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Abstract—This study introduces the method of Dynamic Mode
Decomposition (DMD) for analysing univariate time series by
forecasting as well as extracting trends and frequencies. The
key advantage of DMD is its data-driven nature which does not
rely on any prior assumptions (like Singular Spectrum Analysis
(SSA)) except the inherent dynamics which are captured over
time. Indeed, this study will show that the DMD eigenvalues
with frequencies that are closer to the origin in the complex
plane capture the trends in the time series. Moreover, the
temporal evolution of the DMD modes, which is preserved via
the Vandermonde matrix, can be used to reconstruct the desired
components and perform forecasting at the same time. The results
at various noise levels on simulated data suggests that DMD is
a promising approach to modelling a time series with a noisy
structure. Although these properties are not new in the DMD
literature, the novel contributions of this paper are in making
the method of DMD work for univariate time series through a
four staged pipeline. Thus, this is the first work that shows DMD
can be used for modelling, predicting, and forecasting a univariate
time series.

Keywords—Time series modelling, dynamic mode decomposi-
tion, DMD, forecast, prediction, trends, noise.

I. INTRODUCTION

Time series analysis includes extracting meaningful infor-
mation like filtering trends, and forecasting future values [1],
[2]. It has applications in many areas, such as quantita-
tive finance and biomedical engineering [3], [4], [5]. This
signal processing problem is often tackled by decomposing
the data into several components in the frequency domain,
thus decoupling signals or trends from noise. To this end,
matrix decomposition techniques such as singular spectrum
analysis (SSA) [3], [6] is often used. Analogous to SSA,
this paper presents a data-driven approach, Dynamic Mode
Decomposition (DMD).

The method of DMD was introduced originally in the
area of Computational Fluid Dynamics (CFD) for extracting
coherent structures from spatio-temporal complex fluid flow
data [7]. DMD takes in time series data and computes a
set of modes, each of which is associated with a complex
eigenvalue. DMD analysis is closely associated with spectral
analysis of the Koopman operator, which provides linear but
infinite-dimensional representation of nonlinear dynamical sys-
tems [8]. Therefore, by using DMD a nonlinear system could
be described by a superposition of modes whose dynamics
are governed by the eigenvalues. The key advantage of DMD

is its data-driven nature which does not rely on any prior
assumptions except the inherent dynamics which are observed
over time. Its capability for extracting relevant modes from
complex fluid flows [9], [10], [11], [12] has seen significant
application across multiple fields, including computer vision,
for robustly separating video frames into a background model
and multiple foreground objects [13], [14], [15]. In biometrics
for detecting spoofed samples [16], [17] from the live ones.
In robotics and neuroscience, DMD has been used to estimate
perturbation in human robot interactions [18] and to extract
coherent patterns in large-scale neural recordings [19].

All the aforementioned DMD applications consider a data
matrix as an input. For instance, to analyse an image sequence
(a video) using DMD, the input data is converted into column
vectors, each of which representing a single frame of image.
However, being a fundamentally multidimensional method,
DMD has never been applied to a univariate time series.
Therefore, our contribution is to introduce the method of DMD
through a four staged approach for decomposing a univariate
time series into a number of interpretable elements in terms of
noise, trend and harmonics. Moreover, time series forecasting
using DMD is also presented in this study.

The methodological pipeline consists of four stages similar
to that of SSA. However, it is different from SSA in the
formulation. The beauty of DMD is that it captures frequency
components that describe the growth/decay and oscillations in
the data whilst at the same time it can forecast time series
during the reconstruction stage.

In the remainder of this paper, the DMD methodology is
described in Section II and SSA is described in Section III.
Section IV presents the datasets used in this study. Experiments
and results are presented in Section V. Finally, conclusions
with discussions are drawn in Section VI.

II. METHODOLOGY

This section formulates DMD for univariate time series
analysis. Our algorithm consists of four stages: (1) embedding,
(2) dynamic mode decomposition, (3) reconstruction and fore-
casting, and (4) diagonal averaging. Each step is explained in
more detail in the following subsections:

A. Embedding

Embedding can be considered as a mapping that converts
a univariate time series data x = [x1, x2, · · · , xT ] of length



T into a multidimensional series X = [x̄1, x̄2, ..., x̄L], of size
K × L. The vector x̄n = [xn, xn+1, · · · , xn+K−1]T ∈ RK

is called a K-lagged vector, and L ∈ [2 ≤ L ≤ T
2 ] is the

length of window whereas K = T − L + 1, is the number
of segments. Thus, the time series is decomposed into K
overlapping segments of length L. This produces a trajectory
matrix X ∈ RK×L. Unfolding the matrix X with elements
K × L, we have:

X =


x1 x2 ... xL
x2 x3 ... xL+1

...
...

. . .
...

xK xK+1 ... xK+L−1

 . (1)

Note that X is a Hankel matrix, because its anti-diagonal
elements (m + n) = const, are equal. Where, m,n are the
row and column indices of the Hankel matrix1

B. Dynamic Mode Decomposition

The K-lagged vectors x̄n ∈ RK are evenly spaced by
δt = K. Therefore, it can be justified that a mapping A exists
between consecutive lagged vectors. Formally, we can say that
these vectors span the krylov subspace [20], [21], [22], i.e.,

P = [x̄1,Ax̄1,A
2x̄1,A

3x̄1, · · · ,AN−1x̄1] (2)

for an unknown matrix A, this formulation (Eq. (2)), essen-
tially reconstructs the data X̂ at any instance l ∈ {1, · · · , L−
1, · · ·L − 1 + F} after the initial vector x̄1. Here L is the
number of columns in the trajectory matrix X and F is the
number of future points. This will be discussed in Section II-C.
Eq. (2) can be rewritten by introducing two data matrices
P2 ≡ [x̄2, x̄3, · · · , x̄L] and P1 ≡ [x̄1, x̄2, · · · , x̄L−1] in the
following way:

P2 = AP1. (3)

The mapping matrix (also known as Koopman operator) A is
responsible for capturing the dynamics within these vectors.
The sizes of the matrices P2 and P1 are K × (L − 1)
each. Therefore, the size of the unknown matrix A would
be K ×K. For (K � L), unfortunately, solving for A will
be computationally very expensive. Moreover, our problem of
interest is to find the temporal evolution which are essentially
captured in terms of column vectors. Therefore, it is necessary
to represent these column vectors as a linear combination. Our
assumption that these vectors form a Krylov span, allows us
to introduce H (as a starting point of the standard Arnoldi
iteration),

AP1 ≈ P1H. (4)

Here, H is a companion matrix, also known as a shifting
matrix, that simply shifts vectors 1 through L− 2. In essence,
H approximates the last vector L − 1 by linearly combining
the previous L− 2 vectors, i.e., x̄L−1 = c0x̄1 + ...+ cL−2x̄1.
H requires the storage of (L− 1)× (L− 1) data matrix and
is significantly fewer in dimension than A.

H =


0 0 . . . 0 c0
1 0 . . . 0 c1

0
. . . . . .

...
...

0 0 1 0 cL−2
0 0 0 1 cL−1

 . (5)

1The authors in [19] use block-Hankelisation approach on the multi-
dimensional data. Our proposed algorithm is especially for univariate data.

Thus, for the last K lagged vector x̄L−1, where L is signifi-
cantly fewer in dimensionality of A (K ×K), one can write
P2 as a linear combination of the previous vectors. Consistent
with Eqs. (3) and (4), we then have:

P2 = P1H + r.e∗L−1, (6)

where, r is the residual error, (.)∗ is the conjugate transpose
operator, eL−1 is the (L − 1) unit vector. From Eqs. (4) and
(6), we have AP1 ≈ P2 ≈ P1H. Although we can solve
H using the LU [16] or the QR decomposition [11], [23], a
more robust solution can be achieved using SVD [11] on P1

in Eq. (3), to obtain U, Σ and V∗ matrices.

P2 = AUΣV∗. (7)

∵ P1 =
d∑

i=1

Σiuiv
∗
i , here, Σi is the ith singular value of P1,

ui and v∗i are the corresponding left and right singular vectors
respectively; and d is the total number of singular values. Re-
arranging Eq. (7), we obtain the the full-rank matrix A,

A = P2VΣ−1U∗. (8)

Since the eigenvalue analysis is agnostic to any linear projec-
tion; so solving the eigen problem of H̃ is easier than that of
solving for A directly. Moreover, the associated eigenvectors
of H̃ provide the coefficients for the linear combination that is
necessary to express the dynamics within the time series basis.

H̃ω = σω, (9)

where, ω are the eigenvectors and σ a diagonal matrix
containing the corresponding eigenvalues of H̃ matrix. The
eigenvalues of H̃ approximate some of the eigenvalues of the
full system A [13], we then have:

AU ≈ UH̃,

AU ≈ Uωσω−1,

A(Uω) ≈ (Uω)σ.

(10)

Therefore H̃ is determined on the subspace spanned by the
orthogonal singular basis vectors U obtained via P1,

H̃ = U∗(A)U,

H̃ = U∗(P2VΣ−1U∗)U,
(11)

which can be rewritten as:

H̃ = U∗P2VΣ−1. (12)

Here U∗ ∈ C(L−1)×K and V ∈ C(L−1)×(L−1) are the
conjugate transpose of U and V∗, respectively; and Σ−1 ∈
C(L−1)×(L−1) denotes the inverse of the singular values Σ.

By replacing Ψ = Uω in Eq. (10) i.e., A(Ψ) ≈ (Ψ)σ, we
obtain the dynamic modes Ψ. ∵ U = P2VΣ−1, therefore,
we have:

Ψ = P2VΣ−1ω (13)

The complex eigenvalues σ contain growth/decay rates and
frequencies of the corresponding DMD modes [10], [9]. If σj
are the diagonal elements of σ from Eq. (9), the temporal
behaviour of the DMD modes is then formed via Vandermonde
matrix Vand, which raises its column vector to the appropriate



power. Vand(f) with (L−1)×(f+1) elements will be defined
by the following:

Vand(f) =


1 σ1

1 σ2
1 ... σf

1

1 σ1
2 σ2

2 ... σf
2

...
...

...
...

...
1 σ1

L−1 σ2
L−1 ... σf

L−1

 , (14)

Vand(L) is a standard Vandermonde matrix for reconstruction
but if f > L, this is used for forecasting, which will be
discussed in section II-C.

DMD modes with frequencies µj is defined by:

µj =
ln(σj)

δt
, (15)

where δt is the lag between the vectors and may be considered
to consist of K time steps. The real part of µj regulates the
growth or decay of the DMD modes, while the imaginary part
of µj drives oscillations in the DMD modes. The frequencies
near the origin can be interpreted as the trend of the time series,
and the frequencies bounded away from the origin contain
harmonics of the time series. Specifically, the trend in the time
series has an associated frequency at the origin of the complex
plane with ‖µj‖ ≈ 0.

C. Reconstruction and Forecasting

The DMD reconstruction of the data X̂ at any instance f
after the initial vector x̄1 is given by,

X̂ = Ψ(Vand(f) ◦ b), ∀ f ∈ {1, 2, · · · , F}. (16)

Where Vand(f) = σf−1 and F is the number of future
points that are to be forecast. The vector b ≈ Ψ−1x1 contains
the initial amplitudes for the dynamic modes. Operator (◦) is
the point-wise (element-wise) multiplication of b with every
column of Vand(f). The first lagged vector x̄1 of the data X
reduces to

x̄1 = Ψb, (17)

and b can be obtained through the Moore-Penrose pseudo
inverse,

b = (Ψ∗Ψ)−1Ψ∗x̄1. (18)

The significance of the DMD modes Ψ are determined by their
scaling factors b when it comes to approximating the entire
data sequence P2 during reconstruction and forecasting.

Since the slow varying frequencies µj capture trends in the
time series, it is desirable to reconstruct the trajectory matrix
with selected DMD triples. A DMD triple consists of a DMD
eigenvalue, its corresponding DMD mode and an associated
scaling factor, i.e., amplitude.

X̂ = Ψ{S}(Vand{S}(f) ◦ b{S}), S ⊂ {1, ..., L− 1}. (19)

Vand{S}(f) is a subset of Vand(f) formed by selecting only
the appropriate rows which correspond to the selected DMD
eigenvalues. Vand{S}(f) will have the dimension of S× (f+
1) and b{S} has the dimension of (S × 1) for the selected S
eigenvalues.

D. Hankelisation and Diagonal Averaging

Finally, the reconstructed trajectory matrix X̂ is Hankelised,
in order to ensure that the anti-diagonal elements are equalised.
The Hankelisation operator H for an K×F matrix X̃ is defined
as

HX̂ = X̃ =


x̃1 x̃2 ... x̃F
x̃2 x̃3 ... x̃F+1

...
...

. . .
...

x̃K x̃K+1 ... x̃K+F−1

 . (20)

The desired or reconstructed time-series is given by
<(x̃k) = 1/num(Dk)

∑
m,n∈Dk

X̂m,n. Here k is the index
of the time series, <(.) is the real part of x̃k, num(.) is the
number of combinations of (m,n), m+ n = k+ 1 and Dk is
given by {(m, n) : 1 ≤ m ≤ K, 1 ≤ n ≤ F, m+n = k+1}.

The methodology, as summarised via utilising Eq. (19),
can be used to decompose data into a number of desired
subcomponents including trend, noise and future components,
but at the expense of introducing a time stamp delay. This
is because, P2 has been used for projection from Eq. (13),
which does not contain information about the first data point.
Therefore, this study recommends that the first column vector
of the trajectory should be repeated.

III. SINGULAR SPECTRUM ANALYSIS

SSA is another powerful method for analysing real-valued
time series [24]. The initial idea of SSA is associated with the
work of Broomhead [25], [26]. It combines the multivariate
statistics, classical time series analysis, dynamical systems, and
signal processing.

SSA is becoming an effective method in various areas such
as economics [24], [27] and biomedical engineering [28], [29],
[30]. Basically, SSA decomposes a data into a number of
interpretable elements with different subspaces, such as noise
and trend [31], and can be used for any time series with
complex structure [27]. For instance, for decades, SSA has
been used for both trend detection and prediction in financial
data [24], [27]. SSA can be used in several applications includ-
ing trends fitting, extraction of cycles with various periods and
amplitudes, smoothing, and finding some structures in short
time series.

Ordinary SSA is a subspace decomposition algorithm with
four stages similar to that of the proposed method but with
different formulation in the second and third stages. SSA
decomposes the resulted matrix of embedding step using SVD:

C =

d∑
i=1

Ci =

d∑
i=1

√
σiuivi

T , (21)

where σi is the ith eigenvalue of covariance matrix C = XXT ,
ui is the corresponding eigenvector, d is the total number of
eigenvalues, and vi = CTui/

√
σi.

In the reconstruction step, first the elementary matrices
from the previous stage are grouped into several sub-matrices



C =

Q∑
q=1

Ĉq, (22)

where Q determines the total number of groups, index q refers
to qth subgroup of eigenvalues, and X̂q indicates the sum of
Xi within group q. Finally, the desired subgroup is selected
and transformed into a Hankel matrix. Later, the average of
the anti diagonal elements form the reconstructed desired time
series.

SSA has recurrent and vector based forecasting techniques:

A. SSA Recurrent Forecasting

If the desired group of eigentriples is considered as I and
the corresponding ith eigenvector as uIi , then

r =
1

1− υ2
∑
i∈I

πiuIi
(23)

where r = (al1−1, . . . , a1)T , uIi
and πi respectively show

all except for the last and the last column of uIi , and
υ2 =

∑
i∈I π

2
i . Consequently, the recurrent forecasting can

be formulated as

xi =


x̃i i = 1, . . . , T
l1−1∑
j=1

ajxi−j i = T + 1, . . . , T + F
(24)

where F is the number of forecasting points. The reconstructed
terms and Eq. (23) are used to forecast the value of new points.
The linear operator ϕ can be defined as

ϕx =

(
x

rTx

)
, (25)

where x shows K − 1 components of vector x. Therefore,
trajectory matrix of the time series x of length T + F can be
written as the vector representation of Eq. (24)

zi =

{
xi i = 1, 1, . . . , L

ϕzi−1 i = L+ 1, . . . , T + F
. (26)

IV. DATASET

A. Real Data

To demonstrate and validate the methodology, publicly
available Box & Jenkins airline data [2] have been used. This
consists of the monthly total of international airline passengers
from the year 1949 to 1960. For comparing with SSA, BJ sales
and UK gas data are also considered. All of the aforementioned
datasets have been obtained from Github repository for R time
series datasets2. These datasets then have been transformed
into the logscale (y-axis) and the time (x-axis) is considered
in increments of 1.

2https://github.com/vincentarelbundock/Rdatasets

B. Simulated Data

The simulated data are a mixture of two signals

x(t) = as(t) + βe(t), (27)

where s(t) shows the desired signal and a is the mixing vector.
x(t) is the input or mixture being examined, e(t) indicates the
unwanted signal or noise, and β is the noise level.

Signal-to-noise ratio (SNR) in terms of mean square (MS)
is used as a measure for noise level which is adjusted by
changing β

SNR = MS(s(t))/β2. (28)

To evaluate the simulation performance, the evaluation criteria
in terms of mean square error (MSE) is considered as

MSE =
MS(s(t)− ŝ(t))

MS(s(t))
, (29)

where ŝ(t) is the estimated source.

V. EXPERIMENTS AND RESULTS

The real time series containing airline data is transformed
to a trajectory matrix with K-lagged vectors. The parameter
that needs to be predetermined is the window length L because
our conjecture is that an appropriate choice of this can produce
a better result.

A. Effect of Window Length L

Fig. 1 (a) shows our experimental results with window
lengths L for reconstructing the original time series. Our result
shows that the reconstruction error for L ∈ {12, ..., 66} gave
a stable performance with relatively low reconstruction error.
If L is relatively small, it can cause the trajectory matrix X
to miss the trends in the data especially when dealing with
seasonal components. Furthermore, if L is closer to T

2 , where
T is the length of the time series, the decomposition of the
data becomes more detailed. Therefore, the selection of L can
neither be close to 2 nor T

2 . Therefore, this study, recommends
choosing L between 8% to 45% of the length of the time series.
In our experiments we arbitrarily considered L to be 25% of
the length of the time series, i.e., L = 35.
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Fig. 1. (a) Effect of window length L over the reconstruction performance.
(b) DMD eigenvalue plot, showing eigenvalues {18, 19, 20, 21, 22} that are
vertically closer to the X-axis



B. DMD for Extracting Trends

The logarithmic values of DMD eigenvalues give us the
frequencies, the real part captures the growth/decay and
imaginary part, the oscillations within the time series. The
frequencies that are closer to origin are the slow varying
components (for example, eigenvalues {18, 19, 20, 21, 22} in
Fig. 1 (b) which are vertically closer to the X-axis) that
essentially capture the trends.
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Fig. 2. (a) Trend analysis of the timeseries, revealing two trends (i) trend1:
linear trend and (ii) periodic trend. (b) A complete reconstruction.

The ones which are further away from the origin capture
various frequency growth/decay rates. In order to establish the
order in the DMD, the absolute frequencies of the DMD eigen-
values are sorted in the ascending order. The absolute value
of the frequencies associated with each of the eigenvalues are
shown in Fig. 3 (b).

Reconstruction of the original time series with the afore-
mentioned slow varying DMD triples, i.e., with {18, 19, 20}
in Fig. 1 (b) (or the first three DMD triples) gave us the trend
(trend-1) as shown in Fig. 2 (a).

Reconstruction with other DMD triples that are closer to
the origin, i.e., {18, 19, 20, · · · , 26} gave a smoother version
(trend-2) of the time series (Fig. 2 (a)).
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Fig. 3. (a) DMD triples vs reconstruction error. (b) Corresponding absolute
frequencies.

As we reconstruct the data with increasing DMD triples,
the reconstruction mean square error (MSE) decreases (Fig. 3
(a)). A complete reconstruction of the original time series with
all of the DMD triples produces the original time series as
shown in Fig. 2 (b) with a reconstruction MSE of 0.0006.

C. DMD for Time Series Forecasting

To demonstrate the capability of DMD for forecasting, 124
out of the total 144 datapoints are considered as the training
set, leaving the remaining 20 points as the test set. The window
length L considered comprises of 25% of the data i.e., L =
31. The forecast trends in the data are shown in Fig. 4 (a).
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Fig. 4. (a) Trend forecast. (b) A complete forecast of the timeseries.

The MSE recorded for the forecast trend-1 was 0.0007 and
for the smoother trend-2 was 0.0080 when evaluated against
the reconstructed trend. The result of the forecast is shown
in Fig. 4 (b) with a MSE of 0.0090 when compared to the
original data.

D. Comparison to SSA

1) On Simulated Data with Effect of Noise: In order to
compare with SSA, the performance of both the methods
should be investigated in the presence of noise. For this
purpose, simulated signal consisting of two sinusoids with
different frequencies and powers are considered, which were
then mixed with a Gaussian noise at various signal to noise
ratio (SNR) levels {−10,−9, · · · , 19, 20}dB.

2) Selection of the triples: The proposed method using the
first 9 DMD triples and SSA with first 4 singular triples were
applied as they those parameters gave the least reconstruction
MSE across all the noise levels on this simulated data as shown
in Figure5.
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Fig. 5. MSE while reconstruction of the original time series in the presence
of noise at −2dB, using first t (a) DMD triples, (b) SVD triples.

3) Robustness to Noise: It can be noticed from Fig. 6 that,
as the SNR increases, the MSE in reconstruction (with respect
to the clean signal) decreases in both of the methods. The
average time taken for DMD across all the noise levels was
3.76, while for SSA was 46.94 seconds3. This result shows
that DMD is computationally more efficient than SSA and is
consequently a promising approach for analysing a univariate
time series in the presence of noise.

Fig. 7 shows the original simulated signal and the noisy sig-
nal at SNR = −2dB. The reconstruction along with forecasting
of 750 points, using the first 5 DMD triples and 4 singular
triples is shown. The MSE recorded after reconstruction and
forecast was 0.0205 and for SSA was 0.0241. The time taken
for DMD and SSA was 0.17 and 23.23 seconds respectively.

3On a Dell PowerEdge R715 AMD - 2-CPU/24-Core - 128GB RAM
Running Precise (Ubuntu 12.04.5).
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4) On Real Data: The results on the real world datasets
are shown in Fig. 8, (a) Airline passengers data, (b) BJ sales
data) and (c) UK gas data. The MSE error in reconstructing
and forecasting these data, including the parameters chosen
are given in Table I. These results show that DMD based
univariate time series analysis is superior to SSA particularly
when forecasting the time series.

VI. CONCLUSION AND DISCUSSIONS

In this study we proposed the method of DMD in a four-
stage pipeline to decompose a univariate time series into a
number of interpretable elements with different components,
such as noise and underlying data trend. In addition, this four-
stage DMD pipeline was also shown to be used for forecasting
a time series.

DMD eigenvalues with frequencies that are closer to the
origin in the complex plane capture the trends in the time
series. Moreover, the temporal evolution of the DMD modes,
which is preserved via the Vandermonde matrix, can be used
to reconstruct the desired components and perform forecasting
at the same time. Window length L needs to be predetermined
and we recommend choosing L between 8% to 45% of the
length of the time series. In reconstruction, to compensate one
time stamp delay, we recommend that the first column vector

of the trajectory matrix be repeated once. The experimental
results at various noise levels on simulated data suggests that
DMD is a promising approach to modelling a time series with
a noisy structure. DMD was compared to SSA, a popular
method employed extensively in biomedical signal processing
applications for separating artefacts and extracting features
from electromyography (EMG), electrocardiogram (ECG) and
electroencephalogram (EEG) signals [28].

Thus DMD can potentially be applied to analyse biomed-
ical signals, especially EEG, where brain rhythms manifest
themselves as narrow frequency band components. As a good
example, sleep is a dynamic process which consists of different
stages with different neural activity levels. Each stage is
characterised by a distinct set of physiological and neurological
features and dominant frequency band. SSA, however, does not
exploit the narrowband property of these kind of cyclic data
since it requires manual grouping or optimisation [30] to detect
the desired features. DMD on the other hand due to its intrinsic
nature of complex eigenvalues that capture frequency bands,
can help find cycling components automatically. Therefore, in
such studies, DMD might capture clues for chaotic subcompo-
nents/trends and noise. These subcomponents later can be used
as feature vectors for e.g. in sleep stage classification, epilepsy
detection, and seizure predictions (for e.g., using SSA in [28],
[3], [4], [5]. Moreover, our experiments showed that DMD is
computationally more efficient than SSA as well as robust in
the presence of added white Gaussian noise.
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