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FREDRICKSON-ANDERSEN ONE SPIN FACILITATED MODEL OUT OF EQUILIBRIUM

We consider the Fredrickson and Andersen one spin facilitated model (FA1f) on an infinite connected graph with polynomial growth. Each site with rate one refreshes its occupation variable to a filled or to an empty state with probability p ∈ [0, 1] or q = 1p respectively, provided that at least one of its nearest neighbours is empty. We study the nonequilibrium dynamics started from an initial distribution ν different from the stationary product p-Bernoulli measure µ. We assume that, under ν, the distance between two nearest empty sites has exponential moments. We then prove convergence to equilibrium when the vacancy density q is above a proper threshold q < 1. The convergence is exponential or stretched exponential, depending on the growth of the graph. In particular it is exponential on Z d for d = 1 and stretched exponential for d > 1.

Our result can be generalized to other non cooperative models.

INTRODUCTION

Fredrickson-Andersen one spin facilitated model (FA1f) [START_REF] Fredrickson | Kinetic ising model of the glass transition[END_REF][START_REF]Facilitated kinetic ising models and the glass transition[END_REF] belongs to the class of interacting particle systems known as Kinetically Constrained Spin Models (KCSM), which have been introduced and very much studied in the physics literature to model liquid/glass transition and more generally glassy dynamics (see [START_REF] Ritort | Glassy dynamics of kinetically constrained models[END_REF][START_REF] Garrahan | Dynamical heterogeneities in Glasses, colloids and granular media and jamming transitions[END_REF] and references therein). A configuration for a KCSM is given by assigning to each vertex x of a (finite or infinite) connected graph G its occupation variable η x ∈ {0, 1}, which corresponds to an empty or filled site respectively. The evolution is given by Markovian stochastic dynamics of Glauber type. With rate one each site refreshes its occupation variable to a filled or to an empty state with probability p ∈ [0, 1] or q = 1-p respectively, provided that the current configuration satisfies an a priori specified local constraint. For FA1f the constraint at x requires at least one of its nearest neighbours to be empty. Note that a single empty site is sufficient to ensure irreducibility of the chain. KCSM in which a fine subset of empty sites is able to move around and empty the whole space are called noncooperative and are in general easier to analyze than cooperative ones. Note also that (and this is a general feature of KCSM) the constraint which should be satisfied to allow creation/annihilation of a particle at x does not involve η x . Thus FA1f dynamics satisfies detailed balance w.r.t. the Bernoulli product measure at density p, which is therefore an invariant reversible measure for the process. Key features of FA1f model and more generally of KCSM are that a completely filled configuration is blocked (for generic KCSM other blocked configurations may occur) -namely all creation/destruction rates are identically equal to zero in this configuration -, and that due to the constraints the dynamics is not attractive, so that monotonicity arguments valid for e.g. ferromagnetic stochastic Ising models cannot be applied. Due to the above properties the basic issues concerning the large time behavior of the process are non-trivial.

In [START_REF] Cancrini | Kinetically constrained spin models[END_REF] it has been proved that the model on G = Z d is ergodic for any q > 0 with a positive spectral gap which shrinks to zero as q → 0 corresponding to the occurrence of diverging mixing times. A key issue both from the mathematical and the physical point of view is what happens when the evolution does not start from the equilibrium measure µ. The analysis of this setting usually requires much more detailed information than just the positivity of the spectral gap, e.g. boundedness of the logarithmic Sobolev constant or positivity of the entropy constant uniformly in the system size. The latter requirement certainly does not hold (see Section 7.1 of [START_REF] Cancrini | Kinetically constrained spin models[END_REF]) and even the basic question of whether convergence to µ occurs remains open in the infinite volume case. Of course, due to the existence of blocked configurations, convergence to µ cannot hold uniformly in the initial configuration and one could try to prove it a.e. or in mean w.r.t. a proper initial distribution ν = µ.

From the point of view of physicists, a particularly relevant case (see e.g. [START_REF] Léonard | Non-equilibrium dynamics of spin facilitated glass models[END_REF]) is when ν is a product Bernoulli(p ′ ) measure with p ′ = p and p ′ = 1). In this case the most natural guess is that convergence to equilibrium occurs for any local (i.e. depending on finitely many occupation variables) function f i.e.

lim t→∞ dν(η)E η f (η t ) = µ(f ) (1.1)
where η t denotes the process started from η at time t and that the limit is attained exponentially fast.

The only case of KCSM where this result has been proved [START_REF] Cancrini | Facilitated oriented spin models: some non equilibrium results[END_REF] (see also [START_REF] Faggionato | Overview on recent rigorous results on the east model[END_REF]) is the East model, that is a one dimensional model in which the constraint at x requires the neighbour to the right of x to be empty. The strategy used to prove convergence to equilibrium for East model in [START_REF] Cancrini | Facilitated oriented spin models: some non equilibrium results[END_REF] relies however heavily on the oriented character of the East constraint and cannot be extended to FA1f model. We also recall that in [START_REF] Cancrini | Facilitated oriented spin models: some non equilibrium results[END_REF] a perturbative result has been established proving exponential convergence for any one dimensional KCSM with finite range jump rates and positive spectral gap (thus including FA1f at any q > 0), provided the initial distribution ν is "not too far" from the reversible one (e.g. for ν Bernoulli at density p ′ ∼ p).

Here we prove convergence to equilibrium for FA1f on a infinite connected graph G with polynomial growth (see the definition in sec. 2.1 below) when the equilibrium vacancy density q is above a proper threshold q (with q < 1) and the starting measure ν is such that the distance between two nearest empty sites has exponential moments. That includes in particular any non-trivial Bernoulli product measure with p ′ = p but also the case in which ν is the Dirac measure on a fixed configuration with infinitely many empty sites and such that the distance between two nearest empty sites is uniformly bounded. The derived convergence is either exponential or stretched exponential depending on the growth of the graph. In the particular case G = Z d , we can prove exponential relaxation only for d = 1. If d > 1 we get a stretched exponential behavior. Although our results can be generalized to other non cooperative KCSM (see section 6 for a specific example and [START_REF] Cancrini | Kinetically constrained spin models[END_REF] for the general definition of this class) we consider here only the FA1f case to let the paper be more readable.

We finish with a short road map of the paper. In section 2 we introduce the notations and give the main result, Theorem 2.1, which is proven in section 5. The strategy to derive this result can be summarized as follows. We first replace E ν (f (η t )) with a similar quantity but computed w.r.t the FA1f finite volume process (actually a finite state, continuous time Markov chain evolving in a finite ball of radius proportional to time t around the support of f ). This first reduction is standard and it follows easily from the so-called finite speed of propagation. Then we show that, with high probability, only the evolution of a restricted chain inside a suitable ergodic component matters. This reduction is performed via a general result on Markov processes which we derive in section 3. The ergodic component is chosen in such a way that the log-Sobolev constant for the restricted chain is much smaller than t. This second reduction is new and it is at this stage that the restriction on q appears and that all the difficulties of the non-equilibrium dynamics appear. Its implementation requires the estimate of the spectral gap of the process restricted to the ergodic component (see section 6) and the study of the persistence of zeros out of equilibrium (see section 4).

NOTATION AND RESULT

2.1. The graph. Let G = (V, E) be an infinite, connected graph with vertex set V , edge set E and graph distance d(•, •). Given x ∈ V the set of neighbors of x will be denoted by N x . For all Λ ⊂ V we call diam(Λ) = sup x,y∈Λ d(x, y) the diameter of Λ and ∂Λ = {x ∈ V \ Λ : d(x, Λ) = 1} its (outer) boundary. Given a vertex x and an integer r, B(x, r) = {y ∈ V : d(x, y) ≤ r} denotes the ball centered at x and of radius r. We introduce the growth function F : N \ {0} → N ∪ {∞} defined by

F (r) = sup x∈V |B(x, r)|
where | • | denotes the cardinality. Then we say that G has (k, D)-polynomial growth if F (r) ≤ k r D for all r ≥ 1, with k and D two positive constants. An example of such a graph is given by the d-dimentional square lattice Z d that has (3 d , d)-polynomial growth (with the constant 3 d certainly not optimal). 2.2. The probability space. The configuration space is Ω = {0, 1} V equipped with the Bernoulli product measure µ of parameter p. Similarly we define Ω Λ and µ Λ for any subset Λ ⊂ V . Elements of Ω (Ω Λ ) will be denoted by Greek letters η, ω, σ (η Λ , ω Λ , σ Λ ) etc. Furthermore, we introduce the shorthand notation µ(f ) to denote the expected value of f and Var(f ) for its variance (when it exists).

2.3. The Markov process. The interacting particle model that will be studied here is a Glauber type Markov process in Ω, reversible w.r.t. the measure µ. It can be informally described as follows. Each vertex x waits an independent mean one exponential time and then, provided that the current configuration σ is such that one of the neighbors of x (i.e. one site y ∈ N x ) is empty, the value σ(x) is refreshed with a new value in {0, 1} sampled from a Bernoulli p measure and the whole procedure starts again.

The generator L of the process can be constructed in a standard way (see e.g. [START_REF] Liggett | Interacting particle systems[END_REF]). It acts on local functions as

Lf (σ) = x∈V c x (σ)[qσ(x) + p(1 -σ(x))][f (σ x ) -f (σ)] (2.1)
where c x (σ) = 1 if y∈Nx σ(y) = 0 and c x (σ) = 0 otherwise (namely the constraint requires at least one empty neighbor), σ x is the configuration σ flipped at site x, q ∈ [0, 1] and p = 1q. It is a non-positive selfadjoint operator on L 2 (Ω, µ) with domain Dom(L), core

D(L) = {f : Ω → R s.t. x∈V sup σ∈Ω |f (σ x ) -f (σ)| < ∞} and Dirichlet form given by D(f ) = x∈V µ (c x Var x (f )) , f ∈ Dom(L).
Here

Var x (f ) ≡ dµ(ω(x))f 2 (ω)-dµ(ω(x))f (ω)
2 denotes the local variance with respect to the variable ω(x) computed while the other variables are held fixed. To the generator L we can associate the Markov semigroup P t := e tL with reversible invariant measure µ. We denote by σ t the process at time t starting from the configuration σ. Also, we denote by E η (f (η t )) the expectation over the process generated by L at time t and started at configuration η at time zero and, with a slight abuse of notation, we let

E ν (f (σ t )) := dν(η)E η (f (η t ))
and let P ν be the distribution of the process started with distribution ν at time zero. For any subset Λ ⊂ V and any configuration η ∈ Ω

L η Λ f (σ) = x∈Λ c η x,Λ (σ)[qσ(x) + p(1 -σ(x))][f (σ x ) -f (σ)] (2.2) where c η x,Λ (σ) = c x (σ Λ η Λ c
) where σ Λ η Λ c is the configuration equal to σ on Λ and equal to η on Λ c . When η is the empty configuration we write simply c x,Λ and L Λ . We also let σ Λ t be the configuration at time t of the process starting from σ Λ with empty boundary condition.

Main Result.

In order to state our main theorem, we need some notations. For any vertex x ∈ V , and any configuration σ ∈ Ω, let

ξ x (σ) = min y∈V : σ(y)=0
{d(x, y)} be the distance of x from the set of empty sites of σ.

Theorem 2.1. Let q > 1/2. Assume that the graph G has (k, D)-polynomial growth and f : Ω → R is a local function with µ(f ) = 0. Let ν be a probability measure on Ω such that κ

:= sup x∈V E ν (θ ξ x o ) < ∞ for some θ o > 1. Then, there exists a positive constant c = c(q, k, D, κ, |supp(f)|) such that |E ν (f (σ t ))| ≤ c||f || ∞ e -t/c if D = 1 e -[t/(c log t)] 1/D if D > 1. ∀t ≥ 2.
Remark 2.2. We expect that our results hold also for 0 < q ≤ 1 2 . This needs a more precise control of the behavior of ξ x t = ξ x (σ t ). In dimension one we can obtain a better threshold by calculating further time derivatives of u(t) = E η (θ ξt ), see Proposition 4.1 below.

Remark 2.3.

Observe that if ν is a Dirac mass on some configuration η, the condition reads sup x∈V θ

ξ x (η) o < ∞.
This encodes the fact that η has infinitely many empty sites and that, in addition, the distance between two nearest empty sites is uniformly bounded. This condition is different from the case of the East model in [START_REF] Cancrini | Facilitated oriented spin models: some non equilibrium results[END_REF] where the condition on the initial configuration was the presence of an infinite number of zeros.

Remark 2.4. If one considers the case in which ν is the product of Bernoulli-p ′ on G, one has that, for all θ < 1/p ′ and all x ∈ G,

E ν (θ ξ x ) = ∞ k=0 θ k P ν (ξ x = k) ≤ ∞ k=0 θ k (p ′ ) |B(x,k)| ≤ ∞ k=0 (θp ′ ) k = 1 1 -p ′ θ . Hence, κ ≤ 1 1-p ′ θo for θ o ∈ (1, 1/p ′ ).
In particular Theorem 2.1 applies to any initial probability measure, product of Bernoulli-p ′ on G, with p ′ ∈ [0, 1). Remark 2.5. Note that graphs with polynomial growth are amenable. We stress anyway that there exist amenable graphs which do not satisfy our assumption. This is due to Proposition 5.1 below that gives a useless bound in the case of amenable graphs with intermediate growth (i.e. faster than any polynomial but slower than any exponential, see [START_REF] Grigorchuk | On growth in group theory[END_REF]). The same happens to any graph with exponential growth (such as for example any regular n-ary tree (n ≥ 2)).

A PRELIMINARY RESULT ON MARKOV PROCESSES

We prove here a general result which relates the behavior of a Markov process on a finite space to that of a restricted Markov process. This result, which might be of independent interest, will be a key tool in our analysis. Indeed we will use it in the proof of Theorem 2.1 to reduce the evolution of the FA1f process on a large volume to the same process on smaller sets on a properly defined ergodic component.

We start by recalling some basic notions on continous time Markov chains which will be used in the following. Let S be a finite space and Q = (q(x, y)) x,y∈S be a transition rate matrix, namely a matrix such that for any x, y ∈ S it holds q(x, y) ≥ 0 for x = y and y∈S q(x, y) = 0.

Recall that Q defines a continuous time Markov chain (X t ) t≥0 on S as follows [START_REF] Liggett | Interacting particle systems[END_REF]. If X t = x, then the process stays at x for an exponential time with parameter c(x) = -q(x, x). At the end of that time, it jumps to y = x with probability p(x, y) = q(x, y)/c(x), stays there for an exponential time with parameter c(y), etc. Assume that (X t ) t≥0 is reversible with respect to a probability measures π. Then, we define the spectral gap γ(Q) and the log-Sobolev constant α(Q) of the chain as

γ(Q) := inf f : f =const x,y π(x)p(x, y)(f (y) -f (x)) 2 2 Var π (f ) (3.1) α(Q) := sup f : f =const 2Ent π (f 2 ) x,y π(x)p(x, y)(f (y) -f (x)) 2 (3.2)
where Ent π (f ) = π(f log f )π(f ) log π(f ) denotes the entropy of f . Let (P t ) t≥0 be the semigroup of the Markov chain. Then

Var π (P t f ) e -2tc Var π (f ) ∀f (3.3)
is equivalent to γ ≥ c. On the other hand the positivity of the log-Sobolev constant is equivalent to the following hypercontractivity property [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] ||P

t f || L p (π) ||f || L 2 (π) (3.4) 
∀t ≥ 0 and ∀p 1+ e 4t α . We refer to [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF] for an introduction of these notions. We are now ready to introduce the restricted Markov chain. Fix A ⊂ S and set  = A ∪ {y / ∈ A : q(x, y) > 0 for some x ∈ A}.

(3.5) Let ( Xt ) t≥0 be a continuous time Markov chain (which we will call the hat chain) on  with transition rate matrix Q = (q(x, y)) x,y∈  which satisfies q(x, y) = q(x, y)

∀(x, y) ∈ A × Â (3.6)
and assume that the process is reversible with respect to a measure π. We denote by γ and α the spectral gap and log-Sobolev constant of the hat chain, namely γ := γ( Q) and α := α( Q).

Proposition 3.1. Let (X t ) t≥0 , ( Xt ) t≥0 , π, π, γ and α as above. Then, for all initial probability measure ν on S and all f : S → R with π(f ) = 0, it holds for any t ≥ 0

|E ν (f (X t ))| ≤ |π(f )| + 4||f || ∞ P ν (A c t ) + ||f || ∞ exp -γ t 2 + e -2t α log 1 π * (3.7)
where A t = {X s ∈ A, ∀s ≤ t} and π * := min x∈S π(x).

Remark 3.2. The standard argument (see [START_REF] Holley | Logarithmic Sobolev inequalities and stochastic Ising models[END_REF][START_REF] Stroock | The logarithmic Sobolev inequality for discrete spin systems on a lattice[END_REF]) using the log-Sobolev constant would lead to

|E ν (f (X t ))| ≤ ||f || ∞ exp -γ t 2 + exp{- 2t α } log 1 π * .
with γ = γ(Q) and α = α(Q). The difference in proposition 3.1 comes from the fact that we deal with the hat chain. This can be useful if the choice of  and Q are done properly so that the log-Sobolev constant α is smaller than α and/or the spectral gap γ is larger then γ. This will be the case for the application of the above result in the proof of Theorem 2.1 for which, fixed t, we will have to consider a state space which depends on t and the corresponding chain will have α ≃ t d and log(1/π) ≃ t d . Hence the standard argument gives

|E ν (f (X t ))| ≤ ||f || ∞ exp -γ t 2 + ct d .
and therefore does not prove decay in t. We will instead devise a hat chain for which γ ≥ c > 0 and α is much smaller than t so that the dominant term in exp -γ t 2 + exp{-2t α } log 1 π * is given by the gap term γt. The price to pay are the first two extra terms in (3.7) that we will analyze separately.

Proof. Fix a probability measure ν and a function f with π(f ) = 0 and let

g = f -π(f ). Then |E ν (f (X t ))| ≤ |π(f )| + ||g|| ∞ P ν (A c t ) + |E ν (g(X t )1 At )|. (3.8) 
We now concentrate on the last term in (3.8). By definition of the chains (X t ) t≥0 and ( Xt ) t≥0 one has

E ν (g(X t )1 At ) = dν(x)E x (g( Xt )1 { Xs∈A, ∀s≤t} ).
Hence, by Hölder inequality, we have

|E ν (g(X t )1 At )| = | Â dν(x)E x (g( Xt )(1 -1 { Xs∈A, ∀s≤t} c )| ≤ |π(h Pt g)| + 2||f || ∞ P ν (A c t ) ≤ ||h|| L β (π) || Pt g|| L β ′ (π) + 2||f || ∞ P ν (A c t )
where for any x ∈ Â we let h(x) = ν(x)/π(x) and β, β ′ ≥ 1, that will be chosen later, are such that 1/β + 1/β ′ = 1. To bound the previous expression take β ′ = 1 + e 2t α . Using (3.4) and (3.3) we obtain

|| Pt g|| L β ′ (π) = || P t 2 P t 2 g|| L β ′ (π) ≤ || P t 2 g|| L 2 (π) ≤ e -γ t 2 ||g|| L 2 (π) ≤ e -γ t 2 ||f || ∞ .
On the other hand

||h|| L β (π) ≤ hdπ 1 β ||h|| β-1 β ∞ = ||h|| 1 β ′ ∞ ≤ exp{e -2t α log ||h|| ∞ }
and the proof is completed since ||h|| ∞ ≤ 1 π * .

PERSISTENCE OF ZEROS OUT OF EQUILIBRIUM

In this section we study the behavior of the minimal distance from a fixed site to the nearest site at which one finds a vacancy. The result that we obtain will be a key tool for the proof of our main Theorem 2.1.

For any σ ∈ {0, 1} V and any x ∈ V define ξ x (σ) as the minimal distance at which one finds an empty site starting from x, ξ x (σ) = min y∈V : σ(y)=0

{d(x, y)} with the convention that min ∅ = +∞, (ξ x (σ) = 0 if σ(x) = 0). Proposition 4.1. Consider the FA1f process on a finite set Λ ⊂ V with generator L Λ . Then, for all x ∈ Λ, all θ ≥ 1, all q ∈ ( θ θ+1 , 1] and all initial configuration η, it holds

E η θ ξ x (σ Λ t ) ≤ θ ξ x (η) e -λt + q q(θ + 1) -θ ∀t ≥ 0,
where λ = θ 2 -1 θ (q -θ θ+1 ). Proof. Fix θ > 1, q > 0 and x ∈ Λ. To simplify the notation we drop the superscript x from ξ x and set

ξ t = ξ(σ Λ t ) in what follows. Recall that σ Λ
t is defined with empty boundary condition so that

ξ t ≤ d(x, Λ c ). Let u(t) = E η (θ ξt ) and observe that d dt u(t) = E η (L Λ θ ξt ).
To calculate the expected value above we distinguish two cases: (i)

ξ t = 0, (ii) ξ t ≥ 1.
Case (i): assume that ξ t = 0. Then

(L Λ θ ξt )1 ξt=0 = θ ξt c x (σ Λ t )p(θ -1)1 ξt=0 . (4.1)
Case (ii). Define E(σ) = {y ∈ V : d(x, y) = ξ(σ) and σ(y) = 0} and F (σ) = {y ∈ V : d(y, E) = 1 and d(x, y) = ξ(σ) -1}. Then one argues that ξ t can increase by 1 only if there is exactly one empty site in the set E, and that it can always decrease by 1 by a flip (which is legal by construction) on each site of F (see Figure 1).

x x E E F FIGURE 1. On the graph G = Z 2 ,
two examples of configurations for which ξ x = 3. On the left ξ x cannot increase since |E| ≥ 2, it can decrease by a flip (legal thanks to the empty sites in E) in any points of F . On the right ξ x can either increase or decrease.

Hence

(L Λ θ ξt )1 ξt≥1 = θ ξt   p(θ -1) y∈E c y (σ Λ t )1 |E|=1 + q|F |( 1 θ -1)   1 ξt≥1 ≤ θ ξt [p(θ -1) -q θ -1 θ ] + [q θ -1 θ -p(θ -1)]1 ξt=0 (4.2)
Summing up (4.1) and (4.2) we end up with

L Λ θ ξt θ -1 θ θ ξt (pθ -q) + q .
Therefore, since p = 1q, u ′ (t) ≤ θ -1 θ ((pθq)u(t) + q) = -λu(t) + q θ -1 θ and the expected result follows.

PROOF OF THEOREM 2.1

In this section we prove Theorem 2.1. We will first reduce the study of the evolution of the process from infinite volume to a finite ball of radius proportional to t thanks to finite speed of propagation. Then by using Proposition 3.1 we reduce to the study of a restricted process on smaller sets on some ergodic component so that the log-Sobolev constant of the restricted process is much smaller than t (recall Remark 3.2). In order to estimate the probability that the process gets out the ergodic component (namely to bound the second term in (3.7)) we will use Proposition 4.1 which allows to upper bound the probability of a region to be completely filled.

Proof of Theorem 2.1. Throughout the proof c denotes some positive constant c = c(q, k, D, κ, |supp(f)|) which may change from line to line.

Fix t ≥ 2 and a local function f . Let x ∈ V and r integer be such that supp(f) ⊂ B(x, r). Standard arguments using finite speed of propagation (see e.g. [START_REF] Martinelli | Lectures on Glauber dynamics for discrete spin models, Lectures on probability theory and statistics[END_REF]) prove that for any initial measure ν on Ω it holds

|E ν (f (σ t ) -f (σ Λ t ))| ≤ c f ∞ e -t
where Λ = B(x, r + 100t) and we recall that σ Λ t is the configuration at time t of the process starting from σ Λ evolving on the finite volume Λ with empty boundary condition and c is some positive constant depending on |supp(f)|. Hence,

|E ν (f (σ t ))| ≤ |E ν (f (σ Λ t ))| + c f ∞ e -t .
(5.1)

Let Λ 1 , Λ 2 , . . . , Λ n ⊂ Λ be connected sets such that ∪ i Λ i = Λ and Λ i ∩Λ j = ∅ for all i = j. Such a decomposition will be called a connected partition of Λ. The following holds Proposition 5.1. For any Λ ⊂ V and any f local, with supp(f) ⊂ Λ and µ(f ) = 0 there exists a constant c = c(q, |supp(f)|) such that for any connected partition Λ 1 , Λ 2 , . . . , Λ n of Λ, for any initial probability measure ν on Ω, it holds that

|E ν (f (σ Λ t ))| ≤ c||f || ∞ ne -qm + t|Λ| sup s∈[0,t] P ν (σ Λ s / ∈ A) + |Λ|e -t/3 + exp - t c + c|Λ|e -t/(cM )
provided that ne -qm < 1/2 where m := min{|Λ 1 |, . . . , |Λ n |}, M := max{|Λ 1 |, . . . , |Λ n |} and A is the set of configurations containing at least two empty sites in each Λ i , namely

A = n i=1 {σ ∈ Ω Λ s.t. x∈Λ i (1 -σ(x)) ≥ 2}. (5.2)
We postpone the proof of this Proposition to the end of this section.

Observe that for any positive integer ℓ t, there exists 1 a connected partition Λ 1 , . . . , Λ n of Λ, and vertices x 1 , . . . , x n ∈ V , such that for any i, B(x i , ℓ) ⊂ Λ i ⊂ B(x i , 6ℓ). Then, take ℓ = ǫ[t/ log t] 1/D if D > 1 and ℓ = ǫt if D = 1 for some ǫ > 0 that will be chosen later and observe that, with this choice,

M = max(|Λ 1 |, . . . , |Λ n |) ≤ k6 D ℓ D (since G has (k, D)-polynomial growth). Furthermore m = min(|Λ 1 |, . . . , |Λ n |) ≥ ℓ
Since n ≤ |Λ| ≤ ct D , Equation (5.1) and Proposition 5.1 guarantee that

|E ν (f (σ t ))| ≤ c||f || ∞ t|Λ| sup s∈[0,t] P ν (σ Λ s / ∈ A)+c||f || ∞ e -t/c if D = 1 e -[t/(c log t)] 1/D if D > 1 provided ǫ is small enough.
It remains to study the first term of the latter inequality. We partition each set Λ i into two connected sets Λ + i and Λ - i (i.e.

Λ i = Λ + i ∪ Λ - i and Λ + i ∩ Λ - i = ∅) such that for some x + i , x - i ∈ V , B(x ± i , ℓ/4) ⊂ Λ ± i (
the existence of such vertices are left to the reader). The event {σ Λ s / ∈ A} implies that there exists one index i such that at least one of the two halves Λ + i , Λ - i is completely filled. Assume that it is for example Λ + i , i.e. assume that for any

x ∈ Λ + i , σ Λ s (x) = 1. This implies that ξ x + i (σ Λ s ) ≥ ℓ/4.
Hence, thanks to a union bound, Markov's inequality, and Proposition 4.1, there exists θ > 1 such that

P ν (σ Λ s / ∈ A) ≤ 2nP ν (ξ x + i (σ Λ s ) ≥ ℓ/4) ≤ 2nθ -ℓ/4 E ν (θ ξ x + i (σ Λ s ) ) ≤ cnθ -ℓ/4 ≤ c e -t/c if D = 1 e -[t/(c log t)] 1/D if D > 1
where we used the definition of ℓ, the assumption sup x∈V E ν (θ ξ x o ) < ∞ and the fact that n ≤ |Λ| ≤ ct D . This ends the proof.

We are now left with proving Proposition 5.1. 1 One can construct Λ1, . . . , Λn, x1, . . . , xn as follows. Recall that Λ = B(x, r + 100t).

Order (arbitrarily) the sites y1, y2, . . . , yN of {z ∈ Λ : B(z, ℓ) ⊂ Λ and d(z, x) = 2i(ℓ + 1) -1 for some i ≥ 1} and perform the following algorithm: set x1 = x, i0 = 0, and for k ≥ 1 set Proof of Proposition 5.1. Fix Λ ⊂ V , f local, with supp(f) ⊂ Λ and µ(f ) = 0. Fix a connected partition Λ 1 , Λ 2 , . . . , Λ n of Λ and an initial probability measure ν on Ω.

x k+1 = yi k with i k := inf{j ≥ i k-1 + 1 : B(yj, ℓ) ∩ (∪ k i=1 B(xi, ℓ)) = ∅}.
Our aim is to apply Proposition 3.1. We let S = Ω Λ and (X t ) t≥0 = (σ Λ t ) t≥0 . The corresponding transition rates are, ∀σ, η ∈ Ω Λ ,

q(σ, η) =      c x,Λ (σ)[qσ(x) + p(1 -σ(x))] if η = σ x -x∈Λ q(σ, σ x ) if η = σ 0 otherwise
We define A as in (5.2), namely the set of configurations in Ω Λ such that there exist at least two empty sites in each set Λ i , and  as in (3.5). Next we define ( Xt ) t≥0 on  via the rates q(σ, η) = q(σ, η) ∀σ, η ∈ Â. In words, ( Xt ) t≥0 corresponds to a modification of the FA1f process in which the moves that would lead the process to leave  are suppressed. Let π = µ Λ and π(

•) = µ Λ (• | Â).
It is immediate to verify that (X t ) t≥0 and ( Xt ) t≥0 are reversible with respect to π and π, respectively. By construction the above processes satisfy the property (3.5). Thus, thanks to Proposition 3.1, we have

|E ν (f (σ Λ t ))| ≤ |π(f )| + ||f || ∞ 4P ν (A c t ) + exp -γ t 2 + e -2t α log 1 π * .
(5.3) We now study each term of the last inequality separately.

If we recall that µ Λ (f ) = µ(f ) = 0 and using a union bound, we have

|π(f )| = |µ Λ (f (1 -1 Âc ))| µ Λ ( Â) ≤ ||f || ∞ µ Λ ( Âc ) µ Λ ( Â) ≤ ||f || ∞ ne -qm 1 -ne -qm .
(5.4)

We now deal with the term P ν (A c t ). Let I t be the event that there exists a site in Λ with more than 2t rings in the time interval [0, t]. Then, by standard large deviations of Poisson variables and a union bound, there exists a universal positive constant d such that P ν (A c t ∩ I t ) ≤ d|Λ|e -t/3 . Furthermore, using a union bound on all the rings on the event I c t , we have

P ν (A c t ∩ I c t ) ≤ 2t|Λ| sup s∈[0,t] P ν (σ Λ s / ∈ A).
We deduce that

P ν (A c t ) ≤ c|Λ| t sup s∈[0,t] P ν (σ Λ s / ∈ A) + e -t/3 . (5.5)
Next we analyse the log-Sobolev constant α and the spectral gap constant γ. For that purpose, let us introduce a new process ( Xt ) t≥0 on  via the rates, ∀σ, η ∈ Â,

q(σ, η) =      c ω x,Λ i(x) (σ)[qσ(x) + p(1 -σ(x))] if η = σ x -x∈Λ q(σ, σ x ) if η = σ 0 otherwise.
where ω is the entirely filled configuration (i.e. such that ω(x) = 1 for all x ∈ V ) and i(x) is such that x ∈ Λ i(x) . In words ( Xt ) t≥0 corresponds to n independent FA1f processes inside the boxes Λ i each evolving with filled boundary conditions on the ergodic component of the configurations with at least one zero, namely on ΩΛ i where we set for any

A ⊂ Λ ΩA = {σ ∈ Ω Λ s.t. ∃x i ∈ A with σ(x i ) = 0}. (5.6) 
Note that  = n i=1 ΩΛ i thus the FA1f constraint and the filled boundary condition on each box indeed guarantee that ( Xt ) t≥0 does not exit  and π is a reversible measure also for ( Xt ) t≥0 . Furthermore, since the occupied boundary conditions imply that for any

σ ∈ Ω Λ it holds c ω x,Λ i(x) (σ) c x,Λ (σ) (a zero which is present in σ Λ i(x) ω Λ c i(x)
is also present in σ) , the following inequalities holds between the spectral gap and log-Sobolev constant of the hat and tilde process α ≤ α and γ ≥ γ, where α := α( Q), α := α( Q), γ := γ( Q) and γ = γ( Q) (see (3.1) and (3.2)). Observe now that Xt restricted to each ΩΛ i is ergodic and reversible with respect to μi = µ Λ i (• | ΩΛ i ). Thus by the well-known tensorisation property of the Poincaré and the log-Sobolev inequalities (see e.g. [1, Chapter 1]), we conclude that γ = min(γ 1 , . . . , γn ) and α = max(α 1 , . . . , αn ) with γi and αi the spectral gap and log-Sobolev constant of an FA1f process on Λ i with filled boundary condition on the ergodic component with at least one zero which, using (3.1) and (3.2), can be expressed as γΛ i (5.7) and αΛ i (5.8) respectively. Then, Proposition 5.2 below shows that γ ≥ c and α c|Λ i |. Hence, for c as in Proposition 5.2 it holds

exp -γ t 2 + exp{- 2t α } log 1 π * exp - t c + c|Λ|e -t/(cM ) .
By collecting this inequality together with (5.3), (5.4) and (5.5) we end the proof.

Proposition 5.2 ([3]).

Let A ⊂ V be connected and μA (•) = µ A (• | ΩA ). Let ω be the entirely filled configuration (i.e. such that ω(x) = 1 for all x ∈ V ) Then, there exists a constant c = c(q) such that

γA := inf f :f =const. x∈A μA ( c ω x,A Var x (f )) Var μA (f ) ≥ c (5.7) 
and

αA := sup f :f =const. Ent μA (f ) x∈A μA (c ω x,A Var x (f )) ≤ c|A|. (5.8) 
Proof. The first part on the spectral gap is proven in [3, Theorem 6.4 page 336]. In section 6 we give an alternative proof which gives a better bound for small q and can be extended to non cooperative models different from FA1f.

The second part easily follows from the standard bound [START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF][START_REF] Saloff-Coste | Lectures on finite Markov chains, Lectures on probability theory and statistics[END_REF] αA ≤ γ-1 A log 1 μ * A where μ * A := min σ∈ ΩA μA (σ) ≥ exp{-c|A|}.

SPECTRAL GAP ON THE ERGODIC COMPONENT

In this section we estimate the spectral gap of the process FA1f on a finite volume with occupied boundary conditions on the ergodic component of configurations with at least one zero. This result has been used in the proof of Theorem 2.1 as a key tool to prove Proposition 5.1. This has been done in [START_REF] Cancrini | Kinetically constrained spin models[END_REF][START_REF]Facilitated spin models: recent and new results, Methods of contemporary mathematical statistical physics[END_REF]. We present here an alternative proof based on the ideas of [START_REF] Martinelli | Kinetically constrained models on trees[END_REF] that, on the one hand, gives a somehow more precise bound for very small q and, on the other hand, can be generalized to non cooperative models different from FA1f on some ergodic component (not necessarily the largest one). The remaining of the proof of Theorem 2.1 for these models carries over along the same lines as for FA1f. An example of non cooperative model different from FA1f is the following. Each vertex x waits an independent mean one exponential time and then, provided that the current configuration σ is such that at least two of the sites at distance less or equal to 2 are empty ( y∈ Nx (1σ(y)) ≥ 2, where Nx = {y : d(x, y) ≤ 2}), the value σ(x) is refreshed with a new value in {0, 1} sampled from a Bernoulli p measure and the whole procedure starts again. For simplicity we deal with the FA-1f model.

For every Λ ⊂ V finite recall that ΩΛ is the set of configurations with at least one zero (5.6) and μΛ (•) = µ Λ (• | ΩΛ ). By using (3.1) the spectral gap γΛ for the dynamics on ΩΛ with filled boundary conditions can be expressed as

γΛ = inf f : f =const. x∈Λ μΛ (ĉ x Var x (f )) Var μΛ (f ) (6.1)
where the infimum runs over all non constant functions f : ΩΛ → R, Var x (f ) := Var µ {x} (f ), and ĉx (σ) := c ω x,Λ (σ) with ω the entirely filled configuration, i.e. ω(x) = 1 for all x ∈ V . We are now ready to state the result on the spectral gap. Theorem 6.1. Let G = (V, E) be a graph with (k, D)-polynomial growth. Then there exists a positive constant C = C(k, D) such that for any connected set

Λ ⊂ V γΛ ≥ C q D+4 log(2/q) D+1
The proof of Theorem 6.1 is divided in two steps. At first we bound from below the spectral gap of the hat chain in Λ by the spectral gap of the FA1f model (not restricted to the ergodic component), on all subsets of V with minimal boundary condition. Then we study such a spectral gap following the strategy of [START_REF] Martinelli | Kinetically constrained models on trees[END_REF].

We need some more notations. Given A ⊂ V , z ∈ ∂A and x ∈ A define c z

x,A (σ) = c ω (z)

x,A (σ), σ ∈ Ω, where ω (z) is the entirely filled configuration, except at site z where it is 0: ω (z) (x) = 1 for all x = z and ω (z) (z) = 0. The corresponding generator L ω (z) A will be simply denoted by L z A . It corresponds to the FA1f process in A with minimal boundary condition.

The first step in the proof of Theorem 6.1 is the following result. Proposition 6.2. For any finite connected Λ ⊂ V with 8p diam(Λ)/3 < 1 2 it holds

γΛ ≥ 1 48 inf A⊂V,connected z∈∂A gap(L z A ).
Observe that, combining [3, Theorem 6.1] and [2, Theorem 6.1] for any set A and any site z, we had gap(L z A ) ≥ cq log 2 (1/q) for some universal positive constant c. Hence, for the FA1f process, we had the lower bound γΛ ≥ cq log 2 (1/q) . We present below an alternative strategy (based on [START_REF] Martinelli | Kinetically constrained models on trees[END_REF]) which can be applied to other non-cooperative models and gives a more accurate bound for the FA1f process when q is small.

Proof. Consider a non constant function f : ΩΛ → R with μ(f ) = 0 and define f :

Ω Λ → R as f (σ) = f (σ) if σ ∈ ΩΛ 0 otherwise
We divide 2 Λ into two disjoint connected subsets A and B such that their diameter is larger then |Λ|/3. Thank to Lemma 6.5 below (our hypothesis implies that max(1-µ(c A ), 1-

µ(c B )) < 1/16) Var μΛ (f ) ≤ 24 μΛ [c B Var µ A ( f ) + c A Var µ B ( f )]
where c A = 1 ΩA and c B = 1 ΩB and ΩA and ΩB are defined in (??).

Consider the first term. Define the random variable

ζ := sup x∈B {d(A, x) : σ(x) = 0}
where by convention the supremum of the empty set is ∞. The function c B guarantees that ζ ∈ {1, 2, • • • , diam(Λ)}. Following the strategy of [START_REF] Cancrini | Kinetically constrained spin models[END_REF] we have

μΛ [c B Var µ A ( f )] = 1 µ Λ ( ΩΛ ) n≥1 µ Λ [1 ζ=n Var µ A ( f )] ≤ 1 µ Λ ( ΩΛ ) n≥1 µ Λ [1 ζ=n Var µ An ( f )]
where A n = {x ∈ Λ : d(A, x) ≤ n -1} and we used the convexity of the variance (which is valid since the event {ζ = n} does not depend, by construction, on the value of the configuration σ An inside A n ). of the set A n . Order (arbitrarily) the points of ∂A n and call Z the (random) position of the first empty site on ∂A n . Then, for all n ≥ 1,

µ Λ [1 ζ=n Var µ An ( f )] = z∈∂An µ Λ [1 ζ=n 1 Z=z Var µ An ( f )] ≤ z∈∂An gap(L z An ) -1 y∈An µ Λ [1 ζ=n 1 Z=z µ An (c z y,An Var y ( f ))] ≤ γ z∈∂An y∈An µ Λ [1 ζ=n 1 Z=z c z y,An Var y ( f )]
where we used the fact that the events {ζ = n} and {Z = z} depend only on σ c An , and where γ := sup gap(L z A ) -1 , the supremum running over all connected subset A of V and all z ∈ ∂A. Now observe that 1 ζ=n 1 Z=z c z y,A ≤ 1 ζ=n 1 Z=z ĉy for any y ∈ A n . Hence,

μΛ [c B Var µ A ( f )] ≤ γ µ Λ ( ΩΛ ) n≥1 z∈∂An y∈An µ Λ [1 ζ=n 1 Z=z ĉy Var y ( f )] ≤ γ µ Λ ( ΩΛ ) y∈Λ n≥1 z∈∂An µ Λ [1 ζ=n 1 Z=z ĉy Var y ( f )] = γ y∈Λ μΛ [ĉ y Var y ( f )] = γ y∈Λ μΛ [ĉ y Var y (f )].
The same holds for μΛ [c A Var µ B ( f )], leading to the expected result.

The second step in the proof of Theorem 6.1 is a careful analysis of gap(L z A ) for any given connected set A ⊂ V and z ∈ ∂A. Proposition 6.3. Let G = (V, E) be a graph with (k, D)-polynomial growth.

Then, there exists a universal constant C = C(k, D) such that for any connected set A ⊂ V , and any z ∈ ∂A, it holds

gap(L z A ) ≥ C q D+4 log(2/q) D+1 .
We postpone the proof of Proposition 6.3 to end the proof of Theorem 6.1.

Proof of Theorem 6.1. The result follows at once combining Proposition 6.2 and Proposition 6.3.

In order to prove Proposition 6.3, we need a preliminary result on the spectral gap of some auxiliary chain, and to order the points of A in a proper way, depending on z. Let N := max x∈A d(x, z), for any i = 1, 2, . . . , N , we define

A i := {x ∈ A : d(x, z) = i} = {x (i) 1 , . . . , x (i) n i } where x (i) 1 , . . . , x (i) 
n i is any chosen order. Then we say that for any x, y ∈ A, x ≤ y if either d(x, z) > d(y, z) or d(x, z) = d(y, z) and x comes before y in the above ordering. Then, we set A x = {y ∈ A : y ≥ x} and Ãx = A x \ {x}.

where g = µ Ãx\∆x (f ) and we used that supp(g) ⊂ A \ ( Ãx \ ∆ x ). It follows that

µ A (Var Ax (g)) y∈∆x∪{x} µ A Var Ay (µ Ãy (g)) ≤ y∈∆x∪{x} µ A Var Ay (µ Ãy (f )) since, by Cauchy-Schwarz, µ A Var Ay (µ Ãy (g)) = µ A µ Ãx\∆x µ Ãy (f ) -µ Ay (f ) 2 ≤ µ A Var Ay (µ Ãy (f )) .
This ends the proof.

Proof of Proposition 6.3. Our aim is to apply Lemma 6.4. Let us define the events E x , for x ∈ A. Fix an integer ℓ that will be chosen later and set n = ℓ ∧ d(x, z). Let (x 1 , x 2 , . . . , x n ) be an arbitrarily chosen ordered collection satisfying d(x i , x i+1 ) = 1, d(x i , x) = i and d(x i , z) = d(x, z)i for i = 0, . . . , n, with the convention that x 0 = x, and set E x = {σ ∈ Ω : n i=1 (1σ(x i )) ≥ 1}, i.e. E x is the event that at least one of the site of ∆ x = {x 1 , x 2 , . . . , x n } is empty. Note that by construction ∆ x ⊂ A ∪ {z} and is connected. Moreover for any x such that d(x, z) ≤ ℓ, E x = Ω so that cx ≡ 1. Since |∆ x | kℓ D for any x ∈ A, the assumption of Lemma 6. and we are left with the analysis of each term µ A (c x Var x (f )) for which we use a path argument. Fix x ∈ A and the collection (x 1 , x 2 , . . . , x n ) introduced above. Given a configuration σ such that cx (σ) = 1, denote by ξ the (random) distance between x and the first empty site in the collection (x 1 , x 2 , . . . , x n ): i.e. ξ(σ) = inf{i : σ(x i ) = 0}. Then we write

µ A (c x Var x (f )) = n i=1 µ A (c x 1 ξ=i Var x (f )) = pq n i=1 σ:ξ(σ)=i µ A (σ)(f (σ x ) -f (σ)) 2
where the sum is understood to run over all σ such that cx (σ) = 1 (and ξ(σ) = i).

Fix i ∈ {1, . . . , n}. For any σ ∈ Ω such that ξ(σ) = i, we construct a path of configurations γ x (σ) = (σ 0 = σ, σ 1 , σ 2 , . . . , σ 4i-5 = σ x ) from σ to σ x , of length 4i-5 ≤ 4ℓ. The idea behind the construction is to bring an empty site from x i , step by step, toward x 1 , make the flip in x and going back, keeping track of the initial configuration σ. For any j, σ j+1 can be obtained from σ j by a legal flip for the FA1f process. Furthermore σ j differs from σ on at most three sites (possibly counting x). More precisely, define T k (σ) := σ x k for any k and σ, and

σ j =                T i-k-1 (σ)
if j = 2k + 1, and k = 0, 1, . . . , i -2 T i-k • T i-k-1 (σ) if j = 2k, and k = 1, . . . , i -2 T 1 (σ x ) if j = 2i -2 T k-i+2 • T k-i+3 (σ x ) if j = 2k + 1, and k = i -1, . . . , 2i -4 T k-i+2 (σ x ) if j = 2k, and k = i, . . . , 2i -3.

See Figure 2 for a graphical illustration of such a path. Denote by Γ x (σ) = {σ 0 , σ 1 , . . . , σ 4i-6 } (i.e. the configurations of the path γ x (σ) except the last one σ x ). For any η = σ j ∈ Γ x (σ), j ≥ 1, let y = y(x, η) ∈ {x, x 1 , x 2 , . . . , x ℓ } be such that η = σ y j-1 . Then, by Cauchy-Schwarz inequality, Indeed µ A (σ)/µ A (η) ≤ p 2 q 2 max( p q , q p ) since any η ∈ Γ x (σ) has at most two extra empty sites with respect to σ and differs from σ in at most three sites, and we used a computing argument.

(f (σ x ) -f (σ)) 2 =   η∈Γx(σ) (f (η y ) -f (η))   2 ≤ 4ℓ η∈Γx(σ) (f (η y ) -f (η)) 2

  Such a procedure gives the existence of n sites x1, . . . , xn such that B(xi, ℓ) ∩ B(xj, ℓ) = ∅, for all i = j, B(xi, ℓ) ⊂ Λ for all i and any site y k / ∈ A := ∪ n i=1 B(xi, ℓ) is at distance at most 5ℓ from A. Now attach each connected component C of A c to any (arbitrarily chosen) nearest ball B(xi, ℓ), i ∈ {1, . . . , n}, with which C is connected, to obtain all the Λi with the desired properties.

The indicator function above 1

 1 ζ=n guarantees the presence of a zero on the boundary ∂A n 2 To construct A and B take two points x, y such that d(x, y) = ℓ := diam(Λ) and define A0 = {z ∈ Λ : d(x, z) ≤ ℓ/3} and B0 = {z ∈ Λ : d(y, z) ≤ ℓ/3}. Attach to A0 all the connected components of Λ \ (A0 ∪ B0) connected to A0 to obtain A, then attach all the remaining connected components of Λ \ (A0 ∪ B0) to B0 to obtain B.

4 reads p ℓ ( 1 +

 1 kℓ D ) < 1/4which is satisfied if one chooses ℓ = c q log 2 q with c = c(k, D) large enough. Hence for any f : Ω A → R it holdsVar µ A (f ) ≤ 4 x∈A µ A (c x Var x (f )).

5 σ 6 = T 1 (σ x ) σ 7 σ 8 σ 9 σ 10 σ

 56178910 11 = σ x

FIGURE 2 .

 2 FIGURE 2. Illustration of the path from σ to σ x for a configuration σ satisfying ξ(σ) = x 4 . Here i = 4 and the length of the path is 4i -5 = 11.

  c y (η) Var y (f )(η).Hence,µ A (c x Var x (f )) ≤ 4ℓK η µ A (η)c y (η) Var y (f )
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Then, for any f : Ω A → R it holds

Proof. We follow [START_REF] Martinelli | Kinetically constrained models on trees[END_REF]. In all the proof, to simplify the notations, we set Var B = Var µ B , for any B. First, we claim that

n N , by factorization of the variance, we have

The claim then follows by iterating this procedure, removing one site at a time, in the order defined above. We analyze one term in the sum of (6.2) and assume, without loss of generality, that µ Ax (f ) = 0. We write

(6.3) Observe that, by convexity of the variance and since cx does not depend on x, the first term of the latter can be bounded as

Now we focus on the second term of (6.3)

Hence, bounding the variance by the second moment and using Cauchy-Schwarz inequality, we get

From all the previous computations (and using (6.2)) we deduce that

Hence if one proves that

the result follows. We now prove (6.4). Using (6.2), we have

Recall that y = y(x, η). It follows from the latter that

where

The result follows since the graph has polynomial growth.

In Proposition 6.2 we used the following lemma. 

where f : Ω Λ → R is defined as

Proof. Recalling the variational definition of the variance we have

Observe now that, by construction, µ Λ ( f ) = 0 and (1c A )(1c B ) f = 0 so that we can apply Lemma 6.6 below and obtain

and the result follows.

The next Lemma might be heuristically seen as a result on the spectral gap of some constrained blocks dynamics (see [START_REF] Cancrini | Kinetically constrained spin models[END_REF]). Such a bound can be of independent interest. 

Proof. Fix g on {0, 1} Λ such that (1c A )(1c B )g = 0 and assume without loss of generality that µ(g) = 0. First we write

where we used the first hypothesis on g, (1c A )(1c B )g = 0, and we arranged the terms. Therefore since we assumed µ(g) = 0 and c

We now treat the fourth term in the latter inequality. A Var µ B (g)) + 2(1µ(c A )) Var µ (g). An analogous calculation for µ(µ B (g) 2 ) allows to conclude the proof.