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WONDERFUL COMPACTIFICATIONS OF BRUHAT-TITS BUILDINGS

Bertrand RÉMY, Amaury THUILLIER and Annette WERNER

Abstract: Given a split semisimple group over a local field, we consider the maximal Satake-Berkovich com-
pactification of the corresponding Euclidean building. We prove that it can be equivariantly identified with
the compactification which we get by embedding the building in the Berkovich analytic space associated to
the wonderful compactification of the group. The construction of this embedding map is achieved over a
general non-archimedean complete ground field. The relationship between the structures at infinity, one
coming from strata of the wonderful compactification and the other from Bruhat-Tits buildings, is also in-
vestigated.

Keywords: algebraic group, wonderful compactification, non-archimedean local field, Bruhat-Tits building,
Berkovich geometry.
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Introduction

In this paper, we are are interested in compactifications of algebraic groups and of some of their re-
lated geometries. By "related geometries" we mean "symmetric spaces" and this terminology can
have at least two meanings. The first one is purely algebraic and does not require any topological
assumption on the ground field: a symmetric space is then the homogeneous space given by the
quotient of a semisimple group by the identity component of the fixed-point set of an involution;
the prototype for such a space is G ×G/diag(G) where diag(G) is the diagonal {(g , g ) : g ∈ G}. The
second meaning makes sense when the ground field is endowed with a complete non-archimedean
absolute value; then we investigate a Euclidean building, as given by the Bruhat-Tits theory of re-
ductive groups over valued fields (see [BrT72] and [BrT84]).

To each of the two kinds of symmetric spaces corresponds at least one compactification proce-
dure. The main question of this paper is to understand, when k is a non-archimedean local field,
the relationship between the (so-called wonderful) projective variety compactifying the symmet-
ric space G ×G/diag(G) and the Satake-Berkovich compactifications of the associated Bruhat-Tits
building B(G ,k), as previously constructed by Berkovich in [Ber90] and by the authors in [RTW10]
and [RTW12]. The first space is useful for instance for the algebraic representation theory of the
group G while the second one, relevant to the analogy with the Riemannian symmetric spaces of
real Lie groups, is useful for the analytic representation theory of, and the harmonic analysis on,
the group G(k).

Let us be more precise and consider a split semisimple group G over some field k . Wonder-
ful compactifications were initially constructed by representation-theoretic methods (see [CP83],
[Str87] and [CS99]) but can now be also constructed by using Hilbert schemes (see [Bri03] and
[Bri98]). We adopt the latter viewpoint in the core of the paper, but use the former one in this intro-
duction for simplicity. Let ρ : G → GL(V ) be an irreducible representation defined over k , assumed
to have regular highest weight. The projective space P

(

End(V )
)

is a G ×G-space for the action de-
fined by: (g , g ′).M = g M (g ′)−1 for g , g ′ ∈G and M ∈ End(V ). Then the closure G of the orbit of [idV ]
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is the wonderful compactification of G ×G/diag(G). From the very beginning, it was proved by de
Concini and Procesi that the G×G-space G is a smooth projective variety containing G ×G/diag(G)
as an open orbit and with remarkable geometric properties. For instance (see [CP83]):

• The boundary at infinity G \ G is a normal crossing divisor whose irreducible components
(Di )i∈I are indexed by the set I of simple roots of the root system of G .

• The G ×G-orbits are finite in number, their closures are all smooth, in 1-1 correspondence
with the subsets of I and there is one single closed orbit.

• Each orbit closure fibers over the product of two flag varieties corresponding to two suitable
opposite parabolic subgroups; moreover the fibers are wonderful compactifications of the
reductive subgroup given by the intersection of the parabolics.

Roughly speaking, G does not depend on the chosen representation and its boundary at infinity is
not only nice from the viewpoint of algebraic geometry, but also as a Lie-theoretic object; in partic-
ular, the appearance of wonderful compactifications of the various reductive Levi factors contained
in G is a beautiful feature of G .

We assume now that k is a complete non-archimedean valued field and we deal with the Eu-
clidean building B(G ,k) associated to G by Bruhat-Tits theory. In [RTW10], we define a compact-
ification Bτ(G ,k) of the building B(G ,k) for each type τ of parabolic subgroup, and in [RTW12]
we showed that this finite family of compactifications can be obtained by a suitable analogue of
Satake’s compactification of Riemmanian symmetric spaces. The compactifications we construct
make crucial use of V. Berkovich’s approach to analytic non-archimedean geometry and were in
fact originally investigated by Berkovich in [Ber90], chapter 5, for split groups. This geometry al-
lows one, and actually requires, to use possibly huge complete non-archimedean extensions of k ;
this explains why some of our statements are given for arbitrary complete non-archimedean val-
ued fields, while for a Bruhat-Tits building B(G ,k) to admit a compactification it is necessary and
sufficient that k be a local (i.e. locally compact) field. Moreover Berkovich theory associates func-
torially an analytic space (with good local connectedness properties) X an to any algebraic k-variety
X in such a way that if X is affine, then X an is characterized by an suitable set of seminorms on the
coordinate ring k[X ], and if X is proper then X an is compact.

In this paper, we only consider the compactification associated to the type of Borel subgroups.
It leads to the maximal compactification among those given by the possible types, and we denote
it by B(G ,k). In [RTW10], the compactification B(G ,k) is constructed thanks to the possibility to
define an embedding map from B(G ,k) to the Berkovich analytic space associated to the maximal
flag variety of G . This embedding was constructed first by embedding the building B(G ,k) into the
Berkovich space Gan, and then by projecting to the analytic maximal flag variety, say F

an (where
F is the maximal algebraic flag variety). The outcome is a compactification whose boundary con-
sists of the Bruhat-Tits buildings of all the reductive quotients of the parabolic k-subgroups of G

[RTW10, Th. 4.11], a striking similarity with the algebraic case of wonderful compactifications of
groups described above.

In order to relate B(G ,k) to the wonderful compactification of G , a natural idea would be to
use the map B(G ,k) → Gan (the first step above) and to replace the analytification of the fibration
G →F (the second step above) by the analytification of the embedding G ,→G into the wonderful
compactification. However, it turns out that the map B(G ,k) → Gan used for compactifying the
building is not suitable for this purpose. We have to replace it by a G(k)×G(k)-equivariant map
Θ : B(G ,k)×B(G ,k) → Gan also constructed in [RTW10]. This leads to the desired comparison
stated in the following theorem which is the main goal of this paper.
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Theorem. Let k be a complete non-archimedean field.

(i) There exists a continuous G(k)×G(k)-equivariant map Θ : B(G ,k)×B(G ,k)→G
an

. For every

point x in B(G ,k) the map Θ(x,−) : B(G ,k) →G
an

is a G(k)-equivariant embedding.

(ii) When k is locally compact, this embedding induces a homeomorphism from the compactified

building B(G ,k) to the closure of the image of B(G ,k)→Gan →G
an

.

(iii) The boundaries at infinity are compatible in the following sense: given a parabolic k-subgroup

P of type τ(P) in G, the Bruhat-Tits building of the reductive quotient of P, which is a stratum

of B(G ,k), is sent into the analytification of the intersection of divisors
⋂

i∈τ(P )
Di of type τ(P).

Part (i) is proven in Theorem 4.1, part (ii) in Proposition 3.1. Part (iii) can be made more pre-
cise: it is known that the intersection

⋂

i∈τ(P ) Di is an orbit closure in the wonderful compactifica-
tion G , and that it fibers over G/P with fibers isomorphic to the wonderful compactification of the
semisimple quotient of P . Then the Bruhat-Tits building at infinity of the reductive quotient of P is
sent equivariantly to the analytification of an explicit fiber.

The structure of this paper is as follows. Section 1 recalls the most useful facts for us on won-
derful compactifications, adopting Brion’s viewpoint using Hilbert schemes of products of a faithful
flag variety with itself. Section 2 defines the embedding maps from Bruhat-Tits buildings to analytic
spaces associated to wonderful varieties. Section 3 investigates the boundaries of the two compact-
ifications; this is where the second part of the theorem above is proved. Section 4 uses the results
on the equivariant compatibility of the boundaries to prove the identification between the maximal
Satake-Berkovich compactification and the one obtained thanks to analytic wonderful varieties.

1 Wonderful compactifications of algebraic groups

In this section, we recall the most important facts we need on wonderful compactifications. Our
main reference for this topic is Brion’s article [Bri03], adopting the viewpoint of Hilbert schemes.

Wonderful compactifications were initially (and are usually) constructed by representation-
theoretic means; this was first done over an algebraically closed field of characteristic 0 by de
Concini and Procesi [CP83], and then extended by Strickland to the case of positive characteris-
tic [Str87]. Brion’s paper establishes, among other things, an identification between the wonderful
compactification G as in the latter two papers and an irreducible component of the Hilbert scheme
Hilb(X ×X ) where X is any suitable flag variety of G .

Let us be more precise. Let k be a field and let G be a k-split adjoint semisimple group. We
choose a parabolic k-subgroup P of G such that the G-action on the flag variety X =G/P is faithful,
which amounts to requiring that P does not contain any simple factor of G . As before, we denote
by G the wonderful compactification obtained via an irrreducible representation. The variety G

admits a (G ×G)-action (g , g ′, ḡ ) 7→ (g , g ′).ḡ , which we denote by (g , g ′).ḡ = g ḡ (g ′)−1 for g , g ′ ∈ G

and ḡ ∈G . This notation is motivated by the construction of G itself: given a highest weight module
(V ,ρ) (e.g. obtained as in [CS99, Lemma 1.7]), the compactification G is the closure in P

(

End(V )
)

of the (G ×G)-orbit of idV for the action induced by (g , g ′).M = ρ(g )Mρ(g ′)−1 for any g , g ′ ∈G and
M ∈ End(V ).

We now turn specifically to Brion’s approach. Let us denote by P the closure of P in the complete
variety G : this space is stable under the restricted action by P ×P . Let G be the space (G×G)×P×P P
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constructed as the image of the quotient map

q : G ×G ×P ։ (G ×G)×P×P P =G

given by the right (P ×P)-action defined by:

(p, p ′).(g , g ′, p̄) = (g p, g ′p ′, p−1p̄p ′)

for all g , g ′ ∈G , p, p ′ ∈ P and p̄ ∈ P . The orbit of (g , g ′, p̄) for this action is denoted by [g , g ′, p̄].

On the one hand, the right (P ×P)-action on G ×G is free and the map

p : G → X ×X

[g , g ′, p̄] 7→ [g , g ′] = (g P, g ′P)

is a locally trivial fibration with fiber P . On the other hand, the (G ×G)-action on G restricted to
G ×G ×P factors through the quotient q to give another map with the same source space as p ,
namely:

π : G → G

[g , g ′, p̄] 7→ g ḡ (g ′)−1.

By taking the product, one finally obtains a map

p ×π : G → X ×X ×G

[g , g ′, p̄] 7→ (g P, g ′P, g ḡ (g ′)−1)

which is a closed immersion and which enables one to see the fibers of π as a flat family of closed
subschemes of X × X (see [Bri03, Sect. 2, p. 610] for more details and additional references to
previous work by Brion [Bri98]). The outcome is a (G ×G)-equivariant morphism obtained thanks
to the universal property of the Hilbert scheme:

ϕ : G → Hilb(X ×X )
ḡ 7→ p∗(π∗ḡ )

which, roughly speaking, attaches to any point G of the wonderful compactification G , the follow-
ing closed subscheme of the product X ×X of faithful flag varieties:

ϕ(ḡ ) = {(g P, g ′P) |g , g ′
∈G , ḡ ∈ g P(g ′)−1} ⊂ X ×X .

This description of the images of ϕ comes from the whole description of the image (p ×π)(G ) as an
"explicit" incidence variety in X ×X ×G [loc. cit.]. It provides an easy way to compute that ϕ(1G ) is
the diagonal subscheme diag(X ) in X × X , a point in Hilb(X × X ) whose stabilizer for the induced
(G×G)-action is easily seen to be the diagonal subgroup diag(G) of G×G . Therefore, using the latter
facts together with the (G ×G)-equivariance of ϕ, one can see ϕ(G) as the space of degeneracies of
the diagonal diag(X ) in X × X , the images of the elements of G = (G ×G)/diag(G) being the graphs
of the elements g seen as automorphisms of X = G/P . We will use a more detailed understand-
ing of the boundary points in section 3, but can already quote Brion’s comparison theorem [Bri03,
Theorem 3]:

Theorem 1.1 Let HX ,G denote the closure of the (G ×G)-orbit of diag(X ) in Hilb(X × X ) endowed

with its reduced subscheme structure. Then the map ϕ establishes a G ×G-equivariant isomorphism

between the wonderful compactification G and HX ,G . �
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Note that when G = Aut(X )◦ (which is the case in general [Dem77]), the space HX ,G is also the
irreducible component of Hilb(X × X ) passing through diag(X ) [Bri03, Lemma 2]. Note also that
the above isomorphism holds for any parabolic k-subgroup provided the associated flag variety is
a faithful G-space. The naturality of Brion’s construction allows one to see that, at least keeping the
group G split over the ground field k (as we do), an easy Galois descent can be performed from a
ground field equal to the algebraic closure k of k (strickly speaking, the context taken care of in the
paper [Bri03]) to the field k itself.

The proof of this theorem uses a lot of knowledge on the structure of G , previously obtained by
representation theory (see [CP83], [Str87] and [CS99]). In fact, once some standard Lie-theoretic
choices have been made in G , the latter considerations exhibit in the wonderful compactification
G , as a main tool of study of it, an explicit open affine subset G0 ⊂ G . More precisely, let T be
a split maximal k-torus in G with character group X ∗(T ), let B+ and B− be two opposite Borel
subgroups containing T and with unipotent radical U+ and U−, respectively. These choices provide
as usual a root system Φ=Φ(T,G) ⊂ X ∗(T ) and two opposite subsets Φ+ and Φ− corresponding to
the roots appearing in the adjoint T -action on the Lie algebras of U and U−, respectively. The affine
open subset G0 satisfies the following properties (see for instance [Str87, Section 2] for the original
reference in arbitrary characteristic):

• the subset G0 contains T and is stable under the action by TU−×TU+;

• the closure of T in G0, which we denote by Z , is the affine toric variety associated with the
semigroup 〈Φ−〉 of X ∗(T ) spanned by the negative roots;

• the canonical map U−×Z ×U+ →G is an isomorphism onto G0;

• the subset Z is isomorphic to an affine space of dimension equal to dim(T ), therefore G0 is
isomorphic to an affine space of dimension equal to dim(G);

• the (G ×G)-orbits in G are in one-to-one correspondence with the (T ×T )-orbits in the toric
affine variety Z .

In what follows, we see the affine space Z as a partial compactification of the split torus T ≃

(Gm)dim(T ). Moreover there is a simple way to construct a complete set of representatives of the
(T ×T )-orbits in Z by "pushing to infinity" the diagonal diag(X ) by suitable one-parameter sub-
groups in T . For instance, given any regular one-parameter subgroup λ : Gm → T , the limit

lim
t→0

(λ(t ),1).diag(X )

exists and is, so to speak, the "most degenerate degeneracy" of the diagonal; it is also the point of
Z in the unique closed (G ×G)-orbit of G .

Roughly speaking, the next section, where our embedding map is defined, is the Berkovich an-
alytic counterpart of some of the previous facts.

2 Construction of the embedding map

We henceforth assume that the field k is complete with respect to a non-trivial non-archimedean
absolute value, and we keep the adjoint split semisimple k-group G as before. A non-archimedean
field extension of k is a field K containing k , which is complete with respect to a non-archimedean
absolute value extending the one on k .
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Our main goal in this section is to construct an equivariant map from the Bruhat-Tits building
B(G ,k) to the Berkovich analytic space G

an
associated to the wonderful compactification G of G .

Note that G
an

is compact since G is proper. More precisely, we define a continuous equivariant map
from B(G ,k)×B(G ,k) to G

an
. Fixing a special point in the first coordinate gives the map we aim

for. Later, in section 4, we will show that this map is an embedding.

Let us first recall some crucial facts on Satake-Berkovich compactifications of buildings (see
[RTW10] and [RTW12] for details). In [RTW10, Prop. 2.4] we define a morphism ϑ : B(G ,k) → Gan

by associating to each point in the building B(G ,k) a k-affinoid subgroup Gx of Gan. The subgroup
Gx is an analytic refinement of the integral structure of G associated to x by Bruhat-Tits theory
[BrT84, 4.6 and 5.1.30]. Working in an analytic context, rather that in a purely algebraic one, has the
important advantage that two distinct points, even in the same facet (i.e. the same cell) of B(G ,k),
lead to distinct analytic subgroups. We use the group Gx to define the image ϑ(x) as the unique
Shilov boundary point of Gx [Ber90, 2.4]. The map ϑ obtained in this way is a continuous G(k)-
equivariant injection if we let G(k) act on Gan by conjugation [RTW10, Prop. 2.7]. The map ϑ is
well-adapted to Bruhat-Tits theory in the sense that for any non-archimedean extension K /k , the
group Gx (K ) is the stabilizer in G(K ) of x, seen as a point the building B(G ,K ).

Unfortunately, we cannot use the natural mapϑ to define an embedding towards G
an

that could
be useful for our purposes. We have to use another one, also constructed [loc. cit.] thanks to ϑ. It is
a continuous morphism

Θ : B(G ,k)×B(G ,k)→Gan

which can be seen as a map describing a kind of "relative position" from one point to another. This
viewpoint gives an intuition to understand why the equivariance relation

Θ(g x,h y)= hΘ(x, y)g−1

is satisfied by Θ for all x, y ∈B(G ,k) and g ,h ∈G(k) [RTW10, Prop. 2.11]. The definition of Θ is again
an improvement of facts known from Bruhat-Tits theory – here, the transitivity properties of the
G(k)-action on the facets of B(G ,k) – made possible by the Berkovich analytic viewpoint. Indeed,
this viewpoint is flexible enough to allow the use of (possibly huge) non-archimedean extensions
of k in order to obtain better transitivity properties. More precisely, for x, y ∈B(G ,k) there exists an
extension K /k as before and an element g ∈G(K ) such that after embedding B(G ,k) into B(G ,K )
we have g x = y . Then we define Θ(x, y) as the image of gϑK (x) under the natural projection from
Gan

K to Gan, where GK is the base change of G by K , and ϑK : B(G ,K ) →Gan
K is the above embedding

over K . Note that Θ is compatible with non-archimedean field extensions and that, if G is reductive,
we can define the map Θ on the extended building of G (which then contains the building of the
semisimple group [G ,G] as a factor). Moreover, by the same Proposition we know that for every
point x0 in B(G ,k) the map Θ(x0,−) : B(G ,k) → Gan is a G(k)-equivariant injection, where G(k)
acts by left translations on Gan.

The key result for our comparison theorem in section 4 is the following statement. It gives a map
which, when the first argument is fixed, is eventually shown to be the embedding we are looking
for.

Proposition 2.1 The map Θ : B(G ,k)×B(G ,k)→Gan has a continuous extension

Θ : B(G ,k)×B(G ,k) →G
an

,

such that for all g ,h ∈G(k), x ∈B(G ,k) and y ∈B(G ,k), we have

Θ(g x,h y)= hΘ(x, y)g−1.
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The map Θ is compatible with non-archimedean field extensions: if k ′/k is a non-archimedean ex-

tension, then the natural diagram

B(G,k ′)×B(G ,k ′)
Θ // (G ⊗k k ′)an

prk′/k

��

B(G ,k)×B(G ,k)

OO

Θ

// G
an

is commutative.

The rest of the section is dedicated to the proof of this statement. We start with some auxiliary
results.

Consider a maximal split torus T of G and a Borel subgroup B of G containing T : such an
inclusion T ⊂ B will henceforth be called a standardization in G . We fix a standardization (T,B ) in
G . The Borel group B gives rise to an order on the root systemΦ=Φ(T,G) inside the character group
X ∗(T ) of T , and we denote the corresponding set of positive (resp. negative) roots by Φ

+ (resp. Φ−).
Moreover, we denote the associated unipotent subgroups by U+ =

∏

α∈Φ+ Uα and U− =
∏

α∈Φ− Uα;
they are the unipotent radicals B and of its opposite with respect to T , respectively.

We denote by A the apartment associated to T in B(G ,k): by Bruhat-Tits theory, it is an affine
space under the real vector space X∗(T )⊗Z R where X∗(T ) is the cocharacter group of T , but in
accordance with [RTW10] we will see it as an affine space under Λ= HomAb(X ∗(T ),R>0), using the
multiplicative convention for the sake of compatibility with later seminorm considerations. Now,
we pick a special point x0 in A and we consider the associated épinglage [BrT84, 3.2.1-3.2.2]: this
is a consistent choice of coordinates ξα : Uα →̃Ga,k for each root α, which identifies the filtration of
the root group Uα with the canonical filtration of Ga,k . Thus we get an isomorphism between the
big cell U−×T ×U+ and the spectrum of the k-algebra k[X ∗(T )][(ξα)α∈Φ]. We also use x0 to identify
the apartment A with Λ: thus there is a natural pairing 〈 , 〉 between A and X ∗(T ), which we can
restrict to a pairing between A and Φ.

At last, we recall that the underlying space of the analytic space associated to an affine k-variety
V is the set of multiplicative seminorms k[V ] → R, defined on the coordinate ring of V and extend-
ing the absolute value of k . Therefore a point in the analytic big cell (U−×T ×U+)an is a multiplica-
tive seminorm on the k-algebra k[X ∗(T )][(ξα)α∈Φ].

We first show an explicit formula for the restriction of Θ to A× A.

Lemma 2.2 We use the notation introduced above. For each (x, y) ∈ A× A, the point Θ(x, y), a priori

in Gan, actually lies in (U−×T ×U+)an. It is given by the following multiplicative seminorm on the

coordinate ring k[X ∗(T )][(ξα)α∈Φ] of U−×T ×U+:
∑

χ∈X ∗(T ),ν∈NΦ

aχ,νχξ
ν
7→ max

χ,ν
|aχ,ν|〈y,χ〉〈x,χ〉−1

∏

α∈Φ−

〈y,α〉ν(α)
∏

α∈Φ+

〈x,α〉ν(α).

Note that the seminorm Θ(x, y) is in fact a norm.
Proof.— To check this formula, we first observe that Θ(x0, x0) = ϑ(x0), so that the desired for-

mula forΘ(x0, x0) follows from [RTW10, Prop. 2.6]. Given (x, y) ∈ A×A, there exist a non-archimedean
field extension K /k and points s, t ∈ T (K ) such that 〈x,χ〉 = |χ(t )| and 〈y,χ〉 = |χ(s)| for any χ ∈

X ∗(T ). By compatibility of Θwith non-archimedean field extensions and G(K )×G(K )-equivariance
[RTW10, Prop. 2.11], we can write Θ(x, y) = sΘ(x0, x0)t−1. Since

χ(sw t−1) = χ(s)χ(t )−1χ(w ) and ξα(sv s−1) =α(s)ξα(v)
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we deduce, for f =
∑

χ,ν aχ,νχξ
ν ∈ k[X ∗(T )][(ξα)α∈Φ], that

| f |(Θ(x, y)) = | f |(sΘ(x0, x0)t−1)

=

∣

∣

∣

∣

∣

∑

χ,ν
aχ,νχ(s)χ(t )−1

∏

α∈Φ−

α(s)ν(α)
∏

α∈Φ+

α(t )ν(α)χξν

∣

∣

∣

∣

∣

(Θ(x0, x0))

= max
χ,ν

|aχ,ν|〈y,χ〉〈x,χ〉−1
∏

α∈Φ−

〈y,α〉ν(α)
∏

α∈Φ+

〈x,α〉ν(α).

This finishes the proof. �

Let us define a partial compactification of the vector space Λ= HomAb(X ∗(T ),R>0) by embed-
ding it into

Λ
B
=HomMon(〈Φ−

〉,R>0),

where 〈Φ−〉 denotes the semigroup spanned by Φ
− = −Φ+ in X ∗(T ). Since every translation of Λ

extends to an automorphism of Λ
B

, this defines also a partial compactification A
B

of A. The next
step is now, for each standardization (T,B ), to use the previous formula in order to extend Θ|A×A to

a continuous map Θ(T,B ) : A× A
B
→G

an
.

For this, we need to provide additional details about wonderful compactifications, in particular
about the affine charts given by partially compactifying the maximal torus, seen as a factor of the
big cell. More precisely, we use the affine subvariety G0 ≃U−× Z ×U+ of G introduced in section
1. The difference between the latter variety and the big cell is that the factor T ≃ (Gm)dim(T ) is
replaced by a partial compactification Z which is an affine space of dimension equal to dim(T ). At
the level of coordinate rings, it means replacing the k-algebra k[X ∗(T )][(ξα)α∈Φ] of the big cell, by
the k-algebra k[〈Φ−〉][(ξα)α∈Φ] of G0.

Proposition 2.3 Fix a standardization T ⊂ B of G with associated apartment A and partial com-

pactification A
B

. Then the restriction Θ|A×A extends to a continuous embedding

Θ(T,B ) : A× A
B
→G

an
.

The map Θ(T,B ) actually takes its values in (G0)an.

Proof.— We use again x0 to identify A with HomAb(X ∗(T ),R>0) and A
B

with HomMon(〈Φ−〉,R>0).
Thanks to the formula for the restriction of Θ to A × A proven in Lemma 2.2, we can easily extend

this map to a continuous map Θ(T,B ) : A×A
B
→G

an
by mapping (x, y)∈ A×A

B
to the multiplicative

seminorm on the coordinate ring k[〈Φ−〉][(ξα)α∈Φ] of G0 defined by

∑

χ∈〈Φ−〉,ν∈NΦ

aχ,νχξ
ν
7→ max

χ,ν
|aχ,ν|〈y,χ〉〈x,χ〉−1

∏

α∈Φ−

〈y,α〉ν(α)
∏

α∈Φ+

〈x,α〉ν(α).

The right hand side is obviously continuous in x and y , hence Θ is continuous.

Moreover we have
〈x,α〉 = |ξα|(Θ(T,B )(x, y))−1

for each root α ∈Φ
+ and

〈y,α〉 = |ξα|(Θ(T,B )(x, y))

for each root α ∈ Φ
−. Since Φ

+ spans X ∗(T ), we thus can recover x and y from Θ(T,B )(x, y) and
therefore Θ(T,B ) is injective. �
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Now, let us remark that, according to [RTW10, Prop. 4.20] given any (x, y) ∈ B(G ,k)×B(G ,k),

there exists a standardization (T,B ) such that (x, y) ∈ A × A
B

for the apartment A given by T . In
other words, any (x, y) ∈ B(G ,k)×B(G ,k) lies in the domain of at least one map Θ(T,B ). Our next
task is then to verify that the extensions Θ(T,B ) glue nicely together when the standardization (T,B )
varies, in order to be able to define the map Θ we seek for.

Let us recall some facts about the compactification B(G ,k). First, we explain the relationship
between the closure of an apartment A in the maximal Satake-Berkovich compactification B(G ,k)

and the partial compactification A
B

we used so far in this section. We introduce the maximal flag
variety F = G/B of G (where B is some Borel subgroup of G), and we let λ : G → F be the corre-
sponding projection. Then the map ϑ∅ = λan ◦ϑ : B(G ,k) → F

an is a G(k)-equivariant injection
[RTW10, Prop. 3.29]. Let A be an apartment in G associated to the split torus T . We denote by A the
closure of ϑ∅(A) in F

an: this is a compact topological space. By [RTW10, Prop. 3.35], the subset A

is homeomorphic to the compactification of A with respect to the Weyl fan, i.e. the fan consisting
of the cones

C(P) = {x ∈ A : α(x) 6 1 for all α ∈−Φ(T,P)},

where P runs over all parabolic subgroups in G containing T . The partial compactification A
B

of
the present paper is a subset of A, where only the cone C(B ) is compactified.

The space B(G ,k) is defined as the image of the map

G(k)× A →F
an, (g , x) 7→ g xg−1

endowed with the quotient topology. If the field k is locally compact, then B(G ,k) is the closure
of the image of B(G ,k) in F

an via ϑ∅ and hence compact [RTW10, Prop. 3.34]. At last, the space
B(G ,k) is the disjoint union of all B(Pss ,k), where P runs over all parabolic subgroups of G , and
where Pss denotes the semisimplification P/R(P) of P [RTW10, Th. 4.1].

Lemma 2.4 Let x be a point in B(G ,k). For any two apartments A and A′ of B(G ,k) whose closure

in B(G ,k) contains x, there exists a sequence of points in A∩ A′ which converges to x.

Proof.— The stabilizer Gx (k) of x in G(k) acts transitively on the set of compactified apartments
containing x [RTW10, Prop. 4.20 (ii)], hence we can write A′ = g .A with g ∈Gx (k). Pick a standard-

ization (T,B ) such that A = A(T ) and x belongs to A
B

. The assertion is trivially true if x belongs
to B(G ,k), hence we may assume that x lies at the boundary of A. Then there exists a parabolic
subgroup P of G containing B such that x lies in the boundary stratum B(Pss ,k) of B(G ,k).

We let N denote the normalizer of T in G and recall that Φ=Φ(T,G). By [RTW10, Th. 4.14], the
group Gx (k) is generated by the stabilizer N (k)x of x in N (k), the full root groups Uα(k) when the
root α belongs to Φ(T,Ru(P)), and the partial root groups Uα(k)− logα(x) for α ∈ Φ(T,L), where L is

the Levi subgroup of P containing ZG(T ) = T . The group N (k)x fixes each point of the closure A
B

x

of the affine subspace

Ax = {y ∈ A |α(y) =α(x) for all α ∈Φ
−such that α(x) 6= 0}.

Consider a root α ∈Φ and an element u in Uα(k). The action of u on B(G ,k) fixes each point of the
half-space

Au = {y ∈ A | α(y)> |ξα(u)|}.

The closure of the latter in A
B

is the subspace A
B
u defined by

A
B
u = {y ∈ A

B
| α(y)> |ξα(u)|} if α ∈Φ

−
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and
A

B

u = {y ∈ A
B
|(−α)(y)|ξα(u)|6 1} if α ∈Φ

+.

In each case, if A
B
u contains x, then A

B
u ∩ A

B
x is a neighborhood of x in A

B
x .

Now, any given element g of Gx (k) fixes each point in the intersection of A
B

x with a finite number

of (partially) compactified half-spaces A
B

u all containing x, hence fixes each point in some neigh-

borhood V of x in A
B
x . We deduce V ⊂ A

B
∩g A

B
and, therefore, there exists a sequence of points in

A∩ g A which converges to x in both A
B

and g A
B

. �

Proof of Proposition 2.1.— We are now in position to prove successively the properties claimed
about the map Θ.

1) Existence. We first check that the mapsΘ(T,B ) glue together nicely. Pick two points x ∈B(G ,k)
and y ∈B(G ,k). We have to check that

Θ(T,B )(x, y)=Θ(T ′,B ′)(x, y)

for any two standardizations (T,B ) and (T ′,B ′) such that A(T )
B

and A(T ′)
B ′

both contain x and y .

By Lemma 2.4, we can pick a sequence (yn) in A(T )∩ A(T ′) converging to y in A(T )
B

and A(T ′)
B ′

.
We have

Θ(T,B )(x, yn) =Θ(x, yn)=Θ(T ′ ,B ′)(x, yn)

for all n, hence Θ(T,B )(x, y) =Θ(T ′ ,B ′)(x, y) by continuity of Θ(T,B ) and Θ(T ′,B ′). Since any two points

x ∈B(G ,k) and y ∈B(G ,k) are contained in A(T )
B

for a suitable standardization (T,B ), this allows
us to define the map Θ by gluing together the maps Θ(T,B ).

2) Equivariance. We now check that the map Θ is G(k)×G(k)-equivariant, and for this we pick
(x, y) ∈ B(G ,k)×B(G ,k) and choose a standardization (T,B ) such that the partially compactified

apartment A
B

for A = A(T ) contains both x and y , as well as a sequence (yn) in A converging to y .
By the Bruhat decomposition theorem for compactifed buildings, proved in [RTW10, Prop. 4.20],
we can write G(k) = Gx (k)NGx (k), where Gx (k) = StabG(k)(x) and N = NormG (T )(k). Therefore, it
is enough to prove that

Θ(g x, y) =Θ(x, y)g−1 and Θ(x,h y)= hΘ(x, y)

for g and h belonging to Gx (k) or N . If g ∈ N , then g x ∈ A and therefore

Θ(g x, y) = Θ(T,B )(g x, y) = lim
n

Θ(g x, yn) = lim
n

Θ(x, yn)g−1

= Θ(T,B )(x, y)g−1
=Θ(x, y)g−1.

If g ∈Gx (k), then

Θ(g x, y) = Θ(x, y) =Θ(T,B )(x, y)

= lim
n

Θ(x, yn)= lim
n

Θ(g x, yn) = lim
n

Θ(x, yn)g−1

= Θ(T,B )(x, y)g−1
=Θ(x, y)g−1.

If h ∈ N , then h A
B
= A

hBh−1

and

Θ(x,h y) = Θ(T,hBh−1 )(x,h y)= lim
n

Θ(x,h yn) = lim
n

hΘ(x, yn)

= hΘ(T,B )(x, y)= hΘ(x, y).
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If h ∈Gx (k), then the points x =hx and h yn are contained in the apartment h A and therefore

Θ(x,h y) = Θ(hT h−1 ,hBh−1)(x,h y)= lim
n

Θ(x,h yn) = lim
n

hΘ(x, yn)

= hΘ(T,B )(x, y)= hΘ(x, y).

3) Continuity. Let us now prove continuity of Θ. The canonical map

(

G(k)×G(k)
)

× (A× A
B

)→B(G ,k)×B(G ,k)

identifies the right-hand-side with a topological quotient of the left-hand-side. By construction
and equivariance, the map Θ is induced by the continuous map

(

G(k)×G(k)
)

× (A× A
B

) →G
an

,
(

(g ,h), (x, y)
)

7→ hΘ(T,B )(x, y)g−1,

hence it is continuous.

4) Field extensions. Finally, the map Θ is compatible with non-archimedean field extensions
since this is the case for each map Θ(T,B ) thanks to the formula used to define it in the proof of
Lemma 2.2. �

3 Analytic strata in boundary divisors

In this section, we analyze the compatibility between the boundaries at infinity of the Satake-
Berkovich compactifications of Bruhat-Tits buildings and of the wonderful compactifications. For
this, we need to recall some facts about the combinatorics and geometry of boundaries of wonder-
ful compactifications G , which amounts to decomposing the latter varieties into G ×G-orbits. Our
general reference is [Bri03, Section 3, p. 617].

Let Par(G) be the scheme of parabolic subgroups of G . The type τ= τ(P) of a parabolic subgroup
P of G is the connected component of Par(G) containing P ; we denote by Parτ(G) this connected
component. Let T =π0

(

Par(G)
)

denote the set of types of parabolic subgroups. This set is partially
ordered as follows: given two types τ and τ′, we set τ 6 τ′ if there exist P ∈ Parτ(G)(k) and P ′ ∈

Parτ′(G)(k) with P ⊂ P ′. The minimal type corresponds to Borel subgroups and the maximal type
corresponds to the trivial parabolic subgroup G . This set is also equipped with an involution τ 7→

τopp defined as follows: pick a parabolic subgroup P ∈ Parτ(G)(k) as well as a Levi subgroup L of
P and set τopp = τ(P opp), where Popp is the only parabolic subgroup of G such that P ∩Popp = L.
Note that the type τopp is well-defined since G(k) acts transitively by conjugation on pairs (P,L)
consisting of a parabolic subgroup of type τ and a Levi subgroup L of P .

Let us go back now to the problem of decomposing G as explicitly as possible into G ×G-orbits.
We pick a standardization (T,B ) of G and use the associated notation as in the previous section,
such as the root system Φ and its positive and negative subsets Φ+ and Φ

−; we let also ∆ denote the
corresponding set of simple roots, so that the types of parabolics introduced above are in one-to-
one correspondence with the subsets of ∆. The choice of (T,B ) gives us the "partially compactified
big cell" G0, which can be identified with U−× Z ×U+ [Str87, Lemmas 2.1 and 2.2] via the natural
open immersion

ϕ : U−×Z ×U+ →G0, (u−, z,u+) 7→ u−zu−1
+ .

Inside of T one can choose specific 1-parameter subgroups λτ defined by α(λτ) = 0 if α ∈ τ and
α(λτ) = 1 if α ∈∆\τ.
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Each of these cocharacters has a limit at 0; we set

e(T,B ),τ = lim
t→0

λτ(t ) ∈ Z (k).

The points {e(T,B ),τ}τ⊂∆ are extremely useful because they provide a complete set of representatives:

• for the T ×T -action on the toric affine variety Z ,

• for the G ×G-action on the wonderful compactification G .

Therefore we obtain a one-to-one correspondence between these two sets of orbits.

Let P denote the unique parabolic subgroup of G of type τ containing B (it can be described as
consisting of the elements g ∈ G such the limit λτ(t )gλτ(t )−1 exists as t → 0), and let L be its Levi
subgroup containing T = ZG(T ). Then P opp is the parabolic subgroup in G opposite P with respect
to B (it can be described as consisting of the elements g ∈ G such the limit λτ(t )gλτ(t )−1 exists as
t →∞, and we have P ∩P opp = L). We have the following description of stabilizers:

StabG×G (e(T,B ),τ) = diag(L)
(

Ru(P)Z (L)×Ru(P−)Z (L)
)

⊂ P ×P opp.

In other words, the wonderful compactification G has a G ×G-equivariant stratification by locally
closed subspaces {X (τ)}τ∈T and each stratum X (τ) is a homogeneous space under G ×G which
comes with a G ×G-equivariant map

πτ : X (τ) → Parτ(G)×Parτopp (G).

Moreover, for each point (P,P ′) ∈ Parτ(G)(k)×Parτopp (G)(k) consisting of two opposite parabolic
subgroups with respect to a common Levi subgroup L, the fiber of πτ over (P,P ′) is canonically
isomorphic to the adjoint quotient L/Z (L) of L.

One can also give an explicit description of the intersection of X (τ) with G0 and of the restriction
of πτ to X (τ)∩G0. For simplicity, let us write Φ(Q) =Φ(T,Q) for every subgroup Q of G containing
the torus T . The stratum X (τ) intersects the toric variety Z = Speck[〈Φ−〉] along the locally closed
subspace

Z (τ) = {z ∈ Z : α(z) = 0 for all α ∈−Φ(Ru(P)) and α(z) 6= 0 for all α ∈Φ(L)−},

i.e. the intersection of the vanishing set of all negative roots belonging to the unipotent radical
of P opp and the non-vanishing set of all negative roots belonging to the Levi subgroup L. This
stratum Z (τ) is a principal homogeneous space under T /T (τ), where T (τ) is the subtorus given as
the connected component of the kernel of all α ∈ Φ(L). Then Z (τ) is trivialized by the k-rational
point e(T,B ),τ, which can be described by

α(e(T,B ),τ) = 0 for all α ∈−Φ(Ru(P)) and α(eB,t ) = 1 for all α ∈Φ(L)−.

The torus T (τ) is the center of L, hence T /T (τ) is the maximal split torus of L/Z (L) induced by T .

At last, the following diagram

∏

α∈−Φ(Ru(P ))Uα×
(

∏

α∈Φ(L)− Uα×Z (τ)×
∏

α∈Φ(L)+ Uα

)

×
∏

α∈Φ(Ru (P ))Uα

(pr1,pr3)

��

ϕ // X (τ)∩G 0

πτ

��
∏

α∈−Φ(Ru(P ))Uα×
∏

α∈Φ(Ru(P ))Uα
// Parτ(G)×Parτopp (G)
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where the bottom horizontal map is (u−,u+) 7→ (u−Pu−1
− ,u+P oppu−1

+ ), is commutative.
Let P be a parabolic subgroup of G of type τ, and let λ : G → G/P be the projection to the

associated flag variety, which is isomorphic to Parτ(G). Recall the embedding ϑ : B(G ,k) → Gan

defined in [RTW10], Proposition 2.4. By composition, we get a map ϑτ =λan ◦ϑ : B(G , ,k)→Gan →

Parτ(G)an, which is G(k)-equivariant and independent of the choice of the parabolic P of type τ by
[RTW10], Lemma 2.13. If τ is the type of a Borel subgroup, we have seen this map under the name
ϑ; already in section 2.

Proposition 3.1 Let P be any parabolic subgroup of G of type τ(6= ∆), giving rise to the boundary

stratum B(Pss ,k) lying in B(G ,k) \B(G ,k).

(i) The map Θ sends B(G ,k)×B(Pss ,k) into X (τ)an.

(ii) We have

(πan
τ ◦Θ)(x, y) = (P,ϑτopp (x))

for all (x, y) ∈ B(G ,k)×B(Pss ,k). Note that P is a k-rational point in Parτ(G)an, whereas

the point ϑτopp (x) in Parτopp (G)an is in general defined over a transcendental non-archimedean

field extension.

(iii) For every point x ∈B(G ,k), the restriction of Θ(x, ·) to B(Pss ,k) is a continuous embedding.

Proof.— We fix a standardization (T,B ) of G and use the notation introduced above.

Let us prove (i) and (ii). The partially compactified apartment A
B

intersects B(Pss ,k) along the

subspace A
B

(P) defined by the conditions α = 0 for each root α in −Φ(Ru(P)) and α > 0 for each
root α ∈ Φ(L)−. This is the apartment of the maximal split torus T /T(t ) of Pss . According to the

explicit formula for Θ(T,B ) in Proposition 2.3, a point (x, y)∈ A×A
B

(P) is mapped to the Gauss point
of

(

∏

α∈−Φ(Ru(P ))
Uα×

(

∏

α∈Φ(L)−
Uα×Z ×

∏

α∈Φ(L)+
Uα

)

×
∏

α∈Φ(Ru (P ))
Uα

)an

defined by
|α| = 〈y,α〉〈x,α〉−1 for all α ∈Φ

−,

which vanishes if and only if α ∈−Φ(Ru(P)), and by

|ξα| =







0 if α ∈−Φ(Ru(P))
〈y,α〉 if α ∈Φ(L)−

〈x,α〉 if α ∈Φ(L)+∪Φ(Ru(P))

By the commutative diagram preceding our statement, we thus have Θ(B,T )(x, y) ∈ (X (τ)∩G0)an.
Using the explicit formula for ϑτopp (x) from the proof of [RTW10], Lemma 3.33, we also find that
πan
τ (Θ(T,B )(x, y)) is the point ({P },ϑτopp (x)) of Parτ(G)an×Parτopp (G)an. Since πτ is G ×G-equivariant,

the general case follows via translation by the subgroup G ×P .

Let us prove (iii). Consider two points y, y ′ in B(Pss ,k) such that Θ(x, y)=Θ(x, y ′). Pick a maxi-
mal split torus T of G contained in P such that y and y ′ belong to the closure of A = A(T ) ; for any

choice of a Borel subgroup B of P containing T , we have y, y ′ ∈ A
B

. Choose also some g ∈G(k) such
that x0 belongs to g−1 A. By assumption, we have

Θ(g x, y) =Θ(x, y)g−1
=Θ(x, y ′)g−1

=Θ(g x, y ′).
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Since g x, y and y ′ are all contained in A
B

, we deduce

Θ(T,B )(g x, y) =Θ(T,B )(g x, y ′)

and therefore y = y ′ by injectivity of Θ(T,B )(g x,−) on A
B

. �

4 Equivariant comparison

Thanks to the better understanding of the relationship between the boundaries provided by the
previous section, we can now prove our main comparison theorem, stated as the first two points of
the main theorem in the introduction.

Theorem 4.1 (i) For every point x ∈B(G ,k), the map

Θ(x, ·) : B(G ,k)→G
an

is a continuous, G(k)-equivariant embedding.

(ii) Assume that k is locally compact. Then Θ(x, ·) is a closed embedding, and the compactified

building B(G ,k) is homeomorphic to the closure of the image of the building B(G ,k) under

the embedding

B(G ,k)
Θ(x,·)
−→ Gan

,→G
an

.

Proof.— Injectivity of Θ(x, ·) follows immediatly from the following two observations based on
Proposition 3.1:

• this map restricts injectively to the stratum B(Pss ,k) of B(G ,k) associated with P ;

• πτ◦Θ(x, ·) maps B(Pss ,k) into {P }×Parτ(P )opp (G)an, hence distinct strata have disjoint images.

If k is locally compact, the map Θ(x, ·) is closed since it is continuous, B(G ,k) is compact by
[RTW10, Prop. 3.34], and G

an
is Hausdorff. Since B(G ,k) is dense in B(G ,k) by [RTW10, Prop.

3.34], the last claim follows. �

In order to complete the proof of our main theorem stated in the introduction it remains to
show part (iii). Strictly speaking, this statement deals with orbits closures while Proposition 3.1
deals with the orbits themselves. The relationship is in fact very neat since it is well-known that,
with our notation, we have by [CS99, Th. 3.9]:

X (τ) =
⋂

i∈τ

Di .

Moreover the fibration
πτ : X (τ) → Parτ(G)×Parτopp (G).

of the previous section, whose fibers are Levi factors, extends to a fibration

πτ : X (τ) → Parτ(G)×Parτopp (G).

with fibers isomorphic to wonderful compactifications of the latter groups, see e.g. [EJ08, Th. 2.26].

If we take into account Bruhat-Tits buildings, we can start with the decompositions:

G =
⊔

P∈Par(G)(k)
Pss =

⋃

P∈Par(G)(k)
Pss ,
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where the semisimple quotient Pss is seen as a boundary symmetric space and Pss is its wonderful
compactification, and take their analytifications. Then by Prop. Prop. 3.1 (ii), we have

B(Pss ,k)⊂ (Pss )an and B(Pss ,k)⊂ (Pss )an.

Further questions: Our constructions are all Galois-equivariant and can be descended to ground
fields over which the group G need not be split. On the one hand, it seems to us that wonderful
compactifications of non-split groups are less explicitly described in the literature, presumably due
to lack of representation-theoretic motivation. On the other hand, descent in Bruhat-Tits theory
is a central topic. The geometric description of Satake-Berkovich compactifications of Bruhat-Tits
buildings could be a useful tool to describe wonderful compactifications of non-split groups.

Another interesting line of further research is the generalization of our results to other equivari-
ant compactifications of the reductive group G [Ti03].
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