa=rdz — / wlt=eqz
T R,

case we use the same trick as for the Sobolev inequality to remove the conditions (C%) and (C4)
of Definition 22.
Removing the normalization, then for all smooth function h,

a—1 —1 p - a—1 a—
/ R (p > / VA2 875 — / WGP 4+ (a = n) / W
ORT p \a—-p R? R?, R w2)

with now
a—p

8= (/ hap—apdz> .
R}

Let u = Z—:; and v = Zf_i, which satisfy u,v > 1 and 1/u + 1/v = 1. As for the Sobolev

inequality we rewrite the right-hand side of (42) as

— p _ a—
e P LG L e L e
p a—p R R”

+e

a—1

A p=1 ]
e
R7? v

=B
Y Bv
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with

-1 p
A= Cl_pa< P > and B = wl-e,
p \a—p R

From the Young inequality applied to the parameters u,v and

A p=1
v= oo | VAL and y= g 43)
Bv R™
+
we get
a1 a—1
—1 p p=1 e= Aa-r — o
o (LN enge - [ wieis < p(/ "Vh'@
D a—p R” R%, (Bv)e=r a—1 Ry
(44)
and then

a—1

a—1
a=1 Aa=p — “r a=1
/ Wirde < 22 p(/ |Vh|\§jdz) +(a—n)/ Wiz (45)
OR™ (Bv)afp@—l R™ R

n
+

from (42). For any A > 0, we replace h(z) = f(Az) for z € R}. We obtain

a—1

a—1
a—1 (a=n)(p=1) Aa-p — ap a—1
[l < e ap(/ HVf||z:dZ) A a—n) [ frirdz. (46)
R (Bv)er @~ 1 \Jry R™

Taking the infimum over A > 0 gives

a—p 8 (1—0)—2=2
a—1 pla=1) P a1 pa—1)
/ fPerdx <D / |V flEdz / fPa=rdz .
OR™ R R

for an explicit constant D and 6 € [0, 1] being the unique parameter satisfying

—1g-— _ _
e Bt L A ) (47)

n a—1 n a—1

‘We have obtained:

Theorem 17 (Gagliardo-Nirenberg trace inequalities) For any a > n > p > 1, the

Gagliardo-Nirenberg inequality
4 (1_6)1)((1@_7171)
N (48)
R%

a—p

e p(a—1)

P da < Do / IV flIPdz
OR™ R

holds for any smooth function f on R} such that quantities are well defined. Here 0 is defined
in (47) and Dy, p o is the optimal constant, reached when

SIS

f(2) = hy(z) = Iz + el »1, zeRL.
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When a = n, then 6§ = 1 and we recover the trace Sobolev inequality of Theorem 16.

Proof
< From the above computation we only have to prove that the inequality (48) is optimal.

First, it follows from Corollary 14 that inequality (42) is an equality when

Vi EeRY, h(z) = hp(z) = ||z + el 5T,

the function h;, does not need to be normalized. Moreover, if inequality (44) is an equality, then
it is also the case for (45) and then (48). So, we only have to prove that (44) is an equality
when h = h;,, which sums up to the fact that the Young inequality is an equality. This is the
case when z = y¥~! in (43), that is,

A p=1\ v—1
R p — pa—
B [ IHlEas = (550) "

or equivalently

M
A _ap \ “
o [ Iwnlzas = ([ e )
Bv Jey RY
Let now Zo = [gn ||z + €||”%dz for a > 0. Then
+
1l—a _ p
=10, B=T4T.. and [Vhlldz = (=2 ) o
p 1 p—1 p—1 p—1 R™ P 1 p—1

+

from their respective definition. Then, from the definition of A, equality in the Young inequality
indeed holds. This finally gives equality for the map h. It has to be mentioned that the case
a = n gives the optimality of the trace Sobolev inequality of Theorem 16. >

Remark 18

o We conjecture that the function hy is the only optimal function up to dilatation and trans-
lation.

o [t was observed in [dD03] that the Euclidean logarithmic Sobolev inequality can be recovered
from the classical Gagliardo-Nirenberg inequality (28) by letting a go to +oo. In this case,
a key point is that 0 in equation (29) goes to 0 when a — oo. In the present case of
R%, when a — +o00, 0 in equation (47), goes to 1/p: hence the method fails in R';.. The
logarithmic Sobolev inequality in R} will be studied in Section 4.

o As for the Gagliardo-Nirenberg in R™, the inequality (48) can be proved by using inequal-
ity (38) with a = n in higher dimension, as proposed in Remark 11.

4 Remarks on classical inequalities in this context

Let us investigate, from the previous point of view, classical inequalities as the Borell-Brascamp-
Lieb and Prékopa-Leindler inequalities.

As for the modified Borell-Brascamp-lieb inequality, the classical inequality (6) admits a
dynamical formulation.
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Let W, g : R — (0, +00] satisfying [ ¢~ = [[W~™ = 1. Then, in the notation of Section 2.4,
the classical Borell-Brascamp-Lieb inequality (6) is equivalent to

Vh >0, / QY (g™ >1. (49)

In other words, letting A(h) = [Q}/(g)™" for h > 0, then A(0) = 1 and A(h) > 1 for all h.
More surprising, it appears that lim,_,. A(h) = 1, since Q) (g)(z) = hQ’{/h(W)(a:/h) for any
h >0 and x € R™

As a consequence, using the same method as in Section 2.4, the classical Borell-Brascamp-
Lieb inequality leads to the convexity inequality (13) with a =n 4+ 1.

Corollary 19 ([BGG15]) Let W : R" — (0,400) be convezr and such that [ W™ =1. Then
for any positive and smooth function g such that [ g~ =1,

()t

As we can see from Section 3, inequality (50) implies the family of Gagliardo-Nirenberg
inequalities only for the parameters a > n + 1. In particular, it does not imply the Sobolev
inequality as pointed out by S. Bobkov and M. Ledoux in [BLOS|.

The Prékopa-Leindler inequality is an infinite dimensional version of the Borell-Brascamp-
Lieb inequality. It states that given H,W,g : R” — R, ¢ € [0,1] and s = 1 — ¢ satisfying
fe_nge_wzland

Vx,y € R”, H((1—-t)x+ty) < (1 —1t)g(x) +tW(y),

/ einl.

The Prékopa-Leindler inequality also admits a dynamical formulation: for any g such that
f e 9dr =1,

then

Vh >0 / e TR @ > (14 ), (51)

Again, as for previous inequalities, it admits a linearization, recovering the general logarithmic
Sobolev inequality proved by the third author in [Gen03, Gen08]:

Corollary 20 (Euclidean logarithmic Sobolev inequality) For any convex function W :
R™ — (0, +00) and any smooth function g on R™ such that [e™9 = fe_W =1,

[ g+ w g =n (52)

Moreover equality holds when g = W and is conver.

Let us observe quality follows from (8) when g = W and is convex.

Inequality (52) is equivalent to

Entg, (f%) = - f2logf;2dm§/w W*<—2vff)f2dx—n s f2da,
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for any smooth function f (without normalization condition). For instance, when W(z) =
[|z||2+C then after scaling optimization we get the LP-Euclidean logarithmic Sobolev inequality

fHVin’dx).

n
Entda:(fp> < p/ W

(53)

n

fPdz log (Ep

Here 1/p+1/q = 1 and L, is the optimal constant. It is interesting to notice that this inequality
has been first obtained in [dD03] as a limit case of the Gagliardo-Nirenberg inequality (28) when
a goes to infinity, and then generalized in [Gen03].

What is remarkable is that the same computation may be performed in R’}. Indeed, as in
Section 3.2, let W : R, — R and g : R? — R such that [, eV = [, €79 =1, and define
+ +

W and § as in (36). Then

/ e G (1) = /°° / o TR O (9)(w) gy 1
R™ )

and inequality (51) becomes

/ / e~ RN @) g 4 > (1+h)".
h Rn—1

Its linearization when h tends to O is then

J

whenever the function g is in a appropriate set of functions. We will not give here more details.
As in Section 3.2.1, let now ¢ > 1, || - || be a norm in R”, and let W (z) = C’@ for z € R},
where C' is such that [, eV =1. Then
“+e

(g9 +W*(Vg))e® > n+ / (54)

7 OR,

p
v e Ry, we(y) < el

with 1/p+1/q = 1. Let then f be a posiitve function on R’} such that [p, f? = 1, and apply
+

inequality (54) to g = —plog f. After removing the normalization we obtain
fP o\!P
Entg, (f7) :/ fPlog ———dz < (> / \|Vf||§zdx—n/ fpdaj—/ fPdz (55)
R7 fRi frdx p R™ R IR
JEDIE an
where C' = / e ¢ dx .
RY

Inequality (55) is a form of a trace Logarithmic Sobolev inequality. It does not have a
compact expression as does inequality (53) in the case of R™, where the scaling optimization
can be performed. Nevertheless, in R’}, it improves upon the usual (53) if we consider functions
on R".

+
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A Time derivative of the infimum-convolution

The time derivative of the Hopf-Lax formula (20) has been treated in different contexts, namely
for Lipschitz (as in [Eva98]) or bounded (as in [Vil09]) initial data. In our case the function g
grows as |z|P with p > 1 at infinity and thus these classical results can not be applied. We will
thus follow the method proposed by S. Bobkov and M. Ledoux [BLO0S8], extending it to more
general functions W and also to the half-space R'}.

We give all the details for the half-space R’} which is the more intricate.

A.1 The R’ case

Let a > n and let g : R — (0,400), W : R, — (0, +00) such that [, ¢~ and [p, W™ are
+ +e
finite. The functions g and W are assumed to be C! in the interior of their respective domain
of definition. Moreover we assume that W goes to infinity faster that linearly:
W (z)

m
xERie,\x\—)oo ‘.T}|

= +o0. (56)

Our objective is to give sufficient conditions such that the derivative at h = 0 of the function

R 5 h s / QY (9)'~(u, z)duds (57)
h o JRn—1
is equal to
_/ g%z + (a —1) wdz
OR™ R 9°

where

Wi(y) = sup {z-y—W(z)}, yeR" (58)

LEGRiE

For this, let us first recall the definition of Qhwg: for z € RY,,,,

inf [g(y)+hW (x;y)] if h> 0,

Q) g(x) = very,a—yery,, (59)
g(z) it h=0.
or equivalently, for h > 0 and x € R"}, ,
w . . z
e B =t = ()
Qn 9() ZeRie}g_hzeM{g(w hz) +hW(z)} serr, e 9(z —2) +hW (-
First, we have
Lemma 21 In the above notation and assumptions, for all v € R"}
0 w *
o7l @k g(x) = =W (Vg(x)). (60)

Ohlh=0
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Proof

< We follow and adapt the proof proposed in [BLO8]. Let x € R} be fixed.
By definition of Q,‘;Vg, for any z € R’ and i > 0 small enough so that x — hz € R}, one has

QY g(x) —g() _ g(w—hz) — g(x)
h = h

+ W(z).
Since g is C!, then for all z € R%,

w —
lim sup @ 9(x) = 9(x)
h—0 h
Then, from the definition (58) of W*,

w _
lim sup @ 9(x) = 9(x)
h—0 h

< =Vg(x) -2+ W(2).

< -W*(Vg(z)).

We now prove the converse inequality. Let
Apn={z€Rl,, WW(z) < g(x — he) + hW(e)}.
For a small enough h > 0 such that x — he € R we have Q}' g(z) < g(z — he) + hW (e), so

Qth(x) = inf {9(z — hz) + kW (z)}.

2€A4 1, z—hz€RY}

Hence
QY g(x) — g(x) . g9(x — hz) — g(z)
h ) _ zeALh,l?EhzeRi { h - W(z)}

2€A, 1, z—hz€RY

where €,(hz) — 0 when hz — 0. It implies

Qth(CC])Z —g(z) > Zeiﬂf {—Vg(a?) z+ zé‘x(hZ) + W(Z)} :

By the coercivity condition (56) on W and since g is locally bounded, the set A, j is bounded
by a constant C, uniformly in i € (0,1). In particular for every n > 0, there exists h, > 0 such
that for all h < hy and z € Ay p,, |e2(hz)| < n. Moreover, for all h < hy,

w —
Qi g(w}i 9(@) Aol A=Vg(a)- 2+ W(2)) = Cn> il {~Vg(r) =+ W)} = Cn

— _W*(Vg(a)) - On.
Let us take the limit when h goes to 0,

w _
lim inf @n 9(z) — 9(@)
h—0 h

> -W*(Vy(z)) — Cn.
As n is arbitrary, we finally get equality (60). >

Our assumptions on the couple (g, W) are summarized in the following definition.
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Definition 22 (the set F{of admissible couple in R"}) Let n > 2, g : R} — (0,00) and
W R}, = (0,00). We say that the couple (g, W) belongs to F{ with a > n if the following
four conditions are satisfied for some ~:

(C1) ~v > max{_"7,1}.

(C2) There exists a constant A > 0 such that W(x) > Alz|" for all x € R} .

(C3) There exists a constant B > 0 such that |Vg(z)| < B(lz|"~' + 1) for all x € R:.

(C4) There exists a constant C' such that C(|z|" + 1) < g(x) for all x € RY}.

n

In the following, we let C; denote several constants which are independent of h > 0 and x € R, ,

but may depend on v, A, B.

Lemma 23 Assume (C1)~(C4). Then, we find a constant hy > 0 such that, for all h € (0, hy)

n
and x € R+he

— C1h(1+ |z|") < QY g(x) — g(z) < Coh(lz|"™" + 1). (61)

Proof
<0 1. Let us first consider the easier upper bound. For any i > 0 and x € R}, then z—he € R},
so that

QK 9(z) - g(x) < g(z — he) — g(x) +hW (e).
On the other hand, for any € R} and y € R" such that x + y € R} we have from (C3),

l9(z +y) — g(z)]

1 1
= | [ Vata+00) 98] < 1ol [ Vg(o -+ 0las < ol + 1ol ). (62

n

From this remark applied to y = —he with h € (0, 1), one gets for any =z € R

+he
Qi 9(@) — g(z) < Cahl|z"™" +1) + AW (€) < Csh(|a["™" +1). (63)
2. For the lower bound, we first need some preparation. Thus, fix h € (0,1) and z € R 1.c
arbitrarily. Let § € R,  be a minimizer of the infimum convolution
Woim) — _ IN = oz — @ ¥
@y 9(x) = yelﬂg{he [g(:r y) +hW (hﬂ g(z —g) + hW (h> :
Such a gy surely exists by (C2) and (C4). From (63) and (C2) we have (recall that h < 1),
X ] X _
sl <17 (£) < @) = oo - )+ Callal™ 4 1) (64)
From inequality (62),
l9(x) — g(z — ) < Celg| [z~ + g~ +1]. (65)

From (65) and (64),

A

el < Colgl (2 + [P + 1) + Cs (|2 + 1)
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Choose a small constant 0 < h1 < 1 so that

A
1< Py Cs. (66)
1
When 0 < h < hy, we have
9" 1
- < Cr |1+ |z]?
il 1= O
so that
91 < Cs (1 +|z]). (67)
3. Then, fix h € (0,h1) and x € R, arbitrarily, where h; is the constant defined in step 2.

By the arguments in step 2, we see that

Q g(@) — g(x) = 9@ —y) —g@+nw (2)]. (69)

inf
yeRY, ., z—y€RT, |y|<Cs(1+]z|)
As in (62), we have
1
@) =ga =) <ol [ Vota = o). (69)

When |y| < Cs(1+|z|) and 0 < § < 1, we have |z —0y| < (14+Cs)(1+]|z]|), so that |[Vg(x—0y)| <
Co(1+|z|7~1) by (C8), uniformly in 0 < § < 1. Thus, when |y| < Cs(1 + |z|), we have, by (69),

g(x) — g(z —y) < Co(1 + |27 Y) Jy|.

Hence, by (68) and (C1), we obtain

o) ol > g ~Co(1+ a1yl + AW (3
Qh g(x) g(x) YERY e |;?§C's(l+|z\) |: 9( |:E| ) |y| (h)}
> inf (1 |21 gyl & 7}

yeRY, ., [y|<Cs(1+|z]) [ o(L+ [z[777) [yl hﬂ/_l\y|

A
i _ 71 v
> inf | =Col1 o+l ol + 2|
e
= —Croh(1 + [z]~1)>T.
The last equality is a direct computation. Therefore, we conclude that

QY g(z) — g(z) = —Crih(1 + [z[7).

The proof is complete. >

Lemma 24 Assume (C1)~(C4). Then, we find constants Co,ha > 0 such that for all h €
(0,h2) and x € RY, |

w l—a _ 1—a
h 1+ |z
Proof
< First, for any o, 5 > 0 and a > 1, then
o™ = 817 < (a = D)o = Bl(a™ + 877). (71)
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Indeed, if for instance 8 > « > 0, then for some 6 € («, 3) we have
gl = (a-1)(B- )" < (a—1)(B - a)a
By inequality (71) and Lemma 23, we have

QY glx)—* —g(x)'

- Q1 g(z)™" + g(x) 7]

K1(1+ |2 [Q} g(z) ™ + g(x) ]

IN

y ‘Qhwg@z - g(a)

IN

for all h € (0,h1) and x € RY, .
On the other hand, by (C4) and Lemma 23, we have for all h € (0,h;) and z € RY},,

Qi 9(x) = g(x) = Crha(1 + |z]") = (C = Crh)(J=|" + 1).

Choose a small constant h3 so that

and let ho min{hq, h3}. Then, for all

Q

QN g(w) > 5 (jal +1) 3
whence, again using (C4),

Qi g(@)' =" — (g(z)'

7 < Co(1+ o)

for all b € (0,h2) and z € RY, . >
We can now state and prove the main result of this section:

Theorem 25 In the above notation, assume that the couple (g, W) is in F5. Then
o e e = [ gt - [ G ey
dhlh=0J  Jrn-1 R R 9°

Proof
< One can write the h-derivative as follows:

2(/:0 /Rn_l QY (9)' "% (u, z)dudz — /n gla(u,x)duda:>
== (/ /]Rn 9 (u, z)dudz — /n gla(u,x)dudJC)
+]11</h [ ol )1“uxduda:—/ /Rnl uxdudx)
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First

</ /]R”l uxdudm—/n (um)dudm):—/ /Rnl “(u, z)dudsz,

which goes to — [n—1 9'7%(0, z)dz = faRn @ when h goes to 0. Secondly,

1 o
(/ / Q1Y (9) lauazdudx—/ / uxdudaz>
h h Rr—1 Rn— 1

:/n [ W (9) ", x)_gl_a(“’x)]1u>hdudx. (75)

h

By Lemma 21 the function in the right-hand side of (75) converges pointwisely to W*(Vg)g~
as h — 0. Moreover, since y(a — 1) > n, by Lemma 24 it is bounded uniformly in h by an
integrable function. Hence by the Lebesgue dominated convergence Theorem the left-hand-side
of (75) converges (when h — 0) to

(a—=1) [ W*(Vg)g~
RY

The proof is complete. >

A.2 The R" case

We only give the result and conditions for the R" case.
We let g : R® — (0,+00) be a C! function and W : R® — (0,+00) such that [¢g™" =
W™ =1 and
lim W) =

2|00 |Z]

Definition 26 (F?, the set of admissible couple in R™) Let g : R® — (0,+00) and W :
R™ — (0,+00). We say that the couple (g, W) belongs to F™ witha >n (a>1 if n=1) if the
following four conditions are satisfied for some ~y:

(C1) v > max{-"5,1}.

(C2) There ezists a constant A > 0 such that W (z) > Alz|” for all x € R™.

(C3) There exists a constant B > 0 such that |Vg(z)| < B(|z["~! 4+ 1) for all x € R™.
(C4) There ezist a constant C such that C(|z|” + 1) < g(z) for all z € R".

Theorem 27 Assume that the couple (g, W) is in F*. Then, the derivative at h = 0 of the
map

(0,+00) 3 h s / QY ()~

(1-o [T,

1 equal to
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