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FREDRICKSON-ANDERSEN ONE SPIN FACILITATED MODEL OUT OF

EQUILIBRIUM

O. BLONDEL, N. CANCRINI, F. MARTINELLI, C. ROBERTO, AND C. TONINELLI

ABSTRACT. We consider the Fredrickson and Andersen one spin facilita-

ted model (FA1f) on an infinite connected graph with polynomial growth.

Each site with rate one refreshes its occupation variable to a filled or to an

empty state with probability p ∈ [0, 1] or q = 1 − p respectively, provided

that at least one of its nearest neighbours is empty. We study the non-

equilibrium dynamics started from an initial distribution ν different from

the stationary product p-Bernoulli measure µ. We assume that, under ν,

the distance between two nearest empty sites has exponential moments.

We then prove convergence to equilibrium when the vacancy density q
is above a proper threshold q̄ < 1. The convergence is exponential or

stretched exponential, depending on the growth of the graph. In particu-

lar it is exponential on Z
d for d = 1 and stretched exponential for d > 1.

Our result can be generalized to other non cooperative models.

1. INTRODUCTION

Fredrickson-Andersen one spin facilitated model (FA1f) [7, 8] belongs to
the class of interacting particle systems known as Kinetically Constrained
Spin Models (KCSM), which have been introduced and very much studied
in the physics literature to model liquid/glass transition and more generally
glassy dynamics (see [17, 9] and references therein). A configuration for a
KCSM is given by assigning to each vertex x of a (finite or infinite) connected
graph G its occupation variable ηx ∈ {0, 1}, which corresponds to an empty
or filled site respectively. The evolution is given by Markovian stochastic
dynamics of Glauber type. With rate one each site refreshes its occupation
variable to a filled or to an empty state with probability p ∈ [0, 1] or q =
1−p respectively, provided that the current configuration satisfies an a priori
specified local constraint. For FA1f the constraint at x requires at least one of
its nearest neighbours to be empty. Note that a single empty site is sufficient
to ensure irreducibility of the chain. KCSM in which a fine subset of empty
sites is able to move around and empty the whole space are called non-
cooperative and are in general easier to analyze than cooperative ones. Note
also that (and this is a general feature of KCSM) the constraint which should
be satisfied to allow creation/annihilation of a particle at x does not involve
ηx. Thus FA1f dynamics satisfies detailed balance w.r.t. the Bernoulli product
measure at density p, which is therefore an invariant reversible measure for
the process. Key features of FA1f model and more generally of KCSM are
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that a completely filled configuration is blocked (for generic KCSM other
blocked configurations may occur) - namely all creation/destruction rates
are identically equal to zero in this configuration -, and that due to the
constraints the dynamics is not attractive, so that monotonicity arguments
valid for e.g. ferromagnetic stochastic Ising models cannot be applied. Due
to the above properties the basic issues concerning the large time behavior
of the process are non-trivial.

In [2] it has been proved that the model on G = Z
d is ergodic for any q > 0

with a positive spectral gap which shrinks to zero as q → 0 corresponding to
the occurrence of diverging mixing times. A key issue both from the mathe-
matical and the physical point of view is what happens when the evolution
does not start from the equilibrium measure µ. The analysis of this setting
usually requires much more detailed information than just the positivity of
the spectral gap, e.g. boundedness of the logarithmic Sobolev constant or
positivity of the entropy constant uniformly in the system size. The latter
requirement certainly does not hold (see Section 7.1 of [2]) and even the
basic question of whether convergence to µ occurs remains open in the infi-
nite volume case. Of course, due to the existence of blocked configurations,
convergence to µ cannot hold uniformly in the initial configuration and one
could try to prove it a.e. or in mean w.r.t. a proper initial distribution ν 6= µ.

From the point of view of physicists, a particularly relevant case (see e.g.
[13]) is when ν is a product Bernoulli(p′) measure with p′ 6= p and p′ 6= 1).
In this case the most natural guess is that convergence to equilibrium occurs
for any local (i.e. depending on finitely many occupation variables) function
f i.e.

lim
t→∞

∫

dν(η)Eη

(

f(ηt)
)

= µ(f) (1.1)

where ηt denotes the process started from η at time t and that the limit is
attained exponentially fast.

The only case of KCSM where this result has been proved [4] (see also
[6]) is the East model, that is a one dimensional model in which the con-
straint at x requires the neighbour to the right of x to be empty. The strategy
used to prove convergence to equilibrium for East model in [4] relies how-
ever heavily on the oriented character of the East constraint and cannot be
extended to FA1f model. We also recall that in [4] a perturbative result has
been established proving exponential convergence for any one dimensional
KCSM with finite range jump rates and positive spectral gap (thus including
FA1f at any q > 0), provided the initial distribution ν is “not too far” from
the reversible one (e.g. for ν Bernoulli at density p′ ∼ p).

Here we prove convergence to equilibrium for FA1f on a infinite con-
nected graph G with polynomial growth (see the definition in sec. 2.1 be-
low) when the equilibrium vacancy density q is above a proper threshold q̄
(with q̄ < 1) and the starting measure ν is such that the distance between
two nearest empty sites has exponential moments. That includes in par-
ticular any non-trivial Bernoulli product measure with p′ 6= p but also the
case in which ν is the Dirac measure on a fixed configuration with infinitely
many empty sites and such that the distance between two nearest empty
sites is uniformly bounded. The derived convergence is either exponential
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or stretched exponential depending on the growth of the graph. In the par-
ticular case G = Z

d, we can prove exponential relaxation only for d = 1.
If d > 1 we get a stretched exponential behavior. Although our results can
be generalized to other non cooperative KCSM (see section 6 for a specific
example and [2] for the general definition of this class) we consider here
only the FA1f case to let the paper be more readable.

We finish with a short road map of the paper. In section 2 we introduce the
notations and give the main result, Theorem 2.1, which is proven in section
5. The strategy to derive this result can be summarized as follows. We first
replace Eν(f(ηt)) with a similar quantity but computed w.r.t the FA1f finite
volume process (actually a finite state, continuous time Markov chain evolv-
ing in a finite ball of radius proportional to time t around the support of f).
This first reduction is standard and it follows easily from the so-called finite
speed of propagation. Then we show that, with high probability, only the
evolution of a restricted chain inside a suitable ergodic component matters.
This reduction is performed via a general result on Markov processes which
we derive in section 3. The ergodic component is chosen in such a way
that the log-Sobolev constant for the restricted chain is much smaller than
t. This second reduction is new and it is at this stage that the restriction
on q appears and that all the difficulties of the non-equilibrium dynamics
appear. Its implementation requires the estimate of the spectral gap of the
process restricted to the ergodic component (see section 6) and the study of
the persistence of zeros out of equilibrium (see section 4).

2. NOTATION AND RESULT

2.1. The graph. Let G = (V,E) be an infinite, connected graph with vertex
set V , edge set E and graph distance d(·, ·). Given x ∈ V the set of neighbors
of x will be denoted by Nx. For all Λ ⊂ V we call diam(Λ) = supx,y∈Λ d(x, y)
the diameter of Λ and ∂Λ = {x ∈ V \ Λ: d(x,Λ) = 1} its (outer) boundary.
Given a vertex x and an integer r, B(x, r) = {y ∈ V : d(x, y) ≤ r} denotes
the ball centered at x and of radius r. We introduce the growth function
F : N \ {0} → N ∪ {∞} defined by

F (r) = sup
x∈V

|B(x, r)|

where | · | denotes the cardinality. Then we say that G has (k,D)-polynomial

growth if F (r) ≤ k rD for all r ≥ 1, with k and D two positive constants. An

example of such a graph is given by the d-dimentional square lattice Z
d that

has (3d, d)-polynomial growth (with the constant 3d certainly not optimal).

2.2. The probability space. The configuration space is Ω = {0, 1}V equip-
ped with the Bernoulli product measure µ of parameter p. Similarly we
define ΩΛ and µΛ for any subset Λ ⊂ V . Elements of Ω (ΩΛ) will be denoted
by Greek letters η, ω, σ (ηΛ, ωΛ, σΛ) etc. Furthermore, we introduce the
shorthand notation µ(f) to denote the expected value of f and Var(f) for
its variance (when it exists).
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2.3. The Markov process. The interacting particle model that will be stud-
ied here is a Glauber type Markov process in Ω, reversible w.r.t. the measure
µ. It can be informally described as follows. Each vertex x waits an in-
dependent mean one exponential time and then, provided that the current
configuration σ is such that one of the neighbors of x (i.e. one site y ∈ Nx)
is empty, the value σ(x) is refreshed with a new value in {0, 1} sampled from
a Bernoulli p measure and the whole procedure starts again.

The generator L of the process can be constructed in a standard way (see
e.g. [14]). It acts on local functions as

Lf(σ) =
∑

x∈V

cx(σ)[qσ(x) + p(1 − σ(x))][f(σx) − f(σ)] (2.1)

where cx(σ) = 1 if
∏

y∈Nx
σ(y) = 0 and cx(σ) = 0 otherwise (namely the

constraint requires at least one empty neighbor), σx is the configuration
σ flipped at site x, q ∈ [0, 1] and p = 1 − q. It is a non-positive self-
adjoint operator on L

2(Ω, µ) with domain Dom(L), core D(L) = {f : Ω →
R s.t.

∑

x∈V supσ∈Ω |f(σx) − f(σ)| < ∞} and Dirichlet form given by

D(f) =
∑

x∈V

µ (cx Varx(f)) , f ∈ Dom(L).

Here Varx(f) ≡
∫

dµ(ω(x))f2(ω)−
(∫

dµ(ω(x))f(ω)
)2

denotes the local vari-
ance with respect to the variable ω(x) computed while the other variables
are held fixed. To the generator L we can associate the Markov semigroup
Pt := etL with reversible invariant measure µ. We denote by σt the process
at time t starting from the configuration σ. Also, we denote by Eη(f(ηt))
the expectation over the process generated by L at time t and started at
configuration η at time zero and, with a slight abuse of notation, we let

Eν(f(σt)) :=

∫

dν(η)Eη(f(ηt))

and let Pν be the distribution of the process started with distribution ν at
time zero.

For any subset Λ ⊂ V and any configuration η ∈ Ω

Lη
Λf(σ) =

∑

x∈Λ

cη
x,Λ(σ)[qσ(x) + p(1 − σ(x))][f(σx) − f(σ)] (2.2)

where cη
x,Λ(σ) = cx(σΛηΛc) where σΛηΛc is the configuration equal to σ on

Λ and equal to η on Λc. When η is the empty configuration we write simply
cx,Λ and LΛ. We also let σΛ

t be the configuration at time t of the process
starting from σΛ with empty boundary condition.

2.4. Main Result. In order to state our main theorem, we need some nota-
tions. For any vertex x ∈ V , and any configuration σ ∈ Ω, let

ξx(σ) = min
y∈V : σ(y)=0

{d(x, y)}

be the distance of x from the set of empty sites of σ.
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Theorem 2.1. Let q > 1/2. Assume that the graph G has (k,D)-polynomial
growth and f : Ω → R is a local function with µ(f) = 0. Let ν be a probability

measure on Ω such that κ := supx∈V Eν(θ
ξx

o ) < ∞ for some θo > 1. Then,
there exists a positive constant c = c(q, k,D, κ, |supp(f)|) such that

|Eν(f(σt))| ≤ c||f ||∞

{

e−t/c if D = 1

e−[t/(c log t)]1/D
if D > 1.

∀t ≥ 2.

Remark 2.2. We expect that our results hold also for 0 < q ≤ 1
2 . This needs

a more precise control of the behavior of ξx
t = ξx(σt). In dimension one we

can obtain a better threshold by calculating further time derivatives of u(t) =
Eη(θ

ξt), see Proposition 4.1 below.

Remark 2.3. Observe that if ν is a Dirac mass on some configuration η, the

condition reads supx∈V θ
ξx(η)
o < ∞. This encodes the fact that η has infinitely

many empty sites and that, in addition, the distance between two nearest empty
sites is uniformly bounded. This condition is different from the case of the East
model in [4] where the condition on the initial configuration was the presence
of an infinite number of zeros.

Remark 2.4. If one considers the case in which ν is the product of Bernoulli-p′

on G, one has that, for all θ < 1/p′ and all x ∈ G,

Eν(θ
ξx

) =

∞
∑

k=0

θk
Pν(ξ

x = k) ≤
∞
∑

k=0

θk(p′)
|B(x,k)|

≤
∞
∑

k=0

(θp′)k =
1

1 − p′θ
.

Hence, κ ≤ 1
1−p′θo

for θo ∈ (1, 1/p′). In particular Theorem 2.1 applies to any

initial probability measure, product of Bernoulli-p′ on G, with p′ ∈ [0, 1).

Remark 2.5. Note that graphs with polynomial growth are amenable. We
stress anyway that there exist amenable graphs which do not satisfy our as-
sumption. This is due to Proposition 5.1 below that gives a useless bound in
the case of amenable graphs with intermediate growth (i.e. faster than any
polynomial but slower than any exponential, see [10]). The same happens to
any graph with exponential growth (such as for example any regular n-ary tree
(n ≥ 2)).

3. A PRELIMINARY RESULT ON MARKOV PROCESSES

We prove here a general result which relates the behavior of a Markov
process on a finite space to that of a restricted Markov process. This result,
which might be of independent interest, will be a key tool in our analysis.
Indeed we will use it in the proof of Theorem 2.1 to reduce the evolution of
the FA1f process on a large volume to the same process on smaller sets on a
properly defined ergodic component.

We start by recalling some basic notions on continous time Markov chains
which will be used in the following. Let S be a finite space and Q =
(q(x, y))x,y∈S be a transition rate matrix, namely a matrix such that for any
x, y ∈ S it holds

q(x, y) ≥ 0 for x 6= y and
∑

y∈S

q(x, y) = 0.
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Recall that Q defines a continuous time Markov chain (Xt)t≥0 on S as fol-
lows [14]. If Xt = x, then the process stays at x for an exponential time
with parameter c(x) = −q(x, x). At the end of that time, it jumps to y 6= x
with probability p(x, y) = q(x, y)/c(x), stays there for an exponential time
with parameter c(y), etc. Assume that (Xt)t≥0 is reversible with respect to
a probability measures π. Then, we define the spectral gap γ(Q) and the
log-Sobolev constant α(Q) of the chain as

γ(Q) := inf
f : f 6=const

∑

x,y π(x)p(x, y)(f(y) − f(x))2

2Varπ(f)
(3.1)

α(Q) := sup
f : f 6=const

2Entπ(f2)
∑

x,y π(x)p(x, y)(f(y) − f(x))2
(3.2)

where Entπ(f) = π(f log f) − π(f) log π(f) denotes the entropy of f . Let
(Pt)t≥0 be the semigroup of the Markov chain. Then

Varπ(Ptf) 6 e−2tc Varπ(f) ∀f (3.3)

is equivalent to γ ≥ c. On the other hand the positivity of the log-Sobolev
constant is equivalent to the following hypercontractivity property [11]

||Ptf ||Lp(π) 6 ||f ||L2(π) (3.4)

∀t ≥ 0 and ∀p 6 1+e
4t
α . We refer to [1] for an introduction of these notions.

We are now ready to introduce the restricted Markov chain. Fix A ⊂ S
and set

Â = A∪ {y /∈ A : q(x, y) > 0 for some x ∈ A}. (3.5)

Let (X̂t)t≥0 be a continuous time Markov chain (which we will call the hat

chain) on Â with transition rate matrix Q̂ = (q̂(x, y))x,y∈Â which satisfies

q̂(x, y) = q(x, y) ∀(x, y) ∈ A× Â (3.6)

and assume that the process is reversible with respect to a measure π̂. We
denote by γ̂ and α̂ the spectral gap and log-Sobolev constant of the hat

chain, namely γ̂ := γ(Q̂) and α̂ := α(Q̂).

Proposition 3.1. Let (Xt)t≥0, (X̂t)t≥0, π, π̂, γ̂ and α̂ as above. Then, for all
initial probability measure ν on S and all f : S → R with π(f) = 0, it holds
for any t ≥ 0

|Eν(f(Xt))| ≤ |π̂(f)| + 4||f ||∞Pν(A
c
t) + ||f ||∞ exp

{

−γ̂
t

2
+ e−

2t
α̂ log

1

π̂∗

}

(3.7)

where At = {Xs ∈ A, ∀s ≤ t} and π̂∗ := minx∈S π̂(x).

Remark 3.2. The standard argument (see [12, 19]) using the log-Sobolev
constant would lead to

|Eν(f(Xt))| ≤ ||f ||∞ exp

{

−γ
t

2
+ exp{−

2t

α
} log

1

π∗

}

.

with γ = γ(Q) and α = α(Q). The difference in proposition 3.1 comes from the

fact that we deal with the hat chain. This can be useful if the choice of Â and Q̂
are done properly so that the log-Sobolev constant α̂ is smaller than α and/or
the spectral gap γ̂ is larger then γ. This will be the case for the application of
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the above result in the proof of Theorem 2.1 for which, fixed t, we will have
to consider a state space which depends on t and the corresponding chain will
have α ≃ td and log(1/π) ≃ td. Hence the standard argument gives

|Eν(f(Xt))| ≤ ||f ||∞ exp

{

−γ
t

2
+ ctd

}

.

and therefore does not prove decay in t. We will instead devise a hat chain for
which γ̂ ≥ c > 0 and α̂ is much smaller than t so that the dominant term in
exp

{

−γ̂ t
2 + exp{−2t

α̂ } log 1
π̂∗

}

is given by the gap term γ̂t. The price to pay
are the first two extra terms in (3.7) that we will analyze separately.

Proof. Fix a probability measure ν and a function f with π(f) = 0 and let
g = f − π̂(f). Then

|Eν(f(Xt))| ≤ |π̂(f)| + ||g||∞Pν(A
c
t) + |Eν(g(Xt)1At)|. (3.8)

We now concentrate on the last term in (3.8). By definition of the chains

(Xt)t≥0 and (X̂t)t≥0 one has

Eν(g(Xt)1At) =

∫

dν(x)Ex(g(X̂t)1{X̂s∈A, ∀s≤t}).

Hence, by Hölder inequality, we have

|Eν(g(Xt)1At)| = |

∫

Â
dν(x)Ex(g(X̂t)(1 − 1{X̂s∈A, ∀s≤t}c)|

≤ |π̂(h P̂tg)| + 2||f ||∞Pν(A
c
t)

≤ ||h||Lβ (π̂)||P̂tg||Lβ′ (π̂) + 2||f ||∞Pν(A
c
t)

where for any x ∈ Â we let h(x) = ν(x)/π̂(x) and β, β′ ≥ 1, that will be
chosen later, are such that 1/β+1/β′ = 1. To bound the previous expression

take β′ = 1 + e
2t
α̂ . Using (3.4) and (3.3) we obtain

||P̂tg||Lβ′ (π̂) = ||P̂ t
2
P̂ t

2
g||Lβ′ (π̂) ≤ ||P̂ t

2
g||L2(π̂) ≤ e−γ̂ t

2 ||g||L2(π̂) ≤ e−γ̂ t
2 ||f ||∞.

On the other hand

||h||Lβ (π̂) ≤

(
∫

hdπ̂

) 1
β

||h||
β−1

β
∞ = ||h||

1
β′

∞ ≤ exp{e−
2t
α̂ log ||h||∞}

and the proof is completed since ||h||∞ ≤ 1
π̂∗ . �

4. PERSISTENCE OF ZEROS OUT OF EQUILIBRIUM

In this section we study the behavior of the minimal distance from a fixed
site to the nearest site at which one finds a vacancy. The result that we
obtain will be a key tool for the proof of our main Theorem 2.1.

For any σ ∈ {0, 1}V and any x ∈ V define ξx(σ) as the minimal distance
at which one finds an empty site starting from x,

ξx(σ) = min
y∈V : σ(y)=0

{d(x, y)}

with the convention that min ∅ = +∞, (ξx(σ) = 0 if σ(x) = 0).
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Proposition 4.1. Consider the FA1f process on a finite set Λ ⊂ V with gen-

erator LΛ. Then, for all x ∈ Λ, all θ ≥ 1, all q ∈ ( θ
θ+1 , 1] and all initial

configuration η, it holds

Eη

(

θξx(σΛ
t )
)

≤ θξx(η) e−λt +
q

q(θ + 1) − θ
∀t ≥ 0,

where λ = θ2−1
θ (q − θ

θ+1).

Proof. Fix θ > 1, q > 0 and x ∈ Λ. To simplify the notation we drop
the superscript x from ξx and set ξt = ξ(σΛ

t ) in what follows. Recall that
σΛ

t is defined with empty boundary condition so that ξt ≤ d(x,Λc). Let

u(t) = Eη(θ
ξt) and observe that

d

dt
u(t) = Eη(LΛθξt).

To calculate the expected value above we distinguish two cases: (i) ξt = 0,
(ii) ξt ≥ 1.

Case (i): assume that ξt = 0. Then

(LΛθξt)1ξt=0 = θξtcx(σΛ
t )p(θ − 1)1ξt=0. (4.1)

Case (ii). Define E(σ) = {y ∈ V : d(x, y) = ξ(σ) and σ(y) = 0} and
F (σ) = {y ∈ V : d(y,E) = 1 and d(x, y) = ξ(σ) − 1}. Then one argues that
ξt can increase by 1 only if there is exactly one empty site in the set E, and
that it can always decrease by 1 by a flip (which is legal by construction) on
each site of F (see Figure 1).

xx

E
E

F

FIGURE 1. On the graph G = Z
2, two examples of configura-

tions for which ξx = 3. On the left ξx cannot increase since
|E| ≥ 2, it can decrease by a flip (legal thanks to the empty
sites in E) in any points of F . On the right ξx can either
increase or decrease.

Hence

(LΛθξt)1ξt≥1 = θξt



p(θ − 1)
∑

y∈E

cy(σ
Λ
t )1|E|=1 + q|F |(

1

θ
− 1)



1ξt≥1

≤ θξt[p(θ − 1) − q
θ − 1

θ
] + [q

θ − 1

θ
− p(θ − 1)]1ξt=0 (4.2)

Summing up (4.1) and (4.2) we end up with

LΛθξt 6
θ − 1

θ

(

θξt(pθ − q) + q
)

.
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Therefore, since p = 1 − q,

u′(t) ≤
θ − 1

θ
((pθ − q)u(t) + q) = −λu(t) + q

θ − 1

θ

and the expected result follows. �

5. PROOF OF THEOREM 2.1

In this section we prove Theorem 2.1. We will first reduce the study of the
evolution of the process from infinite volume to a finite ball of radius propor-
tional to t thanks to finite speed of propagation. Then by using Proposition
3.1 we reduce to the study of a restricted process on smaller sets on some
ergodic component so that the log-Sobolev constant of the restricted process
is much smaller than t (recall Remark 3.2). In order to estimate the prob-
ability that the process gets out the ergodic component (namely to bound
the second term in (3.7)) we will use Proposition 4.1 which allows to upper
bound the probability of a region to be completely filled.

Proof of Theorem 2.1. Throughout the proof c denotes some positive con-
stant c = c(q, k,D, κ, |supp(f)|) which may change from line to line.

Fix t ≥ 2 and a local function f . Let x ∈ V and r integer be such that
supp(f) ⊂ B(x, r). Standard arguments using finite speed of propagation
(see e.g. [15]) prove that for any initial measure ν on Ω it holds

|Eν(f(σt) − f(σΛ
t ))| ≤ c‖f‖∞e−t

where Λ = B(x, r + 100t) and we recall that σΛ
t is the configuration at time

t of the process starting from σΛ evolving on the finite volume Λ with empty
boundary condition and c is some positive constant depending on |supp(f)|.
Hence,

|Eν(f(σt))| ≤ |Eν(f(σΛ
t ))| + c‖f‖∞e−t. (5.1)

Let Λ1,Λ2, . . . ,Λn ⊂ Λ be connected sets such that ∪iΛi = Λ and Λi∩Λj =
∅ for all i 6= j. Such a decomposition will be called a connected partition of
Λ. The following holds

Proposition 5.1. For any Λ ⊂ V and any f local, with supp(f) ⊂ Λ and
µ(f) = 0 there exists a constant c = c(q, |supp(f)|) such that for any connected
partition Λ1, Λ2, . . . ,Λn of Λ, for any initial probability measure ν on Ω, it
holds that

|Eν(f(σΛ
t ))| ≤ c||f ||∞

(

ne−qm + t|Λ| sup
s∈[0,t]

Pν(σ
Λ
s /∈ A) + |Λ|e−t/3

+ exp

{

−
t

c
+ c|Λ|e−t/(cM)

})

provided that ne−qm < 1/2 where
m := min{|Λ1|, . . . , |Λn|}, M := max{|Λ1|, . . . , |Λn|} and A is the set of
configurations containing at least two empty sites in each Λi, namely

A =

n
⋂

i=1

{σ ∈ ΩΛ s.t.
∑

x∈Λi

(1 − σ(x)) ≥ 2}. (5.2)
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We postpone the proof of this Proposition to the end of this section.

Observe that for any positive integer ℓ 6 t, there exists1 a connected
partition Λ1, . . . ,Λn of Λ, and vertices x1, . . . , xn ∈ V , such that for any i,
B(xi, ℓ) ⊂ Λi ⊂ B(xi, 6ℓ). Then, take ℓ = ǫ[t/ log t]1/D if D > 1 and ℓ = ǫt
if D = 1 for some ǫ > 0 that will be chosen later and observe that, with this
choice,

M = max(|Λ1|, . . . , |Λn|) ≤ k6DℓD

(since G has (k,D)-polynomial growth). Furthermore

m = min(|Λ1|, . . . , |Λn|) ≥ ℓ

Since n ≤ |Λ| ≤ ctD, Equation (5.1) and Proposition 5.1 guarantee that

|Eν(f(σt))| ≤ c||f ||∞t|Λ| sup
s∈[0,t]

Pν(σ
Λ
s /∈ A)+c||f ||∞

{

e−t/c if D = 1

e−[t/(c log t)]1/D
if D > 1

provided ǫ is small enough.
It remains to study the first term of the latter inequality. We partition each

set Λi into two connected sets Λ+
i and Λ−

i (i.e. Λi = Λ+
i ∪Λ−

i and Λ+
i ∩Λ−

i =

∅) such that for some x+
i , x−

i ∈ V , B(x±
i , ℓ/4) ⊂ Λ±

i (the existence of such

vertices are left to the reader). The event {σΛ
s /∈ A} implies that there exists

one index i such that at least one of the two halves Λ+
i ,Λ−

i is completely

filled. Assume that it is for example Λ+
i , i.e. assume that for any x ∈ Λ+

i ,

σΛ
s (x) = 1. This implies that ξx+

i (σΛ
s ) ≥ ℓ/4. Hence, thanks to a union

bound, Markov’s inequality, and Proposition 4.1, there exists θ > 1 such
that

Pν(σ
Λ
s /∈ A) ≤ 2nPν(ξ

x+
i (σΛ

s ) ≥ ℓ/4)

≤ 2nθ−ℓ/4
Eν(θ

ξx+
i (σΛ

s ))

≤ cnθ−ℓ/4

≤ c

{

e−t/c if D = 1

e−[t/(c log t)]1/D
if D > 1

where we used the definition of ℓ, the assumption supx∈V Eν(θ
ξx

o ) < ∞ and

the fact that n ≤ |Λ| ≤ ctD. This ends the proof.
�

We are now left with proving Proposition 5.1.

1One can construct Λ1, . . . , Λn, x1, . . . , xn as follows. Recall that Λ = B(x, r + 100t).
Order (arbitrarily) the sites y1, y2, . . . , yN of {z ∈ Λ: B(z, ℓ) ⊂ Λ and d(z, x) = 2i(ℓ + 1) −
1 for some i ≥ 1} and perform the following algorithm: set x1 = x, i0 = 0, and for k ≥ 1 set

xk+1 = yik
with ik := inf{j ≥ ik−1 + 1 : B(yj , ℓ) ∩ (∪k

i=1B(xi, ℓ)) = ∅}. Such a procedure

gives the existence of n sites x1, . . . , xn such that B(xi, ℓ) ∩ B(xj, ℓ) = ∅, for all i 6= j,

B(xi, ℓ) ⊂ Λ for all i and any site yk /∈ A := ∪n
i=1B(xi, ℓ) is at distance at most 5ℓ from

A. Now attach each connected component C of Ac to any (arbitrarily chosen) nearest ball

B(xi, ℓ), i ∈ {1, . . . , n}, with which C is connected, to obtain all the Λi with the desired

properties.
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Proof of Proposition 5.1. Fix Λ ⊂ V , f local, with supp(f) ⊂ Λ and µ(f) =
0. Fix a connected partition Λ1, Λ2, . . . ,Λn of Λ and an initial probability
measure ν on Ω.

Our aim is to apply Proposition 3.1. We let S = ΩΛ and (Xt)t≥0 =
(σΛ

t )t≥0. The corresponding transition rates are, ∀σ, η ∈ ΩΛ,

q(σ, η) =











cx,Λ(σ)[qσ(x) + p(1 − σ(x))] if η = σx

−
∑

x∈Λ q(σ, σx) if η = σ

0 otherwise

We define A as in (5.2), namely the set of configurations in ΩΛ such that

there exist at least two empty sites in each set Λi, and Â as in (3.5). Next

we define (X̂t)t≥0 on Â via the rates q̂(σ, η) = q(σ, η) ∀σ, η ∈ Â. In words,

(X̂t)t≥0 corresponds to a modification of the FA1f process in which the

moves that would lead the process to leave Â are suppressed. Let π = µΛ

and π̂(·) = µΛ(· | Â). It is immediate to verify that (Xt)t≥0 and (X̂t)t≥0 are
reversible with respect to π and π̂, respectively. By construction the above
processes satisfy the property (3.5). Thus, thanks to Proposition 3.1, we
have

|Eν(f(σΛ
t ))| ≤ |π̂(f)| + ||f ||∞

(

4Pν(A
c
t) + exp

{

−γ̂
t

2
+ e−

2t
α̂ log

1

π̂∗

})

.

(5.3)
We now study each term of the last inequality separately.

If we recall that µΛ(f) = µ(f) = 0 and using a union bound, we have

|π̂(f)| =
|µΛ(f(1 − 1Âc))|

µΛ(Â)
≤ ||f ||∞

µΛ(Âc)

µΛ(Â)
≤ ||f ||∞

ne−qm

1 − ne−qm
. (5.4)

We now deal with the term Pν(A
c
t).

Let It be the event that there exists a site in Λ with more than 2t rings
in the time interval [0, t]. Then, by standard large deviations of Poisson
variables and a union bound, there exists a universal positive constant d
such that Pν(A

c
t ∩ It) ≤ d|Λ|e−t/3. Furthermore, using a union bound on all

the rings on the event Ic
t , we have

Pν(A
c
t ∩ Ic

t ) ≤ 2t|Λ| sup
s∈[0,t]

Pν(σ
Λ
s /∈ A).

We deduce that

Pν(A
c
t) ≤ c|Λ|

(

t sup
s∈[0,t]

Pν(σ
Λ
s /∈ A) + e−t/3

)

. (5.5)

Next we analyse the log-Sobolev constant α̂ and the spectral gap constant

γ̂. For that purpose, let us introduce a new process (X̃t)t≥0 on Â via the

rates, ∀σ, η ∈ Â,

q̃(σ, η) =











cω
x,Λi(x)

(σ)[qσ(x) + p(1 − σ(x))] if η = σx

−
∑

x∈Λ q̃(σ, σx) if η = σ

0 otherwise.
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where ω is the entirely filled configuration (i.e. such that ω(x) = 1 for all

x ∈ V ) and i(x) is such that x ∈ Λi(x). In words (X̃t)t≥0 corresponds to

n independent FA1f processes inside the boxes Λi each evolving with filled
boundary conditions on the ergodic component of the configurations with

at least one zero, namely on Ω̂Λi where we set for any A ⊂ Λ

Ω̂A = {σ ∈ ΩΛ s.t. ∃xi ∈ A with σ(xi) = 0}. (5.6)

Note that Â =
⋂n

i=1 Ω̂Λi thus the FA1f constraint and the filled boundary

condition on each box indeed guarantee that (X̃t)t≥0 does not exit Â and

π̂ is a reversible measure also for (X̃t)t≥0. Furthermore, since the occupied
boundary conditions imply that for any σ ∈ ΩΛ it holds cω

x,Λi(x)
(σ) 6 cx,Λ(σ)

(a zero which is present in σΛi(x)
ωΛc

i(x)
is also present in σ) , the following

inequalities holds between the spectral gap and log-Sobolev constant of the

hat and tilde process α̂ ≤ α̃ and γ̂ ≥ γ̃, where α̂ := α(Q̂), α̃ := α(Q̃), γ̂ :=

γ(Q̂) and γ̃ = γ(Q̃) (see (3.1) and (3.2)). Observe now that X̃t restricted to

each Ω̂Λi is ergodic and reversible with respect to µ̂i = µΛi(· | Ω̂Λi). Thus by
the well-known tensorisation property of the Poincaré and the log-Sobolev
inequalities (see e.g. [1, Chapter 1]), we conclude that γ̃ = min(γ̃1, . . . , γ̃n)
and α̃ = max(α̃1, . . . , α̃n) with γ̃i and α̃i the spectral gap and log-Sobolev
constant of an FA1f process on Λi with filled boundary condition on the
ergodic component with at least one zero which, using (3.1) and (3.2), can
be expressed as γ̃Λi (5.7) and α̃Λi (5.8) respectively. Then, Proposition 5.2
below shows that γ̃ ≥ c and α̃ 6 c|Λi|. Hence, for c as in Proposition 5.2 it
holds

exp

{

−γ̂
t

2
+ exp{−

2t

α̂
} log

1

π̂∗

}

6 exp

{

−
t

c
+ c|Λ|e−t/(cM)

}

.

By collecting this inequality together with (5.3), (5.4) and (5.5) we end the
proof. �

Proposition 5.2 ([3]). Let A ⊂ V be connected and µ̂A(·) = µA(· | Ω̂A). Let
ω be the entirely filled configuration (i.e. such that ω(x) = 1 for all x ∈ V )
Then, there exists a constant c = c(q) such that

γ̃A := inf
f :f 6=const.

∑

x∈A µ̂A( cω
x,A Varx(f))

Varµ̂A
(f)

≥ c (5.7)

and

α̃A := sup
f :f 6=const.

Entµ̂A
(f)

∑

x∈A µ̂A(cω
x,A Varx(f))

≤ c|A|. (5.8)

Proof. The first part on the spectral gap is proven in [3, Theorem 6.4 page
336]. In section 6 we give an alternative proof which gives a better bound
for small q and can be extended to non cooperative models different from
FA1f.

The second part easily follows from the standard bound [5, 18]

α̂A ≤ γ̂−1
A log

1

µ̂∗
A

where µ̂∗
A := minσ∈Ω̂A

µ̂A(σ) ≥ exp{−c|A|}. �
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6. SPECTRAL GAP ON THE ERGODIC COMPONENT

In this section we estimate the spectral gap of the process FA1f on a finite
volume with occupied boundary conditions on the ergodic component of
configurations with at least one zero. This result has been used in the proof
of Theorem 2.1 as a key tool to prove Proposition 5.1. This has been done
in [2, 3]. We present here an alternative proof based on the ideas of [16]
that, on the one hand, gives a somehow more precise bound for very small
q and, on the other hand, can be generalized to non cooperative models dif-
ferent from FA1f on some ergodic component (not necessarily the largest
one). The remaining of the proof of Theorem 2.1 for these models carries
over along the same lines as for FA1f. An example of non cooperative model
different from FA1f is the following. Each vertex x waits an independent
mean one exponential time and then, provided that the current configura-
tion σ is such that at least two of the sites at distance less or equal to 2 are

empty (
∑

y∈N̂x
(1−σ(y)) ≥ 2, where N̂x = {y : d(x, y) ≤ 2}), the value σ(x)

is refreshed with a new value in {0, 1} sampled from a Bernoulli p measure
and the whole procedure starts again. For simplicity we deal with the FA-1f
model.

For every Λ ⊂ V finite recall that Ω̂Λ is the set of configurations with at

least one zero (5.6) and µ̂Λ(·) = µΛ(· | Ω̂Λ). By using (3.1) the spectral gap

γ̃Λ for the dynamics on Ω̂Λ with filled boundary conditions can be expressed
as

γ̃Λ = inf
f : f 6=const.

∑

x∈Λ µ̂Λ(ĉx Varx(f))

Varµ̂Λ
(f)

(6.1)

where the infimum runs over all non constant functions f : Ω̂Λ → R, Varx(f) :=
Varµ{x}

(f), and ĉx(σ) := cω
x,Λ(σ) with ω the entirely filled configuration, i.e.

ω(x) = 1 for all x ∈ V . We are now ready to state the result on the spectral
gap.

Theorem 6.1. Let G = (V,E) be a graph with (k,D)-polynomial growth.
Then there exists a positive constant C = C(k,D) such that for any connected
set Λ ⊂ V

γ̃Λ ≥ C
qD+4

log(2/q)D+1

The proof of Theorem 6.1 is divided in two steps. At first we bound from
below the spectral gap of the hat chain in Λ by the spectral gap of the FA1f
model (not restricted to the ergodic component), on all subsets of V with
minimal boundary condition. Then we study such a spectral gap following
the strategy of [16].

We need some more notations. Given A ⊂ V , z ∈ ∂A and x ∈ A define

cz
x,A(σ) = cω(z)

x,A (σ), σ ∈ Ω, where ω(z) is the entirely filled configuration,

except at site z where it is 0: ω(z)(x) = 1 for all x 6= z and ω(z)(z) = 0. The

corresponding generator Lω(z)

A will be simply denoted by Lz
A. It corresponds

to the FA1f process in A with minimal boundary condition.
The first step in the proof of Theorem 6.1 is the following result.
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Proposition 6.2. For any finite connected Λ ⊂ V with 8pdiam(Λ)/3 < 1
2 it holds

γ̃Λ ≥
1

48
inf

A⊂V,connected
z∈∂A

gap(Lz
A).

Observe that, combining [3, Theorem 6.1] and [2, Theorem 6.1] for any

set A and any site z, we had gap(Lz
A) ≥ cqlog2(1/q) for some universal positive

constant c. Hence, for the FA1f process, we had the lower bound

γ̃Λ ≥ cqlog2(1/q).

We present below an alternative strategy (based on [16]) which can be ap-
plied to other non-cooperative models and gives a more accurate bound for
the FA1f process when q is small.

Proof. Consider a non constant function f : Ω̂Λ → R with µ̂(f) = 0 and

define f̃ : ΩΛ → R as

f̃(σ) =

{

f(σ) if σ ∈ Ω̂Λ

0 otherwise

We divide2 Λ into two disjoint connected subsets A and B such that their
diameter is larger then |Λ|/3.

Thank to Lemma 6.5 below (our hypothesis implies that max(1−µ(cA), 1−
µ(cB)) < 1/16)

Varµ̂Λ
(f) ≤ 24 µ̂Λ[cB VarµA

(f̃) + cA VarµB
(f̃)]

where cA = 1Ω̂A
and cB = 1Ω̂B

and Ω̂A and Ω̂B are defined in (??).

Consider the first term. Define the random variable

ζ := sup
x∈B

{d(A,x) : σ(x) = 0}

where by convention the supremum of the empty set is ∞. The function cB

guarantees that ζ ∈ {1, 2, · · · ,diam(Λ)}. Following the strategy of [2] we
have

µ̂Λ[cB VarµA
(f̃)] =

1

µΛ(Ω̂Λ)

∑

n≥1

µΛ[1ζ=n VarµA
(f̃)]

≤
1

µΛ(Ω̂Λ)

∑

n≥1

µΛ[1ζ=n VarµAn
(f̃)]

where An = {x ∈ Λ: d(A,x) ≤ n − 1} and we used the convexity of the
variance (which is valid since the event {ζ = n} does not depend, by con-
struction, on the value of the configuration σAn inside An). The indicator
function above 1ζ=n guarantees the presence of a zero on the boundary ∂An

2To construct A and B take two points x, y such that d(x, y) = ℓ := diam(Λ) and define

A0 = {z ∈ Λ: d(x, z) ≤ ℓ/3} and B0 = {z ∈ Λ: d(y, z) ≤ ℓ/3}. Attach to A0 all the

connected components of Λ \ (A0 ∪ B0) connected to A0 to obtain A, then attach all the

remaining connected components of Λ \ (A0 ∪ B0) to B0 to obtain B.
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of the set An. Order (arbitrarily) the points of ∂An and call Z the (random)
position of the first empty site on ∂An. Then, for all n ≥ 1,

µΛ[1ζ=n VarµAn
(f̃)] =

∑

z∈∂An

µΛ[1ζ=n1Z=z VarµAn
(f̃)]

≤
∑

z∈∂An

gap(Lz
An

)−1
∑

y∈An

µΛ[1ζ=n1Z=zµAn(cz
y,An

Vary(f̃))]

≤ γ
∑

z∈∂An

∑

y∈An

µΛ[1ζ=n1Z=zc
z
y,An

Vary(f̃)]

where we used the fact that the events {ζ = n} and {Z = z} depend only
on σc

An
, and where γ := sup gap(Lz

A)−1, the supremum running over all

connected subset A of V and all z ∈ ∂A. Now observe that 1ζ=n1Z=zc
z
y,A ≤

1ζ=n1Z=z ĉy for any y ∈ An. Hence,

µ̂Λ[cB VarµA
(f̃)] ≤

γ

µΛ(Ω̂Λ)

∑

n≥1

∑

z∈∂An

∑

y∈An

µΛ[1ζ=n1Z=z ĉy Vary(f̃)]

≤
γ

µΛ(Ω̂Λ)

∑

y∈Λ

∑

n≥1

∑

z∈∂An

µΛ[1ζ=n1Z=z ĉy Vary(f̃)]

= γ
∑

y∈Λ

µ̂Λ[ĉy Vary(f̃)] = γ
∑

y∈Λ

µ̂Λ[ĉy Vary(f)].

The same holds for µ̂Λ[cA VarµB
(f̃)], leading to the expected result. �

The second step in the proof of Theorem 6.1 is a careful analysis of
gap(Lz

A) for any given connected set A ⊂ V and z ∈ ∂A.

Proposition 6.3. Let G = (V,E) be a graph with (k,D)-polynomial growth.
Then, there exists a universal constant C = C(k,D) such that for any con-
nected set A ⊂ V , and any z ∈ ∂A, it holds

gap(Lz
A) ≥ C

qD+4

log(2/q)D+1
.

We postpone the proof of Proposition 6.3 to end the proof of Theorem
6.1.

Proof of Theorem 6.1. The result follows at once combining Proposition 6.2
and Proposition 6.3. �

In order to prove Proposition 6.3, we need a preliminary result on the
spectral gap of some auxiliary chain, and to order the points of A in a proper
way, depending on z. Let N := maxx∈A d(x, z), for any i = 1, 2, . . . , N , we
define

Ai := {x ∈ A : d(x, z) = i} = {x
(i)
1 , . . . , x(i)

ni
}

where x
(i)
1 , . . . , x

(i)
ni is any chosen order. Then we say that for any x, y ∈ A,

x ≤ y if either d(x, z) > d(y, z) or d(x, z) = d(y, z) and x comes before y in

the above ordering. Then, we set Ax = {y ∈ A : y ≥ x} and Ãx = Ax \ {x}.
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Lemma 6.4. Fix a connected set A ⊂ V , and z ∈ ∂A. For any x ∈ A and
σ ∈ Ω, let Ex ⊂ ΩÃx

, ∆x = supp(1Ex) and c̃x(σ) = 1Ex(σÃx
). Assume that

sup
x∈A

µ(1 − c̃x) sup
x∈A

|{y ∈ A : ∆y ∪ {y} ∋ x}| <
1

4
.

Then, for any f : ΩA → R it holds

VarµA
(f) ≤ 4

∑

x∈A

µA(c̃x Varx(f)).

Proof. We follow [16]. In all the proof, to simplify the notations, we set
VarB = VarµB

, for any B. First, we claim that

VarA(f) 6
∑

x∈A

µA(VarAx(µÃx
(f))). (6.2)

Take x = x
(N)
nN , by factorization of the variance, we have

VarA(f) = µA(VarÃx
(f)) + VarA(µÃx

(f)).

The claim then follows by iterating this procedure, removing one site at a
time, in the order defined above.

We analyze one term in the sum of (6.2) and assume, without loss of
generality, that µAx(f) = 0. We write µÃx

(f) = µÃx
(c̃xf) + µÃx

((1 − c̃x)f)

so that

µA[VarAx(µÃx
(f))] ≤ 2µA[VarAx(µÃx

(c̃xf))] + 2µA[VarAx(µÃx
((1 − c̃x)f))].

(6.3)
Observe that, by convexity of the variance and since c̃x does not depend on
x, the first term of the latter can be bounded as

µA[VarAx(µÃx
(c̃xf))] = µA[Varx(µÃx

(c̃xf))] ≤ µA[c̃x Varx(f)].

Now we focus on the second term of (6.3). Note that µÃx
[(1 − c̃x)f)] =

µÃx
[(1 − c̃x)µÃx\∆x

(f))]. Set δ := supx∈A µ(1 − c̃x). Hence, bounding the

variance by the second moment and using Cauchy-Schwarz inequality, we
get

VarAx(µÃx
((1 − c̃x)f)) ≤ VarAx

(

µÃx
[(1 − c̃x)µÃx\∆x

(f)]
)

≤ µAx

(

µÃx
[(1 − c̃x)µÃx\∆x

(f)]2
)

≤ δ
(

VarAx(µÃx\∆x
(f))

)

From all the previous computations (and using (6.2)) we deduce that

VarA(f) ≤ 2
∑

x∈A

µA(c̃x Varx(f)) + 2δ
∑

x∈A

µA

(

VarAx(µÃx\∆x
(f))

)

.

Hence if one proves that
∑

x∈A

µA

(

VarAx(µÃx\∆x
(f))

)

≤ sup
y∈A

|{x ∈ A : ∆x ∪ {x} ∋ y}|VarA(f) (6.4)

the result follows. We now prove (6.4). Using (6.2), we have

VarAx(g) 6
∑

y∈Ax

µAx

(

VarAy(µÃy
(g))

)

=
∑

y∈∆x∪{x}

µAx

(

VarAy(µÃy
(g))

)
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where g = µÃx\∆x
(f) and we used that supp(g) ⊂ A \ (Ãx \ ∆x). It follows

that

µA (VarAx(g))
∑

y∈∆x∪{x}

µA

(

VarAy(µÃy
(g))

)

≤
∑

y∈∆x∪{x}

µA

(

VarAy(µÃy
(f))

)

since, by Cauchy-Schwarz,

µA

(

VarAy(µÃy
(g))

)

= µA

(

[

µÃx\∆x

(

µÃy
(f) − µAy(f)

)]2
)

≤ µA

(

VarAy(µÃy
(f))

)

.

This ends the proof. �

Proof of Proposition 6.3. Our aim is to apply Lemma 6.4. Let us define the
events Ex, for x ∈ A. Fix an integer ℓ that will be chosen later and set n =
ℓ ∧ d(x, z). Let (x1, x2, . . . , xn) be an arbitrarily chosen ordered collection
satisfying d(xi, xi+1) = 1, d(xi, x) = i and d(xi, z) = d(x, z) − i for i =
0, . . . , n, with the convention that x0 = x, and set Ex = {σ ∈ Ω:

∑n
i=1(1 −

σ(xi)) ≥ 1}, i.e. Ex is the event that at least one of the site of ∆x =
{x1, x2, . . . , xn} is empty. Note that by construction ∆x ⊂ A ∪ {z} and is
connected. Moreover for any x such that d(x, z) ≤ ℓ, Ex = Ω so that c̃x ≡ 1.
Since |∆x| 6 kℓD for any x ∈ A, the assumption of Lemma 6.4 reads

pℓ(1 + kℓD) < 1/4

which is satisfied if one chooses ℓ = c
q log 2

q with c = c(k,D) large enough.

Hence for any f : ΩA → R it holds

VarµA
(f) ≤ 4

∑

x∈A

µA(c̃x Varx(f)).

and we are left with the analysis of each term µA(c̃x Varx(f)) for which we
use a path argument. Fix x ∈ A and the collection (x1, x2, . . . , xn) intro-
duced above. Given a configuration σ such that c̃x(σ) = 1, denote by ξ
the (random) distance between x and the first empty site in the collection
(x1, x2, . . . , xn): i.e. ξ(σ) = inf{i : σ(xi) = 0}. Then we write

µA(c̃x Varx(f)) =
n
∑

i=1

µA(c̃x1ξ=i Varx(f))

= pq

n
∑

i=1

∑

σ:ξ(σ)=i

µA(σ)(f(σx) − f(σ))2

where the sum is understood to run over all σ such that c̃x(σ) = 1 (and
ξ(σ) = i).

Fix i ∈ {1, . . . , n}. For any σ ∈ Ω such that ξ(σ) = i, we construct a path
of configurations γx(σ) = (σ0 = σ, σ1, σ2, . . . , σ4i−5 = σx) from σ to σx, of
length 4i−5 ≤ 4ℓ. The idea behind the construction is to bring an empty site
from xi, step by step, toward x1, make the flip in x and going back, keeping
track of the initial configuration σ. For any j, σj+1 can be obtained from
σj by a legal flip for the FA1f process. Furthermore σj differs from σ on at
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most three sites (possibly counting x). More precisely, define Tk(σ) := σxk

for any k and σ, and

σj =































Ti−k−1(σ) if j = 2k + 1, and k = 0, 1, . . . , i − 2

Ti−k ◦ Ti−k−1(σ) if j = 2k, and k = 1, . . . , i − 2

T1(σ
x) if j = 2i − 2

Tk−i+2 ◦ Tk−i+3(σ
x) if j = 2k + 1, and k = i − 1, . . . , 2i − 4

Tk−i+2(σ
x) if j = 2k, and k = i, . . . , 2i − 3.

See Figure 2 for a graphical illustration of such a path.

x

x1

x2

x3

x4 = xi

σ0 = σ

σ1

σ2

σ3

σ4

σ5

σ6 = T1(σ
x)

σ7

σ8

σ9

σ10

σ11 = σx

FIGURE 2. Illustration of the path from σ to σx for a config-
uration σ satisfying ξ(σ) = x4. Here i = 4 and the length of
the path is 4i − 5 = 11.

Denote by Γx(σ) = {σ0, σ1, . . . , σ4i−6} (i.e. the configurations of the
path γx(σ) except the last one σx). For any η = σj ∈ Γx(σ), j ≥ 1, let
y = y(x, η) ∈ {x, x1, x2, . . . , xℓ} be such that η = σy

j−1. Then, by Cauchy-

Schwarz inequality,

(f(σx) − f(σ))2 =





∑

η∈Γx(σ)

(f(ηy) − f(η))





2

≤ 4ℓ
∑

η∈Γx(σ)

(f(ηy) − f(η))2

≤
4ℓ

pq

∑

η∈Γx(σ)

cy(η)Vary(f)(η).

Hence,

µA(c̃x Varx(f)) ≤ 4ℓK
∑

η

µA(η)cy(η)Vary(f)

where

K = sup
η∈Ω,x∈A

{

∑

σ

ℓ
∑

i=1

µA(σ)

µA(η)
1ξ(σ)=i1Γx(σ)∋η

}

≤
8

q3
.

Indeed µA(σ)/µA(η) ≤ p2

q2 max(p
q , q

p) since any η ∈ Γx(σ) has at most two

extra empty sites with respect to σ and differs from σ in at most three sites,
and we used a computing argument.
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Recall that y = y(x, η). It follows from the latter that

VarµA
(f) ≤

128ℓ

q3

∑

x∈A

∑

η

µA(η)cy(η)Vary(f)

≤
128ℓ

q3
K ′
∑

u∈A

∑

η

µA(η)cu(η)Varu(f)

where

K ′ = sup
η

∑

x∈A

1y(x,η)=u ≤ sup
u∈A

|B(u, ℓ)|.

The result follows since the graph has polynomial growth. �

In Proposition 6.2 we used the following lemma.

Lemma 6.5. Take Λ, A,B ⊂ V such that Λ = A ∪ B and A ∩ B = ∅. Define

cA = 1Ω̂A
and cB = 1Ω̂B

where Ω̂A and Ω̂B are defined in (??). Assume that

max(1 − µ(cA), 1 − µ(cB)) < 1/16. Then, for all f : Ω̂Λ → R with µ̂Λ(f) = 0
it holds

Varµ̂Λ
(f) ≤ 24µ̂Λ[cB VarµA

(f̃) + cA VarµB
(f̃)]

where f̃ : ΩΛ → R is defined as

f̃(σ) =

{

f(σ) if σ ∈ Ω̂Λ

0 otherwise

Proof. Recalling the variational definition of the variance we have

Varµ̂Λ
(f) = inf

m∈R

µ̂Λ(|f − m|2)

≤
1

µΛ(Ω̂Λ)
inf

m∈R

µΛ((f1Ω̂Λ
− m)2)

=
1

µΛ(Ω̂Λ)
VarµΛ

(f̃).

Observe now that, by construction, µΛ(f̃) = 0 and (1 − cA)(1 − cB)f̃ = 0 so
that we can apply Lemma 6.6 below and obtain

Varµ̂Λ
(f) ≤

24

µΛ(Ω̂Λ)
µΛ[cB VarµA

(f̃) + cA VarµB
(f̃)]

and the result follows. �

The next Lemma might be heuristically seen as a result on the spectral
gap of some constrained blocks dynamics (see [2]). Such a bound can be of
independent interest.

Lemma 6.6. Let Λ = A ∪ B with A, B ⊂ V satisfying A ∩ B = ∅. Define µA

and µB two probability measures on {0, 1}A and {0, 1}B respectively, and µ =
µA ⊗ µB. Take cA, cB : {0, 1}Λ → [0, 1] with support in A and B respectively.

For any function g on {0, 1}Λ such that (1 − cA)(1 − cB)g = 0 it holds

Varµ(g) ≤ 12µ[c2
B VarµA

(g) + c2
A VarµB

(g)]

+ 8max(1 − µ(cA), 1 − µ(cB))Varµ(g).
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Proof. Fix g on {0, 1}Λ such that (1 − cA)(1 − cB)g = 0 and assume without
loss of generality that µ(g) = 0. First we write

g = cB(g − µA(g)) + (1 − cB)cA(g − µB(g)) + (1 − cB)cAµB(g)

− (1 − cB)cAµA(g) + (1 − cB)(1 − cA)(g − µA(g)) + µA(g)

= cB(g − µA(g)) + (1 − cB)cA(g − µB(g)) + (1 − cB)cAµB(g) + cBµA(g)

where we used the first hypothesis on g, (1 − cA)(1 − cB)g = 0, and we
arranged the terms. Therefore since we assumed µ(g) = 0 and cA, cB ∈
[0, 1]

Varµ(g) = µ(g2) ≤ 4µ(c2
B(g − µA(g))2) + 4µ(c2

A(g − µB(g))2)

+ 4µ(µB(g)2) + 4µ(µA(g)2)

= 4µ[c2
B VarµA

(g) + c2
A VarµB

(g)]

+ 4µ(µB(g)2) + 4µ(µA(g)2).

We now treat the fourth term in the latter inequality.

[µA(g)]2 = [µA(g) − µ(g)]2 = [µA(g − µB(g))]2

= [µA(cA[g − µB(g)]) + µA([1 − cA][g − µB(g)])]2

≤ 2µA(c2
A[g − µB(g)]2) + 2µA((1 − cA)2)µA([g − µB(g)]2)

If we average with respect to µ we have

µ(µA(c2
A[g − µB(g)]2)) = µ(c2

A VarµB
(g))

and, using Cauchy-Schwarz inequality and x2 ≤ x for x ∈ [0, 1],

µ(µA((1 − cA)2)µA([g − µB(g)]2)) = µA((1 − cA)2)µ([g − µB(g)]2)

≤ (1 − µ(cA))Varµ(g),

so that

µ(µA(g)2) ≤ 2µ(c2
A VarµB

(g)) + 2(1 − µ(cA))Varµ(g).

An analogous calculation for µ(µB(g)2) allows to conclude the proof. �

REFERENCES
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