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4 place Jussieu, F-75005 Paris, France and
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We present calculations of the one-loop vacuum polarization correction (Uehling potential) for
the three-body problem in the NRQED formalism. The case of one-electron molecular systems is
considered. Numerical results of the vacuum polarization contribution at mα7 and higher orders
for the fundamental transitions (v = 0, L = 0) → (v′ = 1, L′ = 0) in the H+

2 and HD+ molecular
ions are presented and compared with calculations performed in the adiabatic approximation. The
residual uncertainty from this contribution on the transition frequencies is shown to be of a few tens
of Hz.

Introduction

The hydrogen molecular ions H+
2 and HD+ have great potentiality for improving the determination of fundamental

constants such as the proton-to-electron mass ratio [1–3]. Ro-vibrational transition frequencies have been measured
at the few-ppb level [4–6], and ongoing efforts towards improved accuracies using two-photon transitions [3, 7, 8] or
one-photon transitions in the Lamb-Dicke regime [9, 10] motivate the development of precise theoretical predictions.
In Refs. [11, 12] a complete set of mα7-order contributions has been evaluated for the fundamental transitions of

the hydrogen molecular ions H+
2 and HD+. All calculations at this order were performed in the nonrecoil limit, by

evaluating the one-electron QED corrections in the two-center approximation. Only one term, the Uehling potential
vacuum polarization contribution [13], which had been estimated with a lower level of accuracy, was later calculated
in the framework of the two-center approximation in [14].
In a slightly different context, namely the hyperfine structure of H+

2 , it was recently shown [15] that in evaluating a
second-order perturbation term within themα6(m/M)-order relativistic correction it is essential to take the vibrational
motion of nuclei into account. Such vibrational contributions also arise in the spin-independent corrections, and have
to be consistently included in the previously evaluated [11, 12, 14, 16] mα6 and mα7-order corrections [17].
The mα7-order Uehling contribution [14] is one such case. In the present work we first revisit the evaluation of

this term within the adiabatic approximation by including the previously omitted vibrational contribution. Then
we go one step further and evaluate it in a full three-body approach, exploiting the fact that the matrix elements
of the Uehling potential in a basis of explicitly correlated exponential functions are known in analytical form [18].
Comparison of results obtained with these two approaches provide a useful cross-check and give interesting insight on
the precision of the adiabatic approximation for evaluating QED corrections in molecular systems.

I. UEHLING CORRECTION TERMS AT mα7 AND HIGHER ORDERS

A. General expressions

We use atomic units throughout. The system under consideration is composed of three particles with masses
mi and charges Zi (i = 1, 2, 3). We specifically consider a molecular or molecule-like system and assume that the
lightest particle -i.e. an electron in the practical cases considered here- is numbered 3 (thus m1,m2 ≫ m3 = me, and
Z3 = −1). The relative positions of particles 1-3 and 2-3 (electron-nucleus) are respectively denoted by r1 and r2,
and the relative position of particles 1-2 (internuclear) by r12. Whenever the adiabatic approximation is used, we will
set r12 = R.
The correction terms to be considered are the same as those studied in the two-center approximation in [14], but

we will use slightly different notations to make the comparison between adiabatic and full three-body results more
transparent. All terms involve the Uehling potential interaction between the electron and nuclei:

Uvp(r) = Uvp(r1) + Uvp(r2) (1)



2

where Uvp is given by [19]:

Uvp(ri) = −2

3

Ziα

πri

∫

∞

1

dt e−
2ri
α

t

(

1

t2
+

1

2t4

)

(

t2 − 1
)1/2

. (2)

We neglect all corrections originating from the internuclear Uehling interaction, as was done in calculation of lower-
order terms [20].
The first correction term comes from the first-order correction with the nonrelativistic wave function ψ0,

∆Ea = 〈ψ0|Uvp|ψ0〉 . (3)

The second contribution comes from the relativistic correction to the wave function. It takes the form of a second-
order contribution with the Breit-Pauli Hamiltonian HB as the perturbation:

∆Eb = 2
〈

ψ0|HBQ(E0 −H0)
−1QUvp|ψ0

〉

. (4)

Here, Q = I − |ψ0〉〈ψ0| is a projection operator, H0 and E0 the nonrelativistic Hamiltonian and energy, and HB is
the spin-independent relativistic correction to the electron

HB = − pe
4

8m3
e

+
π

2m2
e

[Z1δ(r1) + Z2δ(r2)] . (5)

For a full three-body treatment, one should take as HB the full three-body Breit-Pauli Hamiltonian. However, our
goal is to analyze the accuracy of the two-center approximation, which is why we include the exact same relativistic
corrections in both approaches. The neglected radiative-recoil terms of orders mα7(m/M)n, n = 1, 2... (m ≡ me,
M ≡ m1,m2) are much smaller and irrelevant at the current level of theoretical accuracy.
The last contribution is the vertex function modification (Darwin term) at mα7 order (see Fig. 3 in [21]):

∆Ec = 〈ψ0|H(7)
vp |ψ0〉, (6)

H(7)
vp =

1

8m2
e

(∆r1Uvp(r1) + ∆r2Uvp(r2)). (7)

In a full three-body treatment, additional radiative-recoil terms with m2
1 and m2

2 at the denominator instead of m2
e

should be included. Similarly to the ∆Eb contribution discussed above, we neglect these terms here. Finally, we also
neglect the transverse photon exchange and spin-orbit terms [22] which produce corrections of order mα7(m/M).
The total Uehling energy correction is

∆EU = ∆Ea +∆Eb +∆Ec. (8)

Each of the three contributions contains lower-order terms (mα5, mα6) which should be subtracted in order to get
the desired contribution (mα7 and above). This subtraction procedure will be explained in the next paragraphs, first
in the adiabatic approximation and then for the three-body case.

B. Adiabatic approximation

In this approach, ψ0 is an adiabatic wave function given by

ψ0 = φel(r;R)χ(R) (9)

where φel and χ are respectively the electronic and nuclear wave functions. The Hamiltonian H0 appearing in Eq. (4)
is an adiabatic Hamiltonian, and E0 the adiabatic energy (see e.g. [23] for definitions).
Within the adiabatic approximation, the second-order perturbation term ∆Eb can be separated into electronic and

vibrational contributions [15, 17]:

∆Eb =
〈

χ
∣

∣

∣
E(el)
b (R)

∣

∣

∣
χ
〉

+ E
(vb)
b , (10)

E(el)
b (R) = 2

〈

φel|HBQel(Eel −Hel)
−1QelUvp|φel

〉

(11)

E
(vb)
b = 2

〈

χ|EB(R)Qvb(Evb −Hvb)
−1QvbEvp(R)|χ

〉

(12)
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Qel = I − |φel〉〈φel | and Qvb = I − |χ〉〈χ| are projection operators, and Hel, Eel (resp. Hvb, Evb) the electronic (resp.
vibrational) Hamiltonian and energy. Finally EB(R) = 〈φel|HB|φel〉, and Evp(R) = 〈φel|Uvp|φel〉. Only the first term
of Eq. (10) was calculated in Ref. [14], while the vibrational contribution was omitted.
The expansion in powers of α of each term in Eq. (8) was studied in [14]. We reproduce the results here for

convenience:

∆Ea = −4α3

15
〈ψ0|Z1δ(r1) + Z2δ(r2)|ψ0〉+

5α4

48
π
〈

ψ0|Z2
1δ(r1) + Z2

2δ(r2)|ψ0

〉

+ . . . (13)

∆Eb = −3α4

16
π
〈

ψ0|Z2
1δ(r1) + Z2

2δ(r2)|ψ0

〉

+
4α5

15
lnα

〈

ψ0|Z3
1δ(r1) + Z3

2δ(r2)|ψ0

〉

. . . (14)

∆Ec = +
3α4

16
π
〈

ψ0|Z2
1δ(r1) + Z2

2δ(r2)|ψ0

〉

+ . . . (15)

The first two terms of ∆Ea are the leading terms of the Uehling correction, which were already included in earlier
calculations [20]. Indeed, the mα6-order terms appearing in ∆Eb and ∆Ec cancel each other. Note that this exact
cancellation no longer occurs in the three-body approach, as will be seen below.
The sought corrections of order mα7 and above (excluding the logarithmic contribution in ∆Eb, which was already

considered in [11, 12]), are thus given by the following subtractions:

∆E
(7+)
U = ∆E(7+)

a +∆E
(7+)
b +∆E(7+)

c , (16)

∆E(7+)
a = ∆Ea +

4α3

15
〈ψ0|Z1δ(r1) + Z2δ(r2)|ψ0〉 −

5α4

48
π
〈

ψ0|Z2
1δ(r1) + Z2

2δ(r2)|ψ0

〉

(17)

∆E
(7+)
b = ∆Eb +

3α4

16
π
〈

ψ0|Z2
1δ(r1) + Z2

2δ(r2)|ψ0

〉

− 4α5

15
lnα

〈

ψ0|Z3
1δ(r1) + Z3

2δ(r2)|ψ0

〉

(18)

∆E(7+)
c = ∆Ec −

3α4

16
π
〈

ψ0|Z2
1δ(r1) + Z2

2δ(r2)|ψ0

〉

(19)

Note that the definitions of ∆E
(7+)
b and ∆E

(7+)
c differ from those of Ref. [14]. Finally, since the leading-order terms

in the expansion ∆Eb belong to the electronic contribution, we define the higher-order electronic contribution as

∆E
(7+)(el)
b =

〈

χ
∣

∣

∣
E(el)
b (R)

∣

∣

∣
χ
〉

+
3α4

16
π
〈

ψ0|Z2
1δ(r1) + Z2

2δ(r2)|ψ0

〉

− 4α5

15
lnα

〈

ψ0|Z3
1δ(r1) + Z3

2δ(r2)|ψ0

〉

. (20)

C. Three-body formalism

In this approach, H0 is the exact nonrelativistic Hamiltonian of the three-body system, i.e.

H0 = − 1

2µ13
∇

2
r1

− 1

2µ23
∇

2
r2

−∇r1∇r2 −
Z1

r1
− Z2

r2
+
Z1Z2

r12
, (21)

where µij = mi/(mi +mj), and ψ0 is one of its eigenstates. In this case, the expansion of Uehling correction terms
in powers of α is modified with respect to Eqs. (13-15):

∆Ea = −4α3

15
〈ψ0|Z1δ(r1) + Z2δ(r2)|ψ0〉+

5α4

48
π
〈

ψ0|µ13Z
2
1δ(r1) + µ23Z

2
2δ(r2)|ψ0

〉

+ . . . (22)

∆Eb = −3α4

16
π
〈

ψ0|a13Z2
1δ(r1) + a23Z

2
2δ(r2)|ψ0

〉

+
4α5

15
lnα

〈

ψ0|µ13a13Z
3
1δ(r1) + µ23a23Z

3
2δ(r2)|ψ0

〉

. . . (23)

∆Ec = +
3α4

16
π
〈

ψ0|µ13Z
2
1δ(r1) + µ23Z

2
2δ(r2)|ψ0

〉

+ . . . (24)

where aij = µij(2µij − 1). These modifications can be understood as follows. Both for ∆Ea and ∆Ec, the successive
terms of the α-expansion are proportional to the successive derivatives of the squared wave function at the electron-
nucleus coalescence points. In the second term of ∆Ea and in the first term of ∆Ec, both of which involve the first
derivative, the appearance of the additional factors µ13, µ23 comes from Kato’s cusp condition [24] in the case of a
finite nuclear mass:

∂ψ0

∂ri

∣

∣

∣

∣

ri=0

= −µi3Ziψ0(ri = 0), i = 1, 2. (25)
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As for ∆Eb, Eq. (23) can be understood by writing this term in the following equivalent form:

∆Eb = 2 〈ψB|Uvp|ψ0〉 , (26)

where ψB is the first-order correction to the wave function induced by the relativistic correction HB:

(E0 −H0)ψB = (HB − 〈HB〉)ψ0. (27)

It was shown in [14] that the mα6 and mα7 lnα terms of ∆Eb respectively come from the 1/ri and ln ri singularities
of ψB. The analysis of Eq. (27) in the limit ri → 0 reveals that the singular parts of ψB write [25]

ψsing
B = (U1 − 〈U1〉)Ψ0 , U1 =

a13Z1

4r1
+
a23Z2

4r2
, (28)

ψlog
B = (U2 − 〈U2〉)Ψ0 , U2 = −µ13a13Z

2
1

2
ln r1 −

µ23a23Z
2
2

2
ln r2, (29)

which explains the factors appearing in the first terms of the α-expansion.
One can observe that the mα6-order terms in ∆Eb and ∆Ec no longer cancel, but their sum produces recoil terms.

Overall, the correction ∆EU contains a set of recoil corrections at orders mα6(m/M)n. Note that the latter do not
add up to yield the known result for the mα6-order term including recoil effects [20, 26, 27], because some recoil

contributions are missing due to the neglected terms in H
(7)
vp (see Sec. I A). This is of no consequence here, since

mα6-order terms are subtracted in order to focus on corrections of order mα7 and above.
Similarly, ∆E

(7+)
U contains an incomplete set of recoil corrections at orders mα7(m/M)n, therefore the results

obtained in the three-body framework are expected to be accurate to O(m/M), just as within the adiabatic approxi-
mation.
The expansions (22-24) lead to the following definitions for the corrections of order mα7 and above:

∆E(7+)
a = ∆Ea+

4α3

15
〈ψ0|Z1δ(r1)+Z2δ(r2)|ψ0〉−

5α4

48
π
〈

ψ0|µ13Z
2
1δ(r1)+µ23Z

2
2δ(r2)|ψ0

〉

(30)

∆E
(7+)
b = ∆Eb+

3α4

16
π
〈

ψ0|a13Z2
1δ(r1)+a23Z

2
2δ(r2)|ψ0

〉

− 4α5

15
lnα

〈

ψ0|µ13a13Z
3
1δ(r1)+µ23a23Z

3
2δ(r2)|ψ0

〉

(31)

∆E(7+)
c = ∆Ec−

3α4

16
π
〈

ψ0|µ13Z
2
1δ(r1)+µ23Z

2
2δ(r2)|ψ0

〉

. (32)

II. NUMERICAL CALCULATIONS AND RESULTS

In this Section we calculate and compare the Uehling corrections obtained within the adiabatic (Eqs. (17-19)) and
three-body (Eqs. (30-32)) approaches.

A. Adiabatic approximation

For the adiabatic case all the corrections terms, with the exception of the vibrational contribution in ∆Eb (Eq. (12)),
have been evaluated in our previous work [14] and more details may be found in that reference.
Here we only recall the main features of our approach. In the spirit of the adiabatic approximation, in a first step

we calculate the electronic curves corresponding to the correction terms: Evp(R), (defined after Eq. (12)), E(el)
b (R)

(Eq. (11)), and

Ec(R) = 〈φel|H(7)
vp |φel〉, (33)

as well as EB(R), which is required for the evaluation of ∆E
(vb)
b (see Eq. (12)).

We use the following variational expansion for the electronic wave function of a σ state:

φel(r) =

∞
∑

i=1

Cie
−air1−bir2 , (34)
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which is symmetrized if Z1 = Z2:

φel(r) =

∞
∑

i=1

Ci

(

e−air1−bir2 ± e−bir1−air2
)

. (35)

The real exponents ai and bi are generated in a quasi-random manner in optimized intervals.
We now describe the improvements we have implemented with respect to the calculations presented in Ref. [14].

First of all, we discovered that the transformation of the ∆E
(7+)
c term using integration by parts (Eq. (22) of [14])

is not valid for a two-center system (although it is valid for a hydrogenlike atom) leading to a numerical error of a
few kHz. We have thus recalculated Ec(R) directly from Eq.( 33).
For the electronic contribution to ∆Eb (Eq. (11)) we use the equivalent form

E(el)
b (R) = 2 〈φB |Uvp|φel〉 , (36)

where φB is the first-order correction to the electronic wave function induced by the relativistic correction HB:

(Eel −Hel)φB = (HB − 〈HB〉)φel. (37)

Trying to calculate φB directly by solving the linear problem (37) would lead to numerical problems, because φB
contains singular terms (in 1/ri and ln ri, i = 1, 2) which are not well represented in the regular basis set (34). We
thus separate the singular terms in φB following the approach described in [28]:

φB(r1, r2) =

(

Z1

4r1
+
Z2

4r2
− Z2

1

2
ln r1 −

Z2
2

2
ln r2

)

φel + φ̃B(r1, r2), (38)

where φ̃B(r1, r2) is a regular function which is obtained numerically by solving the linear problem

(Eel −Hel)φ̃B = (HB − 〈HB〉)φel +
[

H,

(

Z1

4r1
+
Z2

4r2
− Z2

1

2
ln r1 −

Z2
2

2
ln r2

)]

φel

= (HB − 〈HB〉)φel +
∑

i=1,2

(

Ziπδ(ri)

2
+
Z2
i

4r2i
+
Ziri

4r3i
∇+

Z2
i ri

2r2i
∇

)

φel. (39)

Finally, one obtains

E(el)
b (R) = 2

〈(

Z1

4r1
+
Z2

4r2
− Z2

1

2
ln r1 −

Z2
2

2
ln r2

)

Uvp

〉

− 2

〈(

Z1

4r1
+
Z2

4r2
− Z2

1

2
ln r1 −

Z2
2

2
ln r2

)〉

〈Uvp〉

+2
〈

φ̃B|Uvp|φel
〉

. (40)

The terms involving the Uehling potential (i.e. Evp(R), E(el)
b (R) and Ec(R)) cannot be calculated exactly since

its matrix elements in the exponential basis set (34) are not known in analytical form. We calculated them by two
different methods: (i) by numerical integration as was done in [14], using an approximate form of the Uehling potential
presented in [29] which is accurate to at least nine digits, and (ii) by expanding the matrix elements in powers of
α, which allows for much quicker calculations. The expansions of all the required matrix elements are given in the
Appendix. We included all terms up to the mα8 order in our calculation, and found excellent agreement with the
method (i) (see the Appendix for a numerical example), thus removing any doubt that may arise on the accuracy of
the numerical integration.
Finally, in a second step the electronic curves are averaged over the vibrational wavefunction χ(R) which is obtained

by numerical resolution of the nuclear Schrödinger equation. The vibrational contribution E
(vb)
b (Eq. (12)) is obtained

using the first-order relativistic correction χB to the nuclear wave function:

E
(vb)
b = 2 〈χB |Evp(R)|χ〉 , (41)

where χB is calculated by solving the linear problem

(Evb −Hvb)χB = EB(R)χ. (42)
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B. Three-body formalism

For the three-body case we used a variational ”exponential” expansion of the three-body wavefunction in the
form [30]

Ψ (r1, r2, r12) =
N
∑

n=1

{

UiRe[e
−αir1−βir2−γir12 ] +WiIm[e−αir1−βir2−γir12 ]

}

Y l1,l2
LM (r̂1, r̂2) , (43)

where Y l1l2
LM (r̂1, r̂2) are bipolar spherical harmonics [31]. Parameters αi, βi, γi are complex exponents satisfying the

relations Re(αi + βi) > 0, Re(αi + γi) > 0, and Re(βi + γi) > 0, generated in a pseudorandom way [32] in several
intervals; the variational parameters are the bounds of these intervals.
Here we consider only rotationless (L = 0) states. For these states the matrix elements of the Uehling potential

Uvp(ri) required for calculation of ∆Ea were obtained in [18], and those of ∆r1Uvp(r1) required for ∆Ec are given in
the Appendix.
The precise calculation of the second-order perturbation term ∆Eb is more challenging, because it involves solving

the linear problem (27). Similarly to what was done for the two-center problem, we separate the singular part of ψB

in order to alleviate the numerical difficulties. We introduce a less singular function ψ̃B defined by

ψB = ψsing
B + ψ̃B, (44)

and ψ̃B can be obtained by solving the equation

(E0 −H0)Ψ̃B = (HB − 〈HB〉) Ψ0 + [H0, U1]Ψ0, (45)

Straightforward algebraic manipulation leads to

[H0, U1] =
Z1a13
4

[

1

µ13

{

2πδ(r1) +
r1 ·∇r1

r31

}

+
r1 ·∇r2

r31

]

+
Z2a23
4

[

1

µ23

{

2πδ(r2) +
r2 ·∇r2

r32

}

+
r2 ·∇r1

r32

]

. (46)

The final expression of the second-order perturbation term is

∆Eb = 2 〈ψ0|U1Uvp|ψ0〉 − 2〈U1〉〈ψ0|Uvp|ψ0〉+ 2
〈

ψ̃B |Uvp|ψ0

〉

. (47)

The calculation of the first term requires the matrix elements of Uvp(ri)/ri, which are given in the Appendix, and
crossed terms of the type Uvp(ri)/rj whose matrix elements are easily obtained from the generating integral given
in [18]. It should be noted that in contradistinction with the two-center case, we have separated the 1/r singularities
of (27) but not the logarithmic ones. Due to this the convergence of ∆Eb is much slower. The separation of the
logarithmic singularity would require the derivation of three-body matrix elements involving logarithms of inter-
particle distances.

C. Results and discussion

In order to obtain good convergence of the three-body results, basis sets of N = 2000 vectors were used to represent
ψ0. For the numerical evaluation of the second-order term (last term of Eq. (47)) we use ten basis sets, where the first
two approximate the regular part of the intermediate solution and the remaining eight sets with growing exponents
are introduced to reproduce behavior of the type ln r1 (or ln r2) at small values of r1 (r2). The total size of the basis
used for intermediate states is N = 5900.
The results for the first vibrational levels of H+

2 and HD+ are presented in Tables I and II. The relative difference
between adiabatic and three-body approaches (2-3×10−3) matches the expected order of magnitude O(m/M) that
corresponds to the presence of recoil contributions in the three-body correction. The difference between adiabatic and
three-body results also gives an order of magnitude of the residual uncertainty due to unevaluated recoil corrections,
i.e. a few tens of Hz on the transition frequencies. This uncertainty may be reduced further in the future by including
all recoil corrections within the three-body approach.
It can also be observed that the inclusion of the vibrational part in the second-order perturbation term ∆Eb is

essential to get satisfactory agreement. This is even more true in the case of vibrational transition frequencies, where
this term contributes to about 50% while representing only 13-14% of the correction to individual state energies,
due to its much stronger dependence on the vibrational state. The corresponding correction to the fundamental
vibrational transition amounts to about 400 Hz, which is significant at the current level of theoretical accuracy. It is
thus essential to include all terms of similar nature arising in other mα7-order corrections [17].
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∆E
(7+)
a electr. vibr. ∆E

(7+)
b ∆E

(7+)
c ∆E

(7+)
U

H+
2 (v = 0, L = 0)

−20.11 15.26 −4.61 10.64 −23.49 −32.95

−20.06 - - 10.64 −23.43 −32.86

H+
2 (v = 1, L = 0)

−19.54 14.44 −4.18 10.26 −22.83 −32.10

−19.49 - - 10.27 −22.77 −32.00

v = 0 → 1 transition
0.57 -0.81 0.43 −0.38 0.66 0.85

0.57 - - −0.38 0.65 0.85

TABLE I: Uehling corrections at order mα7 and above, in kHz, for the two lowest vibrational states of H+
2 and for the

fundamental vibrational transition. For each contribution, the value obtained in the adiabatic approximation is given in the

first line, and that obtained within the three-body formalism in the second line. Note that the vibrational part of ∆E
(7+)
b was

not included in previous calculations [14].

∆E
(7+)
a electr. vibr. ∆E

(7+)
b ∆E

(7+)
c ∆E

(7+)
U

HD+ (v = 0, L = 0)
−20.15 15.31 −4.65 10.67 −23.54 −33.02

−20.11 - - 10.67 −23.50 −32.94

HD+ (v = 1, L = 0)
−19.65 14.60 −4.27 10.34 −22.96 −32.27

−19.62 - - 10.34 −22.92 −32.19

v = 0 → 1 transition
0.48 -0.71 0.38 −0.33 0.56 0.75

0.50 - - −0.33 0.58 0.74

TABLE II: Same as Table I, but for the HD+ molecular ion.
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Appendix

Two-center problem: expansion of matrix elements for σ electronic states

In what follows, the notation 〈i|A|j〉 stands for the matrix element of the operator A between the basis functions
e−air1−bir2 and e−ajr1−bjr2 . We set a = ai + aj and b = bi + bj .

1. Evp(R): Uehling potential expectation value

〈

i
∣

∣Uvp(r1)
∣

∣j
〉

= − 4

15
Z1α

3e−bR

[

1− 25πα

128
a+

3α2

28

(

3a2+b2− 2b

R

)

− 105πα3

2048
a

(

a2+b2− 2b

R

)

+ . . .

]

2. Ec(R): Darwin term in the Uehling relativistic correction

1

8

〈

i
∣

∣∆Uvp(r1)
∣

∣j
〉

= Z1α
4e−bR

[

3π

32
a− α

30

(

3a2+b2− 2b

R

)

+
5π α2

384
a

(

a2+b2− 2b

R

)

+ . . .

]

.

3. E(el)
b (R): second-order term in the Uehling relativistic correction. In order to evaluate the first two terms of

Eq. (40) the following matrix elements are required:

α2

2

〈

i

∣

∣

∣

∣

(

Z1

r1

)

Uvp(r1)

∣

∣

∣

∣

j

〉

= Z2
1α

4e−bR

[

−3π

16
+

2α

15
a− 5π α2

1152

(

3a2+b2− 2b

R

)

+ . . .

]

,
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α2

2

〈

i

∣

∣

∣

∣

(

Z2

r2

)

Uvp(r1)

∣

∣

∣

∣

j

〉

= Z1Z2α
5 e

−bR

R

[

− 2

15
+

5πα

192
a+ . . .

]

.

α2
〈

i
∣

∣

(

−Z2
1 ln r1

)

Uvp(r1)
∣

∣ j
〉

= Z3
1α

5e−bR

×
[(

4

15
lnα− 4

15
γE − 17

225

)

+ πα

(

5

96
lnα− 5

96
γE − 5 ln 4

96
+

107

1152

)

a+ . . .

]

,

α2
〈

i
∣

∣

(

−Z2
2 ln r2

)

Uvp(r1)
∣

∣ j
〉

= Z1Z
2
2α

5e−bR ln(R)

[

4

15
− 5πα

96
a+ . . .

]

.

We have checked that the numerical results obtained by using these expansions coincide (at the required level of
accuracy) with those of numerical integration with the approximate form [29] of the Uehling potential. For example the
values of Evp(R) agree within 8 digits for the whole range of internuclear distances. For illustration we give both values

at the equilibrium distance R = 2.0 a.u.: E(exp)
vp (R = 2.0) = −0.1108301844 α3, E(num)

vp (R = 2.0) = −0.1108301853 α3.

Three-body problem: matrix elements of Uvp(r1)/r1

For the calculation of ∆Esing
b the following integral is required (Using the notations of [18]):

I
(i)
−1,1,1(α, β, γ) =

∫ ∫ ∫

dr1dr2dr12
r2r12
r1

e−αr1−βr2−γr12

∫

∞

1

du e−2xuri

√
u2 − 1

(

2u2 + 1
)

u4
(48)

where x = 1/(αfscm1) (αfsc is the fine-structure constant). Changing the order of integrations we obtain

I−1,1,1(α, β, γ) =

∫

∞

1

du e−2xuri

√
u2 − 1

(

2u2 + 1
)

u4

∫ ∫ ∫

dr1dr2dr12
r2r12
r1

e−αr1−βr2−γr12 (49)

The integral over spatial coordinates is [33]

Γ−1,1,1(α, β, γ) =
β2 + γ2 + αβ + αγ

2(β − γ)2(β + γ)2x2
1

(u+ a)(u+ b)
+

β + γ

(β − γ)2(β + γ)2x

u

(u+ a)(u+ b)

− 8βγ

(β − γ)3(β + γ)3

[

ln
(

1 +
a

u

)

− ln

(

1 +
b

u

)]

(50)

with a = (α+ β)/2x, b = (α+ γ)/2x. Then we get

I−1,1,1(α, β, γ) =
β2 + γ2 + αβ + αγ

2(β − γ)2(β + γ)2x2
I1(a, b)+

β + γ

(β − γ)2(β + γ)2x
I4(a, b)−

8βγ

(β − γ)3(β + γ)3
(I5(a)− I5(b)) , (51)

where

I1(a, b) =

∫

∞

1

du

√
u2 − 1

(

2u2 + 1
)

u4(u+ a)(u + b)
(52)

was already obtained in [18], and

I4(a, b) =

∫

∞

1

du

√
u2 − 1

(

2u2 + 1
)

u3(u+ a)(u + b)
, (53)

I5(a) =

∫

∞

1

du

√
u2 − 1

(

2u2 + 1
)

ln
(

1 + a
u

)

u4
. (54)

We find, for a 6= b,

I4(a, b) =
4ab(a+ b)− π(2a2 + 2ab+ 2b2 + 3a2b2)

4a3b3
−
√
1− a2(1 + 2a2) arccos(a)

a3(a− b)
+

√
1− b2(1 + 2b2) arccos(b)

b3(a− b)
, (55)

and

I5(a) =
12a+ 56a3 − π(6 + 27a2) + 9π2a3 + 12

√
1− a2(1 + 5a2) arccos(a)

36a3
− arccos(a)2. (56)

In order to obtain the last expression, it is convenient to calculate dI5
da , and then integrate with respect to a.
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Three-body problem: matrix elements of ∆r1
Uvp(r1)

Using that

∆

(

e−Λr

r

)

= −4πδ(r) + Λ2 e
−Λr

r
, (57)

and inverting the order of integration as previously, it can be seen that the following integral is required for calculation
of ∆Ec:

Ic(α, β, γ) =

∫

∞

1

du

√
u2 − 1

(

2u2 + 1
)

u4

(

4x2u2I0,1,1(α+ 2ux, β, γ)− 4

(β + γ)3

)

(58)

Algebraic manipulations lead to

Ic(α, β, γ) =
1

x(β + γ)

{

1

2x
I6(a, b) +

1

β + γ
I7(a, b)−

α2 + αβ + αγ + βγ

x(β + γ)2
I1(a, b)−

2(2α+ β + γ)

(β + γ)2
I4(a, b)

}

(59)

with

I6(a, b) =

∫

∞

1

du

√
u2 − 1

(

2u2 + 1
)

u2(u+ a)2(u + b)2
, (60)

I7(a, b) =

∫

∞

1

du

√
u2 − 1

(

2u2 + 1
)

u2

(

1

(u+ a)2(u+ b)
+

1

(u+ a)(u + b)2

)

. (61)

One obtains

I6(a, b) = −2(a2 + ab+ b2 + 2a2b2)

a2b2(a− b)2
+
π(a+ b)

a3b3
+

1

(a− b)3

(

(2a5 + 2a4b− a3 − a2b− 4a+ 2b) arccos(a)

a3
√

(1− a2)

− (2b5 + 2b4a− b3 − b2a− 4b+ 2a) arccos(b)

b3
√

(1− b2)

)

, (62)

I7(a, b) =
−2ab(a+ b) + π(a2 + ab+ b2)

a3b3
+

(2 − a2 + 2a4) arccos(a)

a3
√

(1− a2)(a− b)
− (2− b2 + 2b4) arccos(b)

b3
√

(1− b2)(a− b)
. (63)
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