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ABSTRACT

2D approximations can greatly alleviate the computing effort required to solve anisotropic conduction problems
outside long 3D cylindrical domain using boundary integral methods. Two strategies can be used to this aim:
either transform the anisotropic conduction problem into an isotropic one, or deal with the anisotropic 2D
Green's function. In the first case, it is necessary to provide not only the new features of the transformed
domain, but also the new expressions of the boundary conditions over the domain. Conversely, the anisotropic
2D Green's function is defined upto a constant which depends on the length of the cylindrical domain, as shown
in the isotropic case. In addition, the use of anisotropic Green's function cannot avoid the occurrence in some
cases of degenerate scales, which is well known in the isotropic case. The paper addresses these different points:
construction of the anisotropic 2D Green's function and its relation with line sources, description of the
transformation leading to an equivalent isotropic problem and finally study of the boundary integral solution of

the equivalent 2D problem, including the occurence of degenerate scales.

1. Introduction

Conduction problems outside long domains can be solved by using
2D boundary integral equations. However, the consideration of 2D
problems involves some difficulties that are known since a long period
of time [1] in the isotropic case, i.e. for Laplace equation. The Green's
function for the 2D problem can be obtained by integration along a line
of the 3D Green's function, a so-called line source (Fig. 1 and Fig. 2)
[2]. This primitive is unfortunately infinite not only at the point load
but also at infinity. In addition, the integral does not converge for an
infinite line source [2]: the integral can be defined only by integration
over a finite line source whose length is a priori arbitrary, ie. a
“segment source”. Without another information, this length is unde-
termined and is at least constrained when considering a specific
Boundary Value Problem (BVP) solved by Boundary Integral
Equation (BIE) for avoiding the occurence of degenerate scale [1],
for which the BIE has multiple solutions. Avoiding this inconsistency is
possible by restricting the choice of this arbitrary length. However, a
case of interest is when the 2D BIE corresponds to the approximation
of exterior 3D problems related to a very long cylindrical domain (with
an arbitrary section). It has been shown in [3] by different considera-
tions, including slender body expansion [4], for the case of exterior
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problems of conduction in an isotropic medium that the length used in
the 2D Green's function approximates at best the 3D solution near the
cylinder when this length is chosen as the height of the cylinder. In this
case, the proper 2D Green's function to be used (for the isotropic case)
has been shown to be the one computed from a segment source whose
length is the one of the cylinder. This paper provides a similar
information in the case of anisotropic conduction equation. The
problem is described for heat conduction but the same equations can
been used for seepage with anisotropic permeability [5], direct electric
current with anisotropic resistivity [6], and electrostatics with aniso-
tropic permittivity [7].

The constitutive equations for conduction in an anisotropic medium
have been written by several investigators; a comprehensive bibliogra-
phy for early works can be found in [8]. An important result is that the
second order conductivity tensor is symmetrical [9,10] (a recent review
can be found in [11]) and that it is always possible to choose the
coordinate axes along the eigenvectors, leading to a diagonal conduc-
tion tensor.

From another point of view, a suitable change of coordinates can be
performed to change a BVP related to anisotropic conduction equations
into a BVP with isotropic conduction equations [8,12]. As a result, the
Green's functions for anisotropic media can be also obtained by using

E-mail addresses: corfdir@cermes.enpc.fr (A. Corfdir), Guy.Bonnet @univ-paris-est.fr (G. Bonnet).
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Fig. 1. Relations between the different Green's functions and BIEs: “a” denotes the half
length of the cylindrical domain.

an appropriate linear change of coordinates [2,13,14].

Finally, Fig. 1 shows the relations between the different Green's
functions related to 2D or 3D cases with or without anisotropy. It can
be seen that the main problem is the relation between the length of a
“long” cylindrical domain and the arbitrary length appearing within the
2D Green's function.

As explained before, the proper Green's function related to a 3D
problem over a very long cylindrical domain of length 2a corresponds
to a segment source of length 2a for the isotropic case. So, section 2 is
devoted to the presentation of Green's functions for anisotropic
conduction in 2D and 3D domains. Then, in Section 3, the segment
source within a 3D domain is studied, providing a relation between the
arbitrary length used in the 2D Green's function and the length of the
segment source.

Next, the question of using a convenient characteristic length within
the 2D Green's function is treated. In Section 4, it is first recalled how it
is possible to reduce the problem for anisotropic conduction to an
associated problem for isotropic conduction by using a suitable linear
point transformation. Then, the problem of degenerate scale is
addressed, and finally, in Section 5, the characteristic length leading
to a BIE whose solution approximates at best the 3D solution near the
cylindrical boundary is provided.

Fig. 2. Geometric notations for a segment source parallel to e3 having its middle (x) in P,
the point y is situated on plane P.

2. Green's functions for anisotropic conduction equation
2.1. Equations for steady-state anisotropic conduction

The anisotropic conduction equation can be written as the relation
between the flux, q, the temperature, u, (also named potential) and the
anisotropic conductivity tensor k:

q=—k-grad(u). (1)

If there are no inner sources, the flux conservation leads to:

div(q) = div(k-grad(u(y))) = dn(k'a" )= 0. @
where y is the observation point. The matrix (K) characterizing k in a
given reference frame has coefficients k. (i = 1..3,j = 1..3) complying
with symmetry relations [9]: k;= k. The coefficients ry of the
resistivity tensor r = k! have similar properties.

As the tensor k is symmetric, it has a diagonal form when the
coordinate axes are chosen as being parallel to its eigenvectors. Its
eigenvalues k; and determinant kil are strictly positive. As a conse-
quence, it is possible to define the square root k"2 of k that is also
symmetric and definite positive [15], having eigenvalues that are the
square roots of the eigenvalues of k and eigenvectors identical to those
of k. This square root has an inverse k"' that is also symmetric
positive definite. The conductivity tensor is denoted by k for 3D cases
(k; for 2D case). The 2D cases may correspond to two kinds of plane
problems related to different physical situations: “plane gradient” or
“plane flux”. In the following, only the case of “plane gradient” will be
used. It corresponds to a long domain in the direction orthogonal to the
plane. In this case, the gradient of u is parallel to the plane
P=(0.y.y,) [12]. The 2D conductivity tensor is represented by a
2x2 matrix with kj. i = 1..2, j = 1..2 whose coefficients are the same
as the ones of 3D conduction in the chosen plane.

2.2. 2D and 3D Green's functions for anisotropic conduction

We recall now the classical expression of Green's functions for
general anisotropic media [2,14,16]; this Green's function, G(x.y),
gives the influence of a unit source of heat at the source point (x) on the
temperature at the observation point (y). We choose here the compact
and general formulation using conductivity tensor [2] for the 3D case:

11
G(X.y)=——5—!

Y= ke @)
where:
=y -xkhy-x. )

and Ikl is the determinant of the conductivity tensor. A constant C could
be added to (3), but if we consider the usual condition u=0 at infinity,
then we have C=0 . For plane problems, the Green's function is (e.g.

[2]):

(5)

where A is the characteristic length, and appears as an unknown
constant, and F, is obtained by replacing k by k; into Eq. (4). The term
[k;|'"* has been introduced to ensure that the physical dimension of A is
a length. It is not possible to choose A such that the Green's function
tends to zero at infinity.

The characteristic length A is obtained, when looking for the 2D
Green's function by integration of the 3D Green's function, as for the
isotropic case. The discussion of the choice of this length is one of the
main objectives of this paper. Indeed, the choice of this length can have
two consequences:

e Degenerate scale



When writing the BIE by using the 2D Green's function, a degenerate
scale can appear. This degenerate scale depends on A. This is a well-
known problem for Laplace equation [1], but it will be seen thereafter
in Section 4 that anisotropic conduction can lead also to a degenerate
scale.

e Influence on the solution

For interior problems, it can be shown (as for the isotropic case in
[3]) that the choice of A does not affect the result, as soon as the scale is
not degenerate. However, for exterior problems, if the total flux is not
null, the solution depends on A. A simple example for an isotropic
material is the case of the exterior problem related to a cylinder with a
circular cross section C of radius R: if the potential given at the
boundary is constant, equal to ug, the normal flux is also constant at the
boundary and the resultant of the normal flux along the boundary is
given by:

2x. Uy

nds =
Jes in(h) ©)

which is not null and depends on A. It can be troublesome to see that
the integral of the normal flux over the boundary surface is not null,
which seems contrary to the conservation of energy. As shown in [3],
the 2D solution provides an approximation of the 3D solution of the
exterior problem related to a finite cylinder with a constant normal flux
at its lateral boundary. This exterior problem is the limit when R, tends
to infinity of an interior problem whose boundary C; is the surface of
the finite cylinder, from one hand, completed by the surface of a sphere
S whose radius R, is large compared to the dimensions of the cylinder,
from another hand. From the conservation of energy, the integral of the
exterior normal flux over C; is null. It means that the integral of the
flux over the surface of the cylinder is exactly equilibrated by the
integral of the flux over the external sphere. Obviously, the conserva-
tion of energy is also met at the limit of an infinite value of R;.

The problem to find the convenient value of A in the case of
isotropic materials has been studied in [3]. The choice of A has been
discussed in the case of “plane gradient” defined before, i.e. for
domains being bounded internally by cylinders that are very large
along one dimension: in this case, the results depend on A. It has been
shown in the isotropic case that the optimal choice of A for domains
that are long along direction e; is simply 2 = 2a, where 2a is the length
of the internal cylinder [3]. This optimal choice provides a correct
approximation of the 3D solution in the median plane of the cylinder in
the outer vicinity of the cylindrical boundary. In this case, the optimal
Green's function is provided by a segment source of length 2a.

In the following section, we will focus on the determination of the
field generated by a segment source. In section 5.3, the question to
know if this segment source corresponds to an “optimal” value of A will
be answered.

3. Segment sources in anisotropic media

We choose an orthonormal basis (e,. ;. e3) such that e; has the
direction of the segment source (Fig. 2). The plane defined by y; = 0 is
denoted by P.

3.1. Computation of the field G, generated by the segment source

The segment source is the set x + cea with € € [—a. a]. Next, 5,,, the
field generated by the segment source of total length 2a aty is defined

G,(x.y) = 7

1 /“’ de
4r K[V Ja Jix + ee; — y)kh(x + ce; - y)

The term under square root can be expressed as:

2
x+ces—y)rklix+ecea—y = [c\v‘eyk“eg + w]
V‘eyk"-e;
+ [x - Pl -y - (& Ve 'V)'k-lﬂ)zl
- ° exk les
=(eh+ P +d (8)
where:
b= eskle,, 9)
— k!
c= [(x : vk ]
Jeyke; (10)
[ — yykley)?
d= r‘((x -yklx-y - (= y)& e y)lk_ 2 ] .
\ exkle (11)

We see easily that the quantity under square root in Eq. (11) is
positive or null, because the quantity defined in Eq. (8) is always
positive or null. If one substitutes ¢ = —(x — y)-k"-ey(e;-k'-e3 in Eq.
(8), we get that:

_ (x-ykle?

ek les
0# x —y € P, the vector (x + ee; — y) is non-null and the inequality is
strict because k™! is positive definite.

We now need to evaluate the integral:

x-nklx-y )z 0 due to the positivity of k™. If

1= [ I —
-a (b + ¢)* +d* (12)
We use the new variable = “’% and we find:

ab+c

abtc
1 5 Ay 1{( —\]4
l=—/ — =+ 1+ .
bJ=sbte 142 b abse

(13)

3.2. Asymptotic behavior for large values of a

For g»l, In@p+yl+n7°)=In@2p) and for np<-1,

Ir 2 / 2 2
In(p + 1 +7°)=In(n—ny1 + UUn* ) = In(n = n(1 + 1/29%)) and
~ — In(-2n)

we finally conclude that:

1 ab - ¢ ab + ¢
I~ —|In|2 + ln(l )]

"( ( d ) d (14)

For a>%’ and a»%, we have:

2 ab
I~ —|In|2—]]|.
b{"( d)] (15)

leading to the asymptotic expression G,, of G, for large values of a:

Go=—1 m(ﬁ) _
2nblkI2 d (16)

3.3. Computation of the constant d
In order to express the value of d, let us introduce the linear
application, f, that is defined as follows:
kL
£v— ki) - KO
evk e, (17

Evaluating the product v-f(v) gives:



£ = vty — YR ) Lty - e)?
vfv)=v (k‘ ) eg‘k-LCgk- (e;)) =vkl(v) ke, as)
and we conclude from Eq. (11):

d=x-y)fix-y) . (19)

The application f can be restricted to an application fp from P — P;

indeed, if v € P, then:
ke
erf(v) = exkl(v) — Yoo kles = 0.
(V) = exki(v) ke 3 (20)

As the plane P is orthogonal to e;, we conclude that f(v) € P. Now,
it will be shown that fp can be expressed simply from the conductivity
tensor. We denote by p the orthogonal projection on P. We prove now
that fp is the inverse of the restriction of pek to P.

(pek)ofp(v) = pek(lr'(v) - :%t:lr‘(en) =p(v) - :;,f,'_:’swe;).
(21)
For v € P, we have p(v) = v and p(e;) = 0, and we can conclude that
VveP, (pk)ofp(v)=v. (22)

This proves finally that fp is the inverse of the restriction k; of pek to
P. The matrix (K») of k; contains only the components related to yi, yo.
Finally the expression of d is given by:

d=\(x -y k' (x -y). (23)

3.4. Computation of the constant b

The constant b is given by b = Jeskle; = /3, where rg; comes
from the matrix characterizing the resistivity tensor. From classical
results of linear algebra, this term is given using the cofactor Cs; of the
term kg3 in the conductivity matrix by:

)
TR (24)
The cofactor being the determinant of k,, it leads to
\ ki (25)

Finally, substituting d and b into the expression (16) of G, leads to:

Gy(x.y) =

2ayevk'e3 ]

! In
2ol T -yt - ) (26)

This is exactly the 2D Green's function defined by Eq. (52) where
the length 4 is given by:

A= '.’av'eyk'l'e3 ka4, (27)

4. Use of a linear transformation to change the anisotropic
problem into an isotropic one

As explained previously, the solution of a plane conduction problem
by the Boundary Element Method in the isotropic case provides an
approximation of the solution of a 3D problem outside a long cylinder
if the characteristic length in the 2D Green's function is equal to the
length of the cylinder [3]. To study the anisotropic case, it is useful to
consider that the solution of any homogeneous anisotropic conductivity
problem can be provided by solving an associated problem related to
isotropic conductivity. Several papers were based on this important
property [5,16-23]. In a first step, the features of the transformation
that is used to build an associated isotropic problem from an

anisotropic one are given. The relations between boundary conditions
are next studied and the relations between boundary integral equations
and Green's functions for both problems are provided. It will allow us
to study the degenerate scales for the plane anisotropic conduction
problems and finally to provide the plane approximation of 3D
problems related to long cylinders.

4.1. Domain transformation and the solution of an anisotropic
conduction BVP

4.1.1. Domain transformation for 3D and 2D BVPs

As the conductivity tensor k is symmetric and positive definite, it
has a (principal) square root k"2 with its inverse k2, both being
symmetric and positive definite (see Section 2.1). For 3D problems, we
define a linear transformation T:

Ty =y = Vkk'% (28)

where k = [kI'3, The transformation is given here in a concise form that
can be found when using a rectangular coordinate system correspond-
ing to principal directions in [12]. The introduction of the term vk that
was not generally used in earlier formulations of this transformation,
allows us to ensure the consistence of physical units between original
space and transformed space. A consequence of this choice is that the
determinant of T is ITI = 1. For 2D problems, the physical homogeneity
is restored by a similar transformation, replacing k by /2l and k by k»

If u is a solution of Eq. (2) on a domain D, one can define the
following function on D’ = T(D):

w(y') = u(y, (29)

where y’ = T(y). Combining Egs. (2) and (29) while using a basis where
k is diagonal, it comes readily that: Ay« = 0. It means that the function
' is a harmonic function of y’, and can be associated with an isotropic
conduction problem over D’ with conductivity

k= K2 (30)
(or k = \/lkal for 2D problem).

4.1.2. Relations between isotropic and anisotropic BVP
One considers now the BVP on u within D with Dirichlet condition
over aD, and a heat flux condition over aD,, that can be written:

u(y) = ug y €adD,
q(y)=qn=gq, y €D, (31)

where ug and go are known boundary functions and n is the outer unit
normal at y. This problem can be turned into a BVP on «’ defined over
D'.

If Dirichlet's boundary conditions are concerned, it comes readily
that ' = up on aD,’. where aD,’ is the transform of oD, by T.

For Neumann boundary conditions, the relation is not so easy to
establish. It will necessitate to write the transformation of oriented
surface elements, fluxes and normal fluxes by T. We give here a tensor
formulation [13, 23] ; a coordinate formulation can be found in [22].

Transformation of oriented surface elements

Let us consider the boundary aD of the original domain. The
transformation of surface elements can be performed by using a
mapping of the surface aD through a parametric representation. The
parametric representation of the surface uses a function g that
associates to curvilinear coordinates &, n (chosen in a reference plane)
the point y:
y=g&n. (32)

Let us consider the oriented surface element dS around point y
given by dS = ndS where n is the outer unit normal to the surface at y

and dS is the surface element.
With a convenient choice of the order of &, 5 (to recover the same



orientation for n and dS), dS can be obtained from g by:
Jg . 98
dS = = x Zdédy = Jd&dy.
% " an (33)

where the cross product J is computed from the components of the
Jacobian matrix(e.g. [24]) of the transformation &, n — y,. y,. y».
Then, T transforms y into y’ (Eq. (28)) and therefore we define:

g m=Tg&mn. (34)

with g’ € aD. Using the symmetry of T and the property ITI = 1, the
computation of the vector product leads to

B, %R _ T.[i x %)

9@ an a&  om (35)
And finally, we get the following special case of Nanson's formula:

dS = T-dS". (36)

We denote by J' the cross product % x 2. From the last result, the
ratio between the scalar surface elements is obtained using the moduli
of the cross products J= Jl and J' = J'| by: dS'/dS = J'1J.
Transformation of the fluxes and of the elementary product q. dS
Using k-T = Tk and q' = kau'/dy’, we get the following relation:
q=k2_ k.i."_“: - k.'r.i: - ﬂ.q’_
a oy oy K 37)
Using that k-T/k = k-Vkk Y%k = kY%Jk = T-! in (37) we finally
get:

q=T"q" (38)
Combining this relation with the transformation of dS leads to
qdS = q-dS = q"-dS’ = ¢'dS". (39)

It should be noted that the proof of the preceding equality relies on
the fact that T and k are symmetric, positive definite. Finally, the
Neumann boundary conditions in the transformed domain are ob-
tained by combining this result with the transformation of surface
elements, leading to: ¢’ = ¢J/J'. To conclude, «’ is the solution of the
BVP related to Laplace equation within domain D’ with boundary
conditions #' = ug on aD',, transform of aD,, and ¢’ = ¢,J/J’ on oD,
transform of aD,.

4.2. Related BIEs for exterior problems in the original and
transformed domains

The previous results allow us to produce the relation between the
BIEs in the original and transformed domains and, in particular, to
recover the Green's function for anisotropic problems. Let us consider
the 3D BIE in the initial domain (with anisotropy), in the regularized
form and for exterior problems, as described in [2]:

u(x) + f (u(y) — u(x))q(G(x, y))ds - f qu(y)G(x, y)dS =0,
£ D

(40)

with ¢(G) = (k'g}n and a similar relation for g(u).

Using the fact that ¢(G) is transformed as g(u) and Eq. (39), it
comes:

w(x') + /;) W(y) —ux))g' G (x'.y))ds" — /a‘u) q'W ()G (X', y)
ds' =0, (41)

where

G'(x'.y)=G(Tx, Ty). (42)

and ¢'(G') = ki,‘ﬂ with a similar relation for ¢’ («’). It is then easy to
recover the 3D Green's function for anisotropic conduction (Eq. (3))

from Eq. (42). A similar 2D transformation produces the same result
for 2D problems.

4.3. Application to the degenerate scale for anisotropic 2D problems

Degenerate scales are well known for 2D Laplace equation. One
considers the single layer operators for Laplace equation related to
diverse homothetic plane contours pI”’, p being a positive scalar, that
writes:

1 ' _ ’ ’
fpr, oIl X = YDA)ds = Fx). .
where I'" and f comply with suitable regularity conditions.

For given f, these integral equations have only one solution, except
for a specific value p = p,. For this value, the related integral equation
degenerates and has an infinite number of solutions. The non-dimen-
sional constant p, is customarily called the “degenerate scale”. When
the boundary is at a degenerate scale, it is easily seen that the integral
equation for f=0 has multiple solutions.

For a given boundary, the degenerate scale is related to the
logarithmic capacity G of the contour by p, = 1/G. The logarithmic
capacity is well documented, that provides the degenerate scale for
numerous contours [25]. It has also been shown in [3] that, in addition
to the necessity of avoiding singular integral equations, energetic
considerations induce that p must comply with the inequality p < p,.

From the previous results, performing the transformation T-! on
the single layer operator leads to the single layer operator for the
anisotropic conduction with 2 = 1.

This relation proves that if pI"" is at the critical scale, the single layer
integral equation for the anisotropic problem involving the Green's
function G, (x. y)(with 2 = 1) has also multiple solutions and is there-
fore at the critical scale.

So, the critical scale for I"and the Green's function G, with 2 = 11is
the same as the critical scale for the transformed contour I and the
Green's function for the Laplace operator. It allows us the determina-
tion of the degenerate scale in the anisotropic case. An example of
determination of degenerate scale will be shown in section 6.

5. Plane approximation of a 3D anisotropic problem

Let us now consider a very long cylindrical domain D having length
2a along y3 and whose bottom and top surfaces are located in the
planes y; = +a, perpendicular to the axis of the cylinder, (i.e. a right
cylinder). The boundary of its intersection with the plane Oy,y, is the
curve I' (Fig. 3).

The general case corresponds to a domain D outside a long cylinder
whose axis is oriented along an arbitrary direction of the space with
respect to the eigenvectors of k. Its transform D’ by T is also located
outside a long cylinder. However, it is generally no more a right
cylinder: it is an oblique cylinder, its sections at top and bottom being
not perpendicular to the long direction. The domain outside the long
cylinder in the transformed domain can also be studied by using a
plane approximate solution in an orthogonal section around its median
plane.

The problem outside a long cylinder can be approximated in its

Fig. 3. Geometric notations for a long cylindrical domain in an anisotropic domain (left)
and its transform (right).



median plane by a 2D solution of “plane gradient” type. In the first
step, it will be shown that if the problem in the original domain is of
“plane gradient” type in its normal section outside contour I, the
problem in the transformed domain is also of “plane gradient” in a
normal section outside the cylinder in the transformed domain.

Next, the relation between plane integral equations in original and
transformed domains will be established. Finally, these results will be
used to obtain the value of the constant A to be introduced into the
Green's function.

5.1. Transformation of a potential of “plane gradient” type

One considers a potential of “plane gradient” type in the original
domain corresponding to plane P (orthogonal to the direction e;
parallel to the long direction of the cylinder). It is therefore character-
ized by:
du

Zey=0,
Iy (44)

Using % = v’?k‘"z% and the symmetry of k-'/2, this can be written:
T u u o du
12 2 ey = 2 k1 2ey) = Ly = 0
[V ay'] T Ty (45)
where v/ = Jkk"2.e; is the transform of e; by T and is parallel to the
axis of the cylinder in the transformed domain. Finally, the potential in
the transformed domain is also of "plane gradient” type in the plane I7
perpendicular to v'.

5.2. Relation between BIEs in the original and transformed domains

5.2.1. Transformation between normal sections of the cylinders in
original and transformed domains; choice of the boundary I'* of the
2D isotropic approximate problem

One considers now the plane BIE for the exterior problem related to
the original plane domain that is located outside the normal section of
the bounding cylinder. This problem is of “plane gradient” type within
P and the related integral equation writes:

u(x) + f’_(u(y)— u(x))q(Gy(x,y))ds — frq(u(y))Gz(x.y)ds=0

(46)
where G, is the Green's function for the plane anisotropic domain given
by Eq. (52).

When performing the transform T, all points y of P are tranformed
into points y’ of P’ = T(P). In the general case, P’ is not orthogonal to
the axis of the cylinder in the transformed domain. However, it can be
noticed that in the vicinity of the median plane of the cylinder in the
transformed domain, the field is of "plane gradient” type and as a
consequence, the potential does not depend on the position along a line
parallel to the axis of the cylinder. It means that the potential complies
with:

u(y')=u(m(y’)) = u(y*. (47)

where y* = #(y’) and 7 is the projection onto the median plane I7
orthogonal to the axis of the cylinder in the transformed domain. There
is a one to one correspondence between points y of P and y* of I1
through points of P'.

As a consequence, the plane BIE within the normal plane I7 in the
transformed domain can be obtained by transforming the BIE within P
by T* the restriction of Tex to P. The one to one correspondence
between y and y* implies that T* is invertible. To obtain the expression
of the transformed BIE, it is now necessary to find the relations in
original and transformed planes P and I7 of

e the elements of integration gds and g*ds*.
e the boundary conditions on the curves I"and I'* in both planes.

e the plane Green's functions.

5.2.2. Relation between elements of integration

It has been shown when studying the relation between 3D BIE that
the normal fluxes at the boundary and the surface elements comply
with ¢dS = ¢'dS’ (Eq. (39)). A surface element at the boundary in the
original domain is given by dS = ds. dy;, where ds is the contour
element around the normal section. This surface element is trans-
formed into a surface element in the transformed domain that is given
by dS’ = ds*. dI where ds* is the contour element around the normal
section (") (in IT) and d/ is given by the length of the vector T(e;)dy;,
that is oriented along the axis of the cylinder in the transformed
domain, i.e. d/ = dy,\key. k% e3 = ady,.

It comes that gds = ag'ds* = ag*ds*, with a = \kes. k" es. The
equality ¢’ = ¢*, where ¢ is the normal flux for the 2D problem comes
from the fact that the normal to 7'* in IT is the same as the normal to
the transformed cylinder.

The value of a can be computed by noticing that e;. k™. ey = ry

where r33 has been found previously equal to % Finally, a is given by:

N

ko (48)

5.2.3. Relation between boundary conditions

Dirichlet boundary conditions come directly from Eq. (47) and from
the definition of Dirichlet boundary conditions on I. The Neumann
boundary conditions are obtained by noticing that the normal flux g on
I' is the same as the normal flux on the cylinder and that the normal
flux on the transformed cylinder complies with ¢* = ¢’ in the vicinity of
the median plane. But, from the general relation in the case of the 3D
problem, it comes ¢J = ¢'J' = ¢*J'. In the 3D case, J and J' depend on
two curvilinear parameters ¢ and 7. However, in the case of the
cylinder, it is natural to take one of the curvilinear coordinates as
being the coordinate » = y; along the axis of the cylinder, with y, and y,
being only functions of the other one, & that is the curvilinear
coordinate allowing us to describe the contour I'. With these notations,
it comes that J and J’ are only functions of & given by:

® 8w %

J(§)=I.]I=Ia—§xal=l- A )

. 9 9%
J(E) =)= IT-[-—=¢ + —e,]l
&) [ Y o 2l (50)
These relations added to ¢J = ¢*J' provide the Neumann's boundary
condition on I'* knowing the Neumann's boundary condition on I" and

the mapping of I':

=L
7 (51)

5.2.4. Relation between 2D Green's functions

To establish the relation between the 2D Green's functions, we start
from the Green's function in I7 plane. Taking into account that the
conductivity in the transformed domain is k = kI'? (30), this Green's
function is given by:

¥ 1 Pt
Vi —yyax —y) )
(52)

where x' = T(x), ¥y’ = T(y). At this step, the parameter A’ is unknown.
The projection on /1, orthogonal to T(es) is given by:

G =—In( -
Ik JoF = xF)(y* - x%) 2k

T(ey-(x' — y‘)T(ej)

Sh e YWY & (53)



Then, using Eq. (28) and the symmetry of kV?, we evaluate
a(x' —y)a(x' =y

x' —y')T(ey)?
(X —y)a(x' -y)=x-y)x -y - & = y) 1))y

IT (ex) |
' — v kelen?
=k((x‘ -y)rkhx —y) - (& —y)i e )lk 2 )
eykle;
(54)
From Egs. (11), (23), it comes:
Cydclx— gy - (ke
x-yk'x-y ke x-yki(x-y. (55)

By combining Egs. (54), (55), and substituting the result in Eq. (52),
we get:

G (T*(x). T*(y)) = %ln(‘l—*)
27k Jk(x - yykihx —y)
| 172 ’
= L]n( [ kol A

: ).
wk Nk M x -yt -y (56)

Finally, the relation between Green's functions in original and trans-
formed domains is:

G5 (T*(x), T*(y)) = aG1(X. y). (57)

where a is given by Eq. (48) and G is the anisotropic Green's function
in P computed with:

ka2
A=A —.

\ ok (58)
Combining this result with the transformation of the contour

element ds shows that the term ¢G,ds in the BIE (Eq. (46)) is
transformed into:

Gig*ds* (59)

and similarly for the term u. ¢ (G2)ds. This proves that the transform of
the BIE in P is the BIE in I7 written with the classical Green's function
Gj for isotropic problems.

5.3. Expression of the characteristic lengths within 2D Green's
tensors

It has been shown in [3] in the case of isotropic conductivity that
the solution of the plane problem around a long cylinder approximates
at best the 3D solution near the cylinder if 2’ = 2a’, 2a’ being the length
of the cylinder. As stressed before, the cylinder in the transformed
domain is not generally a right cylinder and the assumption of “right”
long cylinder at the basis of the result of [3] is not strictly fulfilled.
However, it will be assumed in the following that the result obtained in
[3] can be extended to oblique cylinders. Indeed, looking at the
physical case of electrostatics, for cylinders that are long enough, the
reason for which the characteristic length is equal to the length of the
cylinder is the following: the end effects do not affect the distribution of
the superficial density of sources around the mid plane of the cylinder
that is characterized mainly by its length and its section. This physical
consideration can be also applied to the case of an oblique cylinder.

Using this result, it is now possible to find the value of the
characteristic length in the original space. From the relation between

A and A, it comes that A = 2a’, | "2:’2 . The value of A can be related to
the length 2a of the cylinder in the original domain by noticing from
subSection 5.2.2 that the unit vector along the original cylinder is

transformed into a vector of length a and therefore the lengths of the

. Replacing

cylinders are related by 2a’ = 2aa, leading to 4 = Ma\."%m

aby a= Jkey. k' e; leads to 2 = 2a/es. k. es k',
It is exactly the expression of the field generated by a line source of

length 2a. It shows that the Green's function leading to the solution of
the plane problem that approximates at best the solution near the
midplane corresponds to a line source whose length is the one of the
cylinder. It generalizes the result obtained in the isotropic case | 3].

6. Numerical examples
6.1. Determination of the degenerate scale

As an example of determination of degenerate scale, let us consider
the case of an anisotropic operator with 2= 1 and of an elliptic
boundary I" with semi axes parallel to the coordinate axes with values
a, and a,. We assume also that the eigenvectors of k, are also parallel
to the coordinate axes.

The transformed boundary becomes an ellipse with semi axes
kol Jk and aykal'*/\[ky. The degenerate scale in the case of the
Laplace equation for the ellipse with semi-axes a; and a, being
2/(a + @), the critical scale for I" and the anisotropic conduction
equation is equal to:

n

pp=———————————.
(kiko) (@l ki + axl Jka) (60)

If the axes of the ellipse are different from the principal axes of k,
we can consider the matrix of T in the basis with axes parallel to the
semi axes of the ellipse and we can get the following result:

~

Po = .
J@Ty + a;Tn)? + (@ — &PTh (61)

In each case, the elliptic cylinder with the anisotropic operator and
the elliptic boundary with semi-axes a,p, and a,p, is at the degenerate
scale.

A numerical application has been effected for a cylinder with an
elliptic cross section a@; = 1,4, =2 in an anisotropic medium with
=3 k=1

The numerical representation of the integral equation by the
Boundary Element Method using constant elements can be written as

[H][u] = [G]lq] (62)

where u contains the values of the potential at nodes of the boundary
and g contains the normal derivatives at nodes of the boundary. The
degenerate scale corresponds to a null eigenvalue of [G] matrix and
therefore to a bad conditioning of this matrix around the degenerate
scale.

As an example, Fig. 4 displays the condition number of matrix [G]

1600 T T T T T T T

1400 1

1000 B

Condition number

| 1 | . 1 1
208.4 045 05 0.55 0.6 0.65 07 075 0.8
Scaling factor

Fig. 4. Condition number of the matrix [G] as a function of the scaling factor for a
cylinder with an elliptic section in an anisotropic medium.
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Fig. 7. Comparison between 2D and 3D values of the ratio ¢/u at points (b, y, 0) for an aspect ratio H/b = 150.

as a function of the scaling factor for a matrix [G] built by using 200
constants elements for the ellipse and material corresponding to the
numerical application. The results display clearly an increase of the
condition number of matrix [G] around the scaling factor of 0.59
corresponding to the degenerate scale.

6.2. Comparison of 3D and 2D solutions

As an example, let us consider the case of the outer problem related
to a right cylinder having an elliptic cross-section with radii b along y,
and 2b along y». Its height H = 2a is large compared with b and the
origin is at the center of the cylinder. The conductivity tensor is
anisotropic with its principal directions along y,, y» and y; with
eigenvalues given by k = 1, k = 4, k3= 2. The matrix of the transfor-
mation T is diagonal with 7}, = V2. T3, = V2/2, Tyy = 1. Using T, the
cylinder is transformed into a circular cylinder with a radius R = b. V2
and the isotropic conductivity is k=2.

Let us consider the 3D Dirichlet problem related to a constant
potential u, at the surface of the elliptic cylinder. This problem is

transformed into a Dirichlet problem with a constant potential for a
circular cylinder. This has been studied by numerous authors, as
reported in [3]. Due to the axial symmetry for the circular problem
under consideration, the potential is only a function « = F(r, y'3) with
r=y2 + ¥2. As a consequence, the solution in the plane P outside
the elliptic cylinder becomes u = F ({232 + y7/2) = F (p).

The coordinates of the points along the elliptic section can be
parametrized by y, = cos(8). y, = 2sin(#). Using the results of the
subSection 5.2.3 provides the relation between the boundary normal
flux g in the original problem and the one, g, in the transformed
problem. This relation is given by

q*
q

_ |sin*@ + 4cos* @

\ 2

Fig. 5 displays the angular distribution of the normal flux along the
elliptic section that comes from this relation.

Due to the symmetry, the 3D solution in the isotropic case can be
obtained by using a plane BEM solution in a vertical plane or
approximate closed-form solutions. From another point of view, the

(63)
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2D solution is given by:
In(p/H)
= Uug————
In(b2/H) (64)

Fig. 6 displays the values of the ratio q(y, = b, y, = 0, y; = 0)/ug for
different values of the shape ratio 5/H, showing that the 2D solution
becomes accurate for values of &/H around 100; the ratio depends on A
as evaluated in subSection 5.3.

Fig. 7 displays the value of the normal flux along the line y, = b,
¥, =0, for a shape ratio H/b = 150 showing that the 2D solution is
accurate in the vicinity of the cylinder for the domain between the
horizontal planes y, = —40 and y; = 40.

Fig. 8 displays the values of potential along the axis Oy, as a
function of y;. It shows that the 2D solution with an optimized value of
H is a satisfying approximation of the 3D solution in the vicinity of the
boundary, upto y/b = 10. However, for large values of y;, the 2D
solution becomes inaccurate. More specifically, it can be seen that the
2D solution becomes null for y,/b = 100, that is not physical, as shows
the 3D solution. For comparison, another 2D result is reported for a
value of the constant computed with H/5 and which is not optimized.
This last result shows a larger difference between this 2D solution and
the 3D solution, even in the vicinity of the cylinder, than for the
optimized 2D solution.

This example shows that the 2D solution with a convenient choice
of the 2D Green's tensor approximates correctly the 3D solution in the
vicinity of the median plane and of the inner boundary, as it has been
predicted in the previous section. This is clearly of interest for
numerous engineering applications.

For most of general examples, the 3D solution has no more circular
symmetry in the isotropic transformed problem. Using BEM is still
possible, but with large aspect ratios of the cylinder, the boundary
surface would need a large quantity of surface elements, to respect
usual limits on the shape of boundary elements. In comparison, the 2D
solution uses only a simple discretization of the elliptic boundary and it
shows clearly the interest of the results developped in this paper.

7. Conclusion
The fields generated by segment sources related to anisotropic

conduction have been computed for any orientation with respect to the
eigenvectors of the conductivity tensor, recovering the classical 2D

Green's function for anisotropic conduction with a characteristic
lengthscale.

Next, following classical considerations, a linear point transforma-
tion has been introduced, that produces an associated problem
characterized by isotropic conduction. The boundary conditions related
to this problem with isotropic conduction have been obtained from the
boundary conditions on the original problem. The relation between
Green's functions related to the original plane problem and to the
associated one have been provided.

The linear transformation has been used to show the relation
between degenerate scales in the original domain and in the trans-
formed domain. Finally, the solutions of exterior BVP with cylindrical
boundaries obtained by BIE have been considered. It has been shown
that, as for the case of isotropic conduction, the best lengthscale to
introduce into the 2D Green's function corresponds to a segment
source whose length is equal to the height of the cylindrical domain.
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