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Modeling the Capillary Pressure for the Migration of 
the Liquid Phase in Granular Solid–Liquid–Vapor 
Systems: Application to the Control of the 
Composition Profile in W-Cu FGM Materials
JEAN-MICHEL MISSIAEN, JEAN-JOËL RAHARIJAONA,
and FRANCIS DELANNAY

A model is developed to compute the capillary pressure for the migration of the liquid phase out
or into a uniform solid–liquid–vapor system. The capillary pressure is defined as the reduction
of the overall interface energy per volume increment of the transferred fluid phase. The model
takes into account the particle size of the solid particle aggregate, the packing configuration
(coordination number, porosity), the volume fractions of the different phases, and the values of
the interface energies in the system. The model is used for analyzing the stability of the
composition profile during processing of W-Cu functionally graded materials combining a
composition gradient with a particle size gradient. The migration pressure is computed with the
model in two stages: (1) just after the melting of copper, i.e., when sintering and shape
accommodation of the W particle aggregate can still be neglected and (2) at high temperature,
when the system is close to full density with equilibrium particle shape. The model predicts well
the different stages of liquid-phase migration observed experimentally.

I. INTRODUCTION

CAPILLARY migration of the liquid-phase in a
solid–liquid–vapor system is encountered in many
applications involving granular materials. Infiltration
of a liquid in a porous solid–vapor medium is one such
application which concerns as well the permeation of
water or oil in soils as the infiltration of a ceramic
preform with a metallic liquid to process ceramic–metal
composites.[1] Liquid spreading also results from
nonuniform liquid or porosity distribution in a granular
material. This may occur as a liquid locally forms in a
packed-bed reactor or in a powder compact undergoing
liquid-phase sintering. This is also observed during
heating multilayer powder compacts with a gradient in
the liquid or porosity fraction.[2] In drying operations,
the reverse transfer occurs as gas replaces the liquid
sequentially, first from largest pores and last from the

smallest pores.[3] A similar situation occurs during the
initial stage of drying of loose particle packings, such as
silica gels, due to the high local capillary stresses.[4]

Migration or imbibition of liquid also takes place
through sintering or desintering of the solid particle
skeleton in dense solid–liquid materials with a gradient
in the liquid composition or solid grain size.[5,6]

The dynamics of migration is controlled by an
equivalent pressure, which is commonly called the
capillary pressure. For example, the capillary pressure
PC for liquid infiltration in a circular tube of radius r is
expressed as

PC ¼ 2cLV
r cos h

½1�

where cLV is the surface energy of the liquid, and h is the
contact angle. Infiltration or spreading of a liquid-phase
into a porous granular medium is more difficult to
analyze, due to the geometric complexity. Different
authors have derived models based on the Laplace
equation to compute the capillary pressure driving the
infiltration of a liquid-phase into a porous granular
medium, i.e., without solid–solid interfaces.[3,7] Calcula-
tions take into account the evolution of the liquid
surface around particle contacts in the particle packing.
The capillary pressure for the migration of a liquid out
of or into a solid–liquid system has been calculated
using thermodynamic models of interfacial energy, by
taking into account the contributions of solid–solid and
solid–liquid interfaces.[6,8–10] In another context, the
capillary pressure for expulsion of the vapor-phase out
of a solid–vapor granular system, also designated as
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‘‘sintering stress’’ or ‘‘sintering pressure,’’ has been
determined by different authors from thermodynamic
models of interfacial energy in a system undergoing
sintering.[11–13] The capillary pressure or ‘‘capillary
force’’ driving particle rearrangement in the initial stage
of liquid-phase sintering was also derived by analyzing
the mechanical equilibrium of two particles connected
with a pendular liquid ring.[14–16]

There have been few attempts to model the migration
pressure of a liquid in the general case of a solid–liq-
uid–vapor system containing solid–solid interfaces. This
case is, however, of practical importance since
microstructure or composition heterogeneity in the
green body may induce migration pressure gradients
and liquid-phase migration may occur during heating of
a powder compact undergoing liquid-phase sintering.
Heterogeneity may result from the powder mixing/form-
ing step, but it can also be intentionally introduced to
manufacture functionally graded materials, in which
case control of liquid-phase migration is essential[2,17] In
a previous work, a model was developed to compute the
capillary pressure (also called ‘‘migration pressure’’ or
‘‘imbibition pressure’’) for the migration of a liquid out
or into a dense solid–liquid system.[10,18,19] In this work,
this model is adapted to compute the capillary pressure
for the migration of the liquid-phase out or into a
uniform solid–liquid–vapor system. The capillary pres-
sure is defined as the reduction of the overall interface
energy per volume increment of the transferred fluid
phase. The context of application is then more general
than for the previously proposed models. The present
model accounts for the simple case of penetration in a
circular tube (Eq. [1]) but more generally for the
penetration of a liquid into the geometrically complex
porosity of a powder compact or for various transport
phenomena of a liquid-phase which may occur during
the processing of solid–liquid–vapor granular systems
(drying, infiltration, sintering…). The model takes into
account the particle size of the solid particle aggregate,
the packing configuration (coordination number, poros-
ity), the volume fractions of the different phases, and the
values of the interface energies. The basics of the model
are presented in Sect. II, and the liquid migration
pressure in a packing of spherical particles is calculated.
In Sect. III, the model is applied to analyze experimental
results for the migration of liquid copper during
sintering W-Cu powder compacts with a composition
gradient. The computational details of the model are
presented in the ‘‘Appendix.’’

II. MODELING THE CAPILLARY PRESSURE IN
A SOLID–LIQUID–VAPOR SYSTEM

A. Model

The geometric model and the procedure used for the
calculation of the capillary pressure in solid–liquid
systems[10] is extended here to a three-phase solid–liq-
uid–vapor system. The adapted system is modeled as
consisting of an aggregate of solid particles immersed in
the percolating porosity, where porosity is filled by the

liquid–vapor mixture. The three phases are assumed at
chemical equilibrium, i.e., driving forces for change
result only from capillary forces. The system is divided
into Voronoı̈ cells enclosing each solid particle. Each cell
thus consists of an assembly of nC pyramidal prisms, nC
being the particle coordination number. The model
substitutes these nC prisms by nC identical cones the
revolution axis of which is the vector bounding the
centers of gravity of two particles in contact (Figure 1).
The opening angle b at the apex of the cone is
straightforwardly related to nc. In a previous work, this
model was applied to two-phase systems to derive the
capillary pressure for liquid migration in binary
solid–liquid mixtures[5] or the sintering stress in a
solid–vapor system.[13]

The above model makes use of eight parameters: the
average particle coordination number nC; the particle
volume VP; the density qP = VP / (VP+VL+VV), or
equivalently the porosity u = 1 � qP, of the solid
particle skeleton—where VL and VV are the volumes
of the liquid and vapor phases, respectively—in each
cell; the volume fraction of liquid in the condensed
mixture vL = VL/(VP+VL), and the solid/vapor cSV,
solid/solid cSS, solid/liquid cSL, and liquid/vapor cLV are
the corresponding interface energies. The dihedral angle
is defined as W = 2arccos(c SS/2c SL).
The representation of the system by cones of revolu-

tion implies that the percolating porosity is modeled as a
set of channels with uniform cross section (like capillary
pipes passing through the aggregate). Figure 2 sketches
on a section of the cone the different cases which may
exist depending on the value of the liquid volume
fraction vL. Three successive stages may be distin-
guished, according to Reference 3.

1. The pendular stage, corresponding to localized
liquid bridges between particles with a solid/liq-
uid/vapor triple line at the particle surface. Pendu-
lar liquid bridges are connected to the remaining
liquid only if the wetting angle is equal to zero and
the solid surface is then covered with a liquid film
ensuring the liquid continuity.

2. The funicular stage, starting when the liquid frac-
tion exceeds the threshold at which the solid/
liquid/vapor triple line meets the boundary of the
representative cone. The liquid phase then becomes
fully interconnected throughout the porosity net-
work. This would occur simultaneously and uni-
formly in the whole system in the case of
monodisperse grain sizes, but progressively in the
case of a pore size distribution. As long as some
volume fraction of vapor is present, the porosity
network is then divided in two parts: one part is
completely filled with liquid (Figure 2(c)) whereas
the liquid fraction in the other part remains equal to
the threshold for the formation of a critical liquid
pocket that completely wets the solid surface
(Figure 2(b)). The liquid being continuous, the
Laplace pressure arising from the curvature jLV of
the liquid/vapor surface in pore channels still
containing vapor is uniform (in the following, jLV
always refers to the mean curvature defined as half
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the sum of the two principal curvatures at a point,
with curvature defined positive for a convex vol-
ume). In the case of capillary channels with uniform
cross section, densification would, as long as part of
porosity contains vapor, bring about a progressive
increase of jLV. Actually, for a 3D pore network
with a pore size distribution, jLV decreases pro-
gressively during densification because the liquid
progressively fills channels with larger cross sec-
tion.[3,21]

3. The final stage where the porosity is completely
filled with liquid (Figure 2(c)). During this stage,
densification of the solid skeleton yields a progres-
sive exudation of the liquid out of the aggregate.

In general, the system can evolve by liquid migration,
accommodation of grain shapes, and densification of the
solid skeleton in such a way as to effect a decrease of the
capillary energy

F ¼ cSVASV þ cSSASS þ cSLASL þ cLVALV ½2�

where ASV,ASS, ASL, and ALV are the interface areas of the
total solid/vapor, solid/solid, solid/liquid. and liquid/va-
por, respectively. Only three of the four interface energies
effectively play a role on the capillary equilibrium.
Therefore, the total capillary energy will be scaled in this
paper by the liquid–vapor interface energy, and only seven
parameters control the evolution of the system.
In the absence of external forces, the work done for

virtual change of the volume of liquid or vapor is equal
to the change of the total energy. Hence, the driving
force for the migration of a liquid phase or a vapor
phase is defined from partial derivatives of the capillary
energy F with respect to the volume of the liquid or
vapor. For example, during both the pendular stage and
the funicular stage, the ‘‘capillary pressure’’ driving the
migration of the liquid phase at fixed density (porosity)
of the solid skeleton is defined as

PC ¼ � dF

dVL

� �
nC;VP;u

½3�

Fig. 1—Geometric model for the calculation of the capillary pressure. (a) Voronoı̈ cell enclosing a solid particle; (b) Approximation by nC identi-
cal cones (adapted from Ref. [10] with permission from Elsevier).

Fig. 2—The three local configurations to be considered for the solid–liquid–vapor system. (a) pendular stage; (b, c) funicular stage; (c)
alone = final stage (reproduced from Ref. [20] with permission from Elsevier).
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whereas the sintering stress, i.e., the stress driving the
densification of the solid skeleton by expulsion of the
vapor phase is defined as

PS ¼ � dF

dVV

� �
nC;VP;vL

½4�

Wakai et al [12] have shown that Eq. [4] is fully
equivalent to the calculation of sintering stress either
from surface curvature or from the balance of the forces
applied on any section through the aggregate. It must be
noticed that definition [3] implies that the liquid
migrates from positions where PC is lower to positions
where PC is higher. Hence, although it is called a
‘‘pressure,’’ PC defined by [3] has the dimension of a
stress, as well as PS defined by [4]. During the final stage,
the densification of the solid skeleton causes the
expulsion of the liquid phase and the definitions [3]
and [4] merge as

PC ¼ PS ¼ � dF

dVL

� �
nC;VP

½5�

Again in this case, the liquid tends to migrate from
locations where PC is lower to locations where PC is
higher.

The curvature jLV of the liquid–vapor interface is
assumed to be uniform in the Voronoı̈ cell, meaning that
the timescale for homogenizing the local Laplace pres-
sure in the liquid is always very small compared with the
timescale for liquid- or vapor-phase migration consid-
ered in this paper. The curvature of the solid particle
surface is also assumed uniform, which is more restric-
tive. Two types of migration pressure may be described
under this hypothesis.

1. The pressure for the initial liquid migration by
viscous flow in a packing of spherical particles:
particle shape is considered to remain identical to
the initial spherical shape because, during the initial
stage, the rate for growth of grain boundaries and
for accommodation of particle shapes is negligible
with respect to the rate of viscous flow.

2. The pressure for liquid/vapor-phase suction or
expulsion when the microstructure has sufficiently
evolved to ensure sintering with quasi-equilibrium
of grain boundaries and solid/liquid interfaces.

The computational details of the model are presented
in the ‘‘Appendix.’’

B. Example of the Use of the Model

In order to provide a first insight into the phe-
nomenon of liquid migration, we start with a presenta-
tion of computations, according to Eq. [3], of the
migration pressure of a liquid in a particle packing at
constant u, i.e., constant density of the particle skeleton.
We assume that the particle rearrangement induced by
the formation of the liquid phase is instantaneous as
soon as the liquid volume fraction has reached

equilibrium and that subsequent liquid migration causes
no further particle rearrangement, i.e. no further
increase of the average coordination nC. Moreover, the
kinetics of grain boundary growth and particle shape
accommodation is considered to be slow compared with
liquid migration kinetics.
The calculation is performed for a packing of iden-

tical spherical particles in contact (ASS = 0) in which
liquid is added at constant porosity fraction u (i.e.,
dVL = �dVV). The coordination number nC is taken to
remain equal to 6, the contact angle h = 0, the dihedral
angle W = 0 (spheres in contact). According to the
representative cone model, the porosity of the particle
packing is then u = 0.47.[10] The ratio of the solid–liq-
uid interface energy, cSL, to the surface energy of the
liquid, cLV, is arbitrarily fixed at 1. Since the solid
surface is completely wetted by the liquid (h = 0), the
actual solid surface energy, cSV, and the effective solid
surface energy, cSV*, which are used in the calculation,
verify

cSV � cSL þ cLV and c�SV ¼ cSL þ cLV ½6�

The following figures give the variations of the
different interface areas ASS, ASV, ASL, and ALV per
grain (Figure 3), of the global interface energy F per
grain (Figure 4), and of the migration pressure PC

(Figure 5), as a function of the overall liquid volume
fraction vL. Interface areas are normalized by (VP)

2/3,
the total interface energy F by cLV(VP)

2/3, and the
migration pressure PC by cLV/(VP)

1/3.
Until the solid particles are completely wetted by the

liquid, the solid–liquid area and the liquid–vapor area
increase, while the solid–vapor area decreases as the
volume fraction of liquid increases (Figure 3). The
solid–solid interface area remains null since sintering
of the solid skeleton is prohibited in the calculation. The
global interface energy decreases with addition of liquid
(Figure 4) and the migration pressure is thus constantly
positive (Figure 5), i.e., the packing always tends to suck
the liquid into the system. Under these conditions where
the surface of the solid is fixed, ASV+ASL is constant,
and since the solid surfaces are completely wetted
(h = 0), only the liquid–vapor interface plays a role
on the interface energy variation and thus on the
capillary pressure. The migration pressure tends to
infinity at the vL = 0 limit, where jLV also tends to
infinity.
For a packing of spheres with nC = 6, the transition

between the pendular and funicular stage corresponds to
vL � 0.17, and the pores become completely filled with
liquid when vL ‡ 0.47. During the progression of the
liquid/vapor front along pore channels at vL> 0.17,
ASS = ASV = 0, and ASL remains constant, whereas
ALV decreases at a rate of dALV/dVL = 2jLV (jLV is
negative because the liquid volume is concave). This can
be easily demonstrated as follows: if AC-S denotes the
cross-sectional area of the channel at the position of the
front, the decrease of capillary energy, cLV dALV, is
equal to the work dW = 2cLVAC-S jLVdl done for a
progression of the front on a distance dl = dVL/AC-S .
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As the model considers particles with single size,
between which porosity channels present uniform cross
section, jLV does not change during the funicular stage.
This means that, during the range 0.17 £ vL £ 0.47, ALV

decreases at a rate 2jLVVP/(1 � vL)
2 (Figure 3), and PC

(vL) remains equal to �2cLV jLV (Figure 5). Actually, in
practical systems, the 3D arrangement of the porosity
network and the distribution of particle sizes would

bring about a progressive decrease of jLV during the
gradual increase of the fraction of porosity filled by
liquid.[3,21]

III. LIQUID-PHASE MIGRATION IN BI-LAYERS
WITH DIFFERENT PARTICLE SIZES

A. Experimental Background

In the following, the model is used for analyzing the
stability of W-Cu functionally graded materials com-
bining a composition gradient with a particle size
gradient. Such W-Cu functionally graded materials are
considered for the future nuclear fusion experiment
ITER.[22] W-Cu powder mixtures were prepared with 10
and 20 wt pct Cu (19 and 35 vol pct Cu) and two W
particle sizes of 0.2 lm (F) and 0.5 lm (C) (equivalent
diameter from BET measurements). The samples with
the four possible combinations of initial particle size and
Cu fraction are referred as 10F, 10C, 20F, and 20C.
Bi-layer powder compacts 10F/20C and 20F/10C were
prepared by uniaxial die compaction of stacked layers of
the different grades under 600 MPa. The particle size
ratio F/C in the bi-layers is thus 2/5. The mass of
powder in each layer was adjusted to get 2 mm thick
final layers. The bi-layer compacts were sintered at
1653 K (1380 �C) for 2 hours under He/H2 atmosphere
in a SETARAM TMA92 dilatometer. For some exper-
iments, the heating ramp was interrupted at 1403 K
(1130 �C) in order to allow characterization of the
bi-layers just after completion of the melting of copper.
Figure 6 is a SEM view of the microstructure of the W
powder and of the fracture surface of sample 10F after
2 hours sintering at 1653 K (1380 �C). W particles have
undergone significant grain growth during sintering and
they are embedded in a continuous copper binder phase
in the final material. The copper concentration profile in
each layer was deduced from EDS measurement on
polished cross sections of the samples (Figure 7).
Dilatometric tests were also performed on the four
homogeneous grades 10F, 10C, 20F and 20C in order to
quantify their sintering behavior. The green density was
deduced from initial geometric measurements and from
the bulk theoretical density of each composition. The
relative density (percent theoretical density TD) at
different temperatures was computed from the green
density and from the shrinkage measured in-situ in the
dilatometric tests. These measurements allowed deduc-
tion of the porosity u of aggregates of the homogeneous
grades (Table I). Further details regarding the experi-
ments can be found in References 2 and 22
For the W-Cu system, the densification process is

reduced to two stages, due to the negligible solubility of
W in solid and liquid Cu[24,25]: (1) a first stage of particle
rearrangement and (2) a second stage of sintering of the
solid W-skeleton. Solid-state sintering of the W-skeleton
is then the active mechanism at 1653 K (1380 �C) with
submicronic particles.[26]

Figure 7 shows that, immediately after formation of
the liquid phase [1403 K (1130 �C)], the liquid has
migrated from the coarse to the fine grain layer, whereas

Fig. 3—Variation of interface areas ASV, ASL, ALV, and ASS per
grain as a function of the liquid volume fraction in a packing of
spherical particles (nC = 6, h = 0, W = 0, cSL/cLV = 1).

Fig. 4—Variation of the interface free energies F per grain as a func-
tion of the liquid volume fraction in a packing of spherical particles
(nC = 6, h = 0, W = 0, cSL/cLV = 1).

Fig. 5—Variation of the liquid migration pressures PC as a function
of the liquid volume fraction in a packing of spherical particles
(nC = 6, h = 0, W = 0, cSL/cLV = 1).
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between 1653K (1380 �C) and the end of the holding
period of 2 hours at 1653 K (1380 �C), the liquid has
been expulsed from the fine grain layer toward the
coarse grain layer. In bi-layers 10F/20C, in which the
fine grain layer has initially a lower copper content, the
composition profile has thus inverted twice during the
heat treatment.

B. Modeling Conditions

Table II presents the interfacial energy values used in
the computations. These values were obtained by
Hodkin et al. from wetting and grain boundary groov-
ing experiments,[27] whereas the value of the surface
energy near the melting point of copper [T � 1373 K
(1100 �C)] is taken from a literature review.[28] These
data are considered as good approximations of surface
and interface energies in the system in the 1373 K to
1773 K (1100 �C to 1500 �C) temperature range. They
indicate a complete wetting of W particles by the liquid
(h = 0). The solid–vapor surface energy will thus be
taken as c�SV ¼ cSL þ cLV (Eq. [6]). We consider that,
when h = 0, the liquid can migrate along the liquid
layer that covers the solid surface. The volume of the
liquid meniscus can thus reach equilibrium even during
the pendular stage.

C. Liquid Partitioning Before the Formation of the Solid
Skeleton

The model is first applied to the bi-layers just after
liquid formation, i.e., at 1403 K (1130 �C). When this
temperature is reached, the sintering of W particles can
be considered negligible. The shape of W particles is
thus assumed to have remained spherical, and the
equivalent dihedral angle is W = 0. The calculations
are made by choosing coordination values nc such that
the porosities u calculated for the cone model were equal
to porosity values measured at 1403 K (1130 �C) on the
homogeneous W-Cu compacts 10F, 10C, 20F, and 20C
(Table I).
Figure 8 shows the migration pressure PC predicted

from this calculation as a function of the liquid volume
fraction in the two parts of the W-Cu bi-layers 10F/20C
(Figure 8(a)) and 20F/10C (Figure 8(b)). As PC scales
with 1/VP

1/3, the liquid in layer F with fine grain size
presents a larger migration pressure at given vL than the
liquid in layer C with coarser grain size. Hence, as
indicated by the arrows, layer F will suck the liquid out
of layer C. Liquid migration will stop when the capillary
pressures in both layers equilibrate, which will occur
either when layer C has reached the pendular stage or, if
enough liquid is available, when layer F has reached the
final stage. Accordingly, in bi-layers 10F/20C, liquid
migration is expected to invert the concentration profile
with respect to the initial composition. On the contrary,
in bi-layers 10C/20F, liquid migration is expected to
increase the concentration difference between the layers.
The model predictions agree thus pretty well with
experimental observations (Figure 7).
Comparison of the experimental composition profile

to model predictions would need a more detailed
experimental analysis of the 3D composition profile.
Also the pressure variations during the funicular stage
due to the 3D morphology of the pore network and due
to the pore size distribution should be taken into
account in the model. This is out of the scope of the
present paper.

D. Liquid Migration During Sintering of the Solid
Skeleton

The second computation is performed for layers in
which particle shapes have evolved to equilibrium.
Layers C and F are assumed to be in the configuration
of the funicular or final stage, i.e., solid/vapor interfaces
do not exist. In bi-layers, liquid migration at interme-
diate temperatures has increased the liquid fractions in
layers 10F and 20F (Figure 7). According to Table I, the
porosity values in homogeneous samples 10F and 20F
after sintering at 1653 K (1380 �C) are more or less
equal to the liquid volume fraction. Layers 10F and 20F
in bi-layers can thus be considered as fully dense at the
end of the sintering cycle. On the contrary, the liquid
fraction in the coarse grain layers (10C and 20C) is
about 10wt pct (19 vol pct Cu) in both bi-layers at the
intermediate temperature of 1403 K (1130 �C) (see
Figure 7). Sintering in this layer may then be compared

Fig. 6—SEM micrographs for comparison of W particles’ morpholo-
gies and grain sizes (a) in the initial W powder and (b) in the 10F
W-Cu sample after 2-h sintering at 1653K (1380�C) ((a) is repro-
duced from Ref. [23] with permission from Elsevier; (b) is repro-
duced from Ref. [25] with permission of Springer).
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with the pure 10C sample, and densification is probably
far from being completed at 1653 K (1380 �C) (Table I).

According to relations [2], [4], and [5], in the absence
of solid/vapor interfaces, the sintering stress driving
densification of the solid skeleton is the sum of the
contributions of solid/solid, solid/liquid, and liquid/va-
por interfaces. The contribution of liquid/vapor inter-
face creates a pressure in the liquid. As pressure is the
same everywhere in the liquid, only the contributions of

solid/solid and solid/liquid interfaces cause a difference
in sintering stresses in the two layers. According to
definition [5], the sintering stress in the skeleton amounts
to a capillary pressure in the liquid occupying the pores.
In principle, modeling of the contributions of

solid/solid and solid/liquid interfaces in the sintering
stress (or capillary pressure) would require taking
proper account of the progressive increases of nC, and
VP during densification of the solid skeleton. In the
present paper, nC is assumed to remain constant at
nC = 6, and grain growth is supposed to not affect the
particle size ratio, which is supposed to remain at 2/5.
The grain shape in each layer is supposed to evolve
under quasi-equilibrium, which, using the data of
Table II, means that W = 116 deg.
Figure 9 shows the contributions of solid/solid and

solid/liquid interfaces to the migration pressure PC (or
to the skeleton sintering stress) calculated according to
relation 5 as a function of the porosity (i.e., as a
function of the liquid volume fraction). For simplicity,
the ordinate scale was defined using particle sizes equal
to the initial sizes in mixtures F and C. This definition of
the ordinate scale does not affect the relative position of
the curves as it is assumed that the size ratio remains 2/5
during grain growth. PC is negative, which means that
the decrease of the capillary energy implies the expulsion
of the liquid from the system. PC is higher (i.e., less
negative) for the layer C with the larger particle size,
which means that the liquid will tend to migrate from
layer F to layer C. As explained above in this section,
the pressure in the liquid due to the curvature of
liquid/vapor interface adds a contribution to PC in both
layers, but the PC difference between the layers is not
affected. The trend is thus opposite to the trend
observed in Figure 8 for the partitioning of liquid
before the start of the sintering of the solid skeleton.
Following relation [5], the larger tendency of layer F

to expel liquid is an image of the higher sintering stress
for the solid skeleton. When sintering is governed by
grain boundary diffusion, the densification rate varies as
VP
�4/3[29] The rate of the densification of the solid

skeleton being larger in layer F, the transfer of liquid
to layer C will continue during the whole sintering
process. Figure 9 shows that, as liquid is transferred
from F to C, the sintering stress difference between the
two layers increases. No situation of stable equilibrium

Fig. 7—Copper concentration profile in bi-layers W-Cu ‘‘10F/20C’’
(a) and ‘‘20F/10C’’ (b) obtained from EDS measurement at 1403 K
(1130 �C) (interrupted) and after sintering at 1653 K (1380 �C)
compared with the initial profile in the powder compact (adapted
from Ref. [2] with permission from Wiley).

Table I. Relative Density (VP+VL)/(VP+VL+VV) = qP/(1 2 vL) (Percent Theoretical Density TD) and Total Porosity

u = 1 2 qP = (VL+VV)/(VP+VL+VV) of the Particle Aggregate in the Four Homogeneous W-Cu Samples 10F, 10C, 20F,

and 20C after Heating up to 1403 K (1130 �C) (Interrupted Sintering Process) and after Sintering for 2 h at 1653 K (1380 �C)

Sample

10F 10C 20F 20C

PctTD u PctTD u PctTD u PctTD u

1403 K (1130 �C) 60.7 51.0 65.7 47.0 86.2 44.0 69.2 55.0
1653 K (1380 �C) (2 h) 97.9 21.0 81.8 34.0 96.9 37.0 95.4 38.0

Table II. Surface and Interface Energies in the W-Cu System (From Refs. 27,28)

cLV (J m�2) = 1.15 cSL (J m�2) = 1.02 cSS (J m�2) = 1.08 cSV (J m�2) = 2.83
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can thus be reached. The distribution of the liquid phase
at the end of the sintering period is thus a function only
of the kinetics of sintering and of the conditions of heat
treatment.

IV. CONCLUSION

A model is proposed to compute the capillary
pressure for liquid-phase migration in a uniform
solid–liquid–vapor system. The capillary pressure is
deduced from the variation of the overall interface
energy in the system. The model is applied to predict
liquid migration in W-Cu functionally graded materials
combining a composition gradient with a particle size
gradient. A first migration occurs after melting of
copper, by viscous flow from the coarse particle layer
to the fine particle layer. A second migration takes place
at higher temperature, as sintering of the particle
skeleton in the fine particle layer expulses the liquid
phase into the coarse particle layer. The model predic-
tions are consistent with experimental observations
made on the W-Cu graded materials.
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APPENDIX: GEOMETRIC CALCULATIONS

As shown in Figure 10, let us consider an orthogonal
system of axes for which the origin is at the center of the
cone basis, with coordinate axis X parallel to the basis,
and Y pointing to the cone apex. The half-angle at the
cone apex b simply derives from the average coordina-
tion number nC of the particles:

b ¼ arccos 1� 2

nc

� �
½7�

The volume of the cone is given by the expression:

Fig. 8—Variation of the liquid migration pressure as a function of
the liquid volume fraction calculated at 1403 K (1130 �C) in W-Cu
bi-layers 10F/20C (a) and 20F/10C (b). The model parameters are
h = 0, W = 0 together with values of the porosity presented in
Table I. The arrows indicate the direction of liquid migration.

Fig. 9—Variation, in fully dense bi-layers 10F/20C (a) and 20F-10C
(b), of the contributions of solid/solid and solid/liquid interfaces to
the liquid migration pressure PC as a function of the porosity (or
liquid volume fraction in filled pores) (W = 116 deg). The direction
of liquid migration is indicated by arrows.
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Vcone ¼
VP

ncð1� uÞ ½8�

The curves denoted YS(X) and YL(X) are, respectively,
the profiles of the solid/porosity interface and of the
liquid/vapor interface intersected by plane (X, Y). The
curve YS(X) will be considered as divided into two parts:
the part YSL(X) expanding from the cone basis to the
solid/liquid/vapor triple line represents the trace of
solid/liquid interface whereas the part YSV(X) expanding
from the solid/liquid/vapor triple line to the lateral
surface of the cone represents the trace of the solid/va-
por interface. The angle bt< b locates the position of
the triple line in the plane section, which is fixed for a
given set of input parameters. bt tends to b as the liquid
volume fraction reaches a critical value where the liquid
menisci between adjacent particle contacts merge. This
point will be addressed at the end of this appendix. At
each point along the YS(X) or YL(X) curve, the radius of
curvature is one of the two principal radii of curvature
of the interface. This radius, which will be denoted
Rin plane, is defined positive when the center of curvature
is on the solid side of the interface for YS(X) or on the
liquid side of the interface for YL(X) and negative
otherwise. For example, in the case presented in
Figure 10, Rin plane is positive for YS(X) and negative
for YL(X). As interfaces are generated by the revolution
of the corresponding Y(X) curve around the cone axis,
the second principal radius of curvature, denoted
Rout of plane, is always positive.
The porosity volume fraction u and the different

interface areas ASV, ASL, and ALV per grain are
univocally determined by curves YS(X) and YL(X). For
this purpose, it is convenient to convert X and Y(X) into
nondimensional variables:

x ¼ X

H
½9�

ySðxÞ ¼
YSðXÞ
H

½10�

yLðxÞ ¼
YLðXÞ
H

½11�

The ranges for x and y(x) are thus 0 £ x £ tanb and
0 £ y(x) £ 1. The coordinates of the three points at the
extremities of curves YSL (x) and YSV (x) are denoted
(xSmin, 0), (xLmax, yLmax), and (xSmax, ySmax). In
Figure 10, the surface representing porosity is divided
in two parts, denoted S1 and S2. The volume of porosity
is the volume created by the revolution of these surfaces
around the cone axis. The corresponding two volumes,
denoted V1 and V2, respectively, are expressed as

V1 ¼ 2pH3

ZxSmax

xSmin

xySðxÞdx ½12�

and

V2 ¼ 2pH3 xSmax þ
tan b�xSmax

3

� �
ðtan b�xSmaxÞ2

2 tan b
½13�

The porosity volume fraction is thus

u ¼ 6

tan2 b

ZxSmax

xSmin

xySðxÞdxþ xSmax þ
tan b� xSmax

3

� �2
4

� tan b� xSmaxð Þ2

2 tan b

#
½14�

The liquid volume can be calculated in the same way,
with distinction between situations where the meniscus
is concave or convex. If (bt+ h)< p/2 (concave
menisci), then

VL ¼ 2pnCH
3

ZxLmin

xSmin

xySðxÞdxþ
ZxLmax

xLmin

xðySðxÞ�yLðxÞÞdx

0
@

1
A;

½15�

whereas if (bt + h)> p/2 (convex menisci), then

VL ¼ 2p nCH
3

Z xLmax

xSmin

xySðxÞdxþ
Z xLmin

xLmax

xyLðxÞ dx
� �

;

½16�

and the liquid volume fraction in the condensed mixture

vL ¼ VL= VG þ VLð Þ ½17�

is deduced.
The solid/liquid, solid/vapor, and liquid/vapor inter-

face areas are created by a revolution of the curves
YSL(X), YSV(X), and YLV(X). respectively, around the

Fig. 10—Plane section through the cone axis of Fig. 1 showing the
profile of the solid particle surface and of the liquid–vapor surface
during the pendular stage.
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cone axis. Denoting Hds an increment of length along
the curve, the interface area per grain ASL, ASV, and ALV

is written as

ASL ¼ ncH
22p

Z ðxLmax;yLmaxÞ

ðxSmin ;ySminÞ
xdsSL

!

ASV ¼ ncH
22p

Z ðxSmax;ySmaxÞ

ðxLmax;yLmaxÞ
xdsSV

!

ALV ¼ ncH
22p

Z ðxLmax;yLmaxÞ

ðxLmin;yLminÞ
xdsLV

!
½18�

Finally, as HxSmin is the radius of the circle circum-
scribing the solid/solid interface, the solid/solid interface
area ASS per grain is simply

ASS ¼ 1

2
ncH

2p x2Smin ½19�

The family of axisymmetric surfaces with uniform
curvature is called the Delaunay surfaces, and the curves
generating these surfaces are called the Delaunay
roulettes.[30] Although the problem can be solved
exactly, it is tempting to approximate the curves YS(X)
and YL(X) by two arcs of circle. The total curvature
1/Rtot is then not uniform because the out of plane
curvature 1/Rout of plane varies along the curve. Never-
theless, it has been shown that this approximation does
not bring about a large overestimation of the capillary
energy in the case of a solid–liquid system.[18]

Equation of the surface profiles and boundary con-
ditions for the calculations of the different volumes and
areas must then be obtained. Let us denote RS = rS H
and RL = rL H the radii of the arcs of circle representing
the profiles of the solid/porosity and liquid/vapor
interface, respectively. rS and rL are taken negative
when the center of curvature of the profile is directed
toward the exterior of the corresponding phase. By
symmetry, the solid/porosity interface meets at 90 deg
the lateral surfaces of the cone. It follows that the
coordinates (xS0, yS0) of the in-plane center of curvature
of this interface are

xS0 ¼ tan b 1� rS cos
w
2

� �
½20�

and

yS0 ¼ rS cos
w
2

½21�

The function yS(x) then is written as

ySðxÞ ¼ yS0j j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2S � x� xS0ð Þ2

q����
���� ½22�

In the same way, the liquid/vapor interface meets at
90 deg the grain boundary plane, and the liquid content
is parameterized either by the angle bt or by the

coordinate xLmax locating the solid/liquid/vapor triple
line in the plane section (see Figure 10):

sinðbtÞ ¼
xLmax � xS0

rS
½23�

It follows that the coordinates (xL0, yL0) of the
in-plane center of curvature of this interface are

xL0 ¼ xS0 þ rS sin bt � rL sinðbt þ hÞ ½24�

and

yL0 ¼ 0 ½25�

The function yL(x) is then written as

yLðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L � x� xL0ð Þ2

q
; ½26�

and the coordinates of the limits of the corresponding
profile are given by

xSmin ¼ xS0 þ rS sin
w
2

½27�

xLmin ¼ xL0 þ rL ½28�

xSmax ¼ xS0 þ rS sin b ½29�

Moreover, rS and rL are related by

rS cos bt � rL cosðbt þ hÞ ¼ rS cos
w
2

½30�

At the limit of the pendular stage, when bt = b, a
critical situation where adjacent liquid menisci merge is
encountered. The in-plane center of curvature of the
liquid–vapor interface is then transferred to the inter-
section between the cone and the boundary plane. This
leads to a discontinuity in the position of the center and
in the radius of curvature:

xL0 ¼ tanðbÞ ½31�

yL0 ¼ 0 ½32�

and rL ¼ � xL0 � xLmaxð Þ=sin bð Þ ½33�

The porosity volume fraction u and the interface areas
ASL, ASV, ALV, and ASS per grain are obtained by
numerical calculations from relations [14] and [19]. The
interface energy F per grain is deduced from Eq. [2].
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