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A binary triangle of size n is a triangle of zeroes and ones, with n rows, built with the same local rule as the standard Pascal triangle modulo 2. A binary triangle is said to be balanced if the absolute difference between the numbers of zeroes and ones that constitute this triangle is at most 1. In this paper, the existence of balanced binary triangles of size n, for all positive integers n, is shown. This is achieved by considering periodic balanced binary triangles, that are balanced binary triangles where each row, column or diagonal is a periodic sequence.

Introduction

The Steinhaus triangle ∇S associated with the finite sequence S = (a 0 , a 1 , . . . , a n-1 ), of length n 1 in Z/2Z, is the triangle generated from S by the same local rule that defines the standard Pascal triangle modulo 2, that is the doubly indexed sequence ∇S = (a i,j ) 0 i j n-1 defined by: i) a 0,j = a j , for all 0 j n -1, ii) a i,j = a i-1,j-1 + a i-1,j , for all 1 i j n -1.

Note that the sum in ii) is the sum modulo 2. The m-th row, column and diagonal of the Steinhaus triangle ∇S are the sequences (a m,j ) m j n-1 , (a i,m ) 0 i m and (a i,m+i ) 0 i n-1-m , respectively, for all m ∈ {0, 1, . . . , n -1}. This kind of binary triangle was introduced in [START_REF] Steinhaus | One hundred problems in elementary mathematics[END_REF]. For example, the Steinhaus triangle ∇S associated with S = 0010100 is depicted in Figure 1.

The generalized Pascal triangle ∆(S l , S r ) associated with the finite sequences S l = (a 0 , a 1 , . . . , a n-1 ) and S r = (b 0 , b 1 , . . . , b n-1 ), of length n 1 in Z/2Z and with a 0 = b 0 , is the doubly indexed sequence ∆(S l , S r ) = (a i,j ) 0 j i n-1 defined by: i) a i,0 = a i and a i,i = b i , for all 0 i n -1, ii) a i,j = a i-1,j-1 + a i-1,j , for all 1 j < i n -1.

The m-th row, column and diagonal of the generalized Pascal triangle ∆(S l , S r ) are the sequences (a m,j ) 0 j m , (a i,m ) m i n-1 and (a m+j,j ) 0 j n-1-m , respectively, for all m ∈ {0, 1, . . . , n -1}. For example, the generalized Pascal triangle ∆(S l , S r ) associated with S l = 0000101 and S r = 0100001 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 ∇(0010100) ∆(0000101, 0100001) In this paper, a binary triangle is either a Steinhaus triangle or a generalized Pascal triangle. The size of a binary triangle is the number of rows that constitute this triangle.

For any binary triangle T , let m T denote its multiplicity function, that is, the function m T : Z/2Z -→ N that assigns to each element x ∈ Z/2Z its multiplicity in T . The triangle T is said to be balanced if its multiplicity function is constant or almost constant, i.e., if the multiplicity difference δm T := |m T (1) -m T (0)| is such that δm T ∈ {0, 1}. Since they contain 14 zeroes and 14 ones, the triangles depicted in Figure 1 are balanced binary triangles of size 7.

The goal of this paper is to prove that there exist balanced binary triangles of size n, for all positive integers n and for the both kinds of binary triangles. This completely solves a generalization of a problem posed in [START_REF] Steinhaus | One hundred problems in elementary mathematics[END_REF].

Steinhaus Problem. Does there exist, for any positive integer n ≡ 0 or 3 mod 4, a binary sequence S of length n for which the associated triangle ∇S contains as many zeroes as ones?

Since a binary triangle of size n contains n+1 2 elements, the condition n ≡ 0 or 3 mod 4 is a necessary and sufficient condition for having a triangle of size n containing an even number of terms.

The Steinhaus Problem was solved for the first time in [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF]. In his paper, Harborth constructively showed that, for every positive integer n ≡ 0 or 3 mod 4, there exist at least four binary sequences S of length n such that ∇S is balanced. Since then, many solutions have appeared (Eliahou andHachez, 2004, 2005;[START_REF] Eliahou | Zero-sum balanced binary sequences[END_REF]. All of them are constructive and correspond to the search of sequences generating balanced triangles, that have some additional properties such as being antisymmetric or zero-sum.

The possible number of ones in binary triangles was explored in [START_REF] Chang | Binary triangles[END_REF]; [START_REF] Harborth | On the number of ones in general binary Pascal triangles[END_REF]. The minimum number of ones is obviously 0 since the triangle of zeroes of size n is always a binary triangle. The maximum number of ones in a Steinhaus triangle of size n is 2 positive integer n. In [START_REF] Harborth | On the number of ones in general binary Pascal triangles[END_REF], it was proved that the maximum number of ones in a generalized Pascal triangle of size n is 2 3 n+1 2

+ ε, where

ε =        2 if n ≡ 1 mod 3, n = 1, 1 if n ≡ 0, 2 mod 3, n = 8, 0 if n = 1, 3 if n = 8.
The following result gives the average number of ones and zeroes in binary triangles.

Proposition 1.1. The average number of ones and zeroes in a binary triangle of size n is exactly 1 2 n+1 2 .

Proof: We induct on n.

First, for the Steinhaus triangles, the result is trivial for n = 1. Suppose now that n 2 and that the result is true for any Steinhaus triangle of size n -1. Let ∇S be the Steinhaus triangle of size n -1 generated from the sequence S = (a 0 , a 1 , . . . , a n-2 ). There exist exactly two sequences S of length n such that we retrieve ∇S as the subtriangle ∇S \ S , that is, the last n -1 rows of the Steinhaus triangle ∇S of size n. These sequences S are of the form

S =   x, x + a 0 , x + a 0 + a 1 , . . . , x + i-1 j=0 a j , . . . , x + n-2 j=0 a j   ,
with x ∈ Z/2Z. Moreover, for all positive integers m, it is clear that there are 2 m binary sequences of length m and the same number of Steinhaus triangles of size m. It follows that, for all x ∈ Z/2Z, the total number of x in the set of all the Steinhaus triangles of size n is the sum of twice the total number of x in the set of Steinhaus triangles of size n -1 and the total number of x in the set of sequences of length n. This leads to the result that the average number of x in a Steinhaus triangle of size n is

1 2 n 2 × 2 n-1 × 1 2 n 2 + 2 n-1 n = 1 2 n + 1 2 ,
for all x ∈ Z/2Z. Now, for the generalized Pascal triangles. For n = 1 and n = 2, the result is clear. Suppose now that n 3 and that the result is true for any generalized Pascal triangle of size n -2. Let ∆(S l , S r ) be the generalized Pascal triangle of size n -2 generated from the sequences S l = (a 0 , a 1 , . . . , a n-3 ) and S r = (b 0 , b 1 , . . . , b n-3 ), with a 0 = b 0 . There exist exactly 2 4 couples (S l , S r ) of sequences of length n such that we retrieve ∆(S l , S r ) as the subtriangle ∆(S l , S r ) \ (S l ∪ S r \ {a 0 }), that is, the generalized Pascal triangle obtained from ∆(S l , S r ) by removing the left and right sides of the triangle. These couples of sequences (S l , S r ) are of the form

S l = (x 1 , x 2 , a 0 + a 1 , a 1 + a 2 , . . . , a n-4 + a n-3 , x 3 ) , S r = (x 1 , x 2 + a 0 , b 0 + b 1 , b 1 + b 2 , . . . , b n-4 + b n-3 , x 4 ) ,
where x 1 , x 2 , x 3 , x 4 ∈ Z/2Z. Moreover, for all positive integers m, it is clear that there are 2 2m-1 binary sequences of length 2m -1 and the same number of generalized Pascal triangles of size m. It follows that, for all x ∈ Z/2Z, the total number of x in the set of all the generalized Pascal triangles of size n is the sum of 2 4 times the total number of x in the set of generalized Pascal triangles of size n -2 and the total number of x in the set of sequences of length 2n -1. This leads to the result that the average number of x in a generalized Pascal triangle of size n is

1 2 2n-1 2 4 × 2 2(n-2)-1 × 1 2 n -1 2 + 2 2n-2 (2n -1) = 1 2 n + 1 2 ,
for all x ∈ Z/2Z. This completes the proof.

This result shows that the Steinhaus Problem and the following generalization are natural.

Problem 1. Does there exist, for any positive integer n, a balanced Steinhaus triangle and a balanced generalized Pascal triangle of size n?

As already announced, this problem is solved in the positive in this paper. The solution presented here is constructive and based on the analysis of periodic balanced binary triangles, that are balanced binary triangles where each row or column is a periodic sequence.

Let us begin with some definitions and terminology. Let S = (a j ) j∈Z be a doubly infinite sequence of Z/2Z. The derived sequence ∂S is the sequence obtained by pairwise adding consecutive terms of S, that is, ∂S = (a j-1 + a j ) j∈Z .

This derivation process can be iterated and, for every positive integer i, the i-th derived sequence ∂ i S is recursively defined by

∂ i = ∂ ∂ i-1 S with ∂ 0 S = S.
The orbit O S is the sequence of all the iterated derived sequences of S, that is,

O S = ∂ i S i∈N .
The orbit of S can also be seen as the doubly indexed sequence O S = (a i,j ) (i,j)∈N×Z defined by i) a 0,j = a j , for all j ∈ Z, and ii) a i,j = a i-1,j-1 + a i-1,j , for all i 1 and for all j ∈ Z.

An example of orbit O S associated with the sequence S = (. . . . . . , 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, . . . . . .) is depicted in Figure 2. Binary triangles can then been considered as appearing in orbits of binary sequences. Let ∇S(i 0 , j 0 , n) denote the triangle build from the base to the top, whose principal vertex is at the position (i 0 , j 0 ) ∈ N×Z in the orbit O S = (a i,j ) (i,j)∈N×Z and of size n, i.e., the Steinhaus triangle

∇S(i 0 , j 0 , n) = ∇(a i0,j0 , a i0,j0+1 , . . . , a i0,j0+n-1 ) = (a i0+i,j0+j ) 0 i j n-1 .
Let ∆S(i 0 , j 0 , n) denote the triangle build from the top to the base, whose principal vertex is at the position (i 0 , j 0 ) ∈ N × Z in the orbit O S and of size n, i.e., the generalized Pascal triangle ∆S(i 0 , j 0 , n) = ∆((a i0,j0 , a i0+1,j0 , . . . , a i0+n-1,j0 ), (a i0,j0 , a i0+1,j0+1 , . . . , a i0+n-1,j0+n-1 )) = (a i0+i,j0+j ) 0 j i n-1 . 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 The sets of all the Steinhaus triangles of size n and of all the generalized Pascal triangles of size n are denoted by ST n and PT n , respectively. It is clear that these sets are Z/2Z-vector spaces of dimension n and 2n -1, respectively. Moreover, as depicted in Figure 3, there exists an obvious isomorphism between PT n and ST 2n-1 since a generalized Pascal triangle of size n can be seen as the center of a Steinhaus triangle of size 2n -1.

0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 Fig. 3: Isomorphism between PT n and ST 2n-1
A binary triangle of size n is constituted by n+1 2 elements, the n-th triangular number. Therefore, a binary triangle of size n contains an even number of terms for n ≡ 0, 3 mod 4 and an odd number of terms for n ≡ 1, 2 mod 4. It follows that a binary triangle T of size n is balanced if and only if δm T = 0 for n ≡ 0, 3 mod 4, 1 for n ≡ 1, 2 mod 4.

In other words, a binary triangle T of size n is balanced if and only if either m T (0) = m T (1), for n ≡ 0, 3 mod 4, or m T (0) = m T (1) ± 1, for n ≡ 1, 2 mod 4. Then, the Steinhaus Problem is solved if we can determine whether there exist balanced Steinhaus triangles containing an even number of terms, for all the admissible sizes.

The main result of this paper is the following Theorem 1.2. There exists a binary doubly infinite sequence S such that its orbit O S contains balanced Steinhaus triangles and balanced generalized Pascal triangles of size n, for all positive integers n.

This theorem completely and positively solves Problem 1, the generalization of the Steinhaus Problem for the two kinds of triangles, even when the triangles contain an odd number of terms. Note that the existence of balanced Steinhaus triangles with odd cardinality was first announced, without proof, in [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF]. For the generalized Pascal triangles, the result is known but has not been published.

This paper is organized as follows. In the next section, the behavior of the p-periodic sequences under the action of the derivation process is studied and the set of p-tuples that generate p-periodic orbits is determined, for all values of p. An equivalence relation on the set of p-periodic orbits is given in Section 3. This permits us to only consider the equivalence classes of p-periodic orbits and considerably reduce the number of orbits to analyse in the sequel. Let (i 0 , j 0 ) be a fixed position in the orbit O S and r ∈ {0, 1, . . . , p -1} be a fixed residue class modulo p. In Section 4, necessary and sufficient conditions on the family of Steinhaus triangles ∇S(i 0 , j 0 , pk +r), for being balanced for all non-negative integers k, are obtained. This leads to the proof of Theorem 1.2 in Section 5. Finally, we show in Section 6 that already known results on balanced triangles modulo m can also be expressed by periodic balanced triangles.

Periodic orbits

For any n 1 -tuple X 1 = (a 0 , a 1 , . . . , a n1-1 ) and any n 2 -tuple

X 2 = (b 0 , b 1 , . . . , b n2-1 ) of elements in Z/2Z, the concatenation X 1 .X 2 is the (n 1 + n 2 )-tuple (a 0 , a 1 , . . . , a n1-1 , b 0 , b 1 , . . . , b n2-1
). For any ntuple X, the kn-tuple X k is recursively defined by X k = X.X k-1 for all integers k 2, with X 1 = X. For any n-tuple X = (a 0 , a 1 , . . . , a n-1 ), the doubly infinite sequence X ∞ = (b j ) j∈Z is defined by b kn+j = a j for all k ∈ Z and for all j ∈ {0, 1, . . . , n -1}. For any doubly infinite sequence S = (a j ) j∈Z and any positive integer n, we denote by S[n] the initial segment of length n of S, that is, the n-tuple S[n] = (a 0 , a 1 , . . . , a n-1 ).

Let p be a positive integer and let S = (a j ) j∈Z be a doubly infinite sequence of elements of Z/2Z. The sequence S is said to be periodic of period p, or p-periodic, if a j+p = a j for all j ∈ Z. The p-periodicity of S is denoted by S = (a 0 , a 1 , . . . , a p-1 )

∞ , where the p-tuple (a 0 , a 1 , . . . , a p-1 ) is a period of length p of S. First, it is clear that the periodicity of S is preserved under the derivation process.

Proposition 2.1. For any p-tuple (a 0 , a 1 , . . . , a p-1 ), we have

∂ (a 0 , a 1 , . . . , a p-1 ) ∞ = (a p-1 + a 0 , a 0 + a 1 , . . . , a p-2 + a p-1 ) ∞ An infinite sequence (A i ) i∈N is said to be pseudo-periodic of period p if there exists i 0 ∈ N such that A i+p = A i for all i i 0 .
Proposition 2.2. The orbit of a periodic sequence is a pseudo-periodic sequence.

Proof: Let S be a p-periodic sequence of Z/2Z and let O S = ∂ i S i∈N be its associated orbit. By Proposition 2.1, we know that, for every non-negative integer i, the derived sequence ∂ i S is a p-periodic sequence. Since the number of p-tuples over Z/2Z and thus the number of p-periodic sequences of Z/2Z is finite, we deduce that there exist 0 i 1 < i 2 such that ∂ i1 S = ∂ i2 S. This leads to

∂ i+(i2-i1) S = ∂ i-i1 ∂ i2 S = ∂ i-i1 ∂ i1 S = ∂ i S for all i i 1 . The sequence O S is then a pseudo-periodic sequence of period i 2 -i 1 .
We can retrieve the case where the orbit is pseudo-periodic and not periodic in [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF]; [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF]. Here, we will study the special case where the orbit is fully periodic.

The orbit O S = (a i,j ) (i,j)∈N×Z is said to be periodic of period p, or p-periodic, if every row and every column is a p-periodic sequence, i.e., if the equalities a i,j+p = a i,j and a i+p,j = a i,j hold for all i ∈ N and all j ∈ Z. In other words, the orbit (a i,j ) (i,j)∈N×Z is p-periodic if the equality a i,j = a i,j holds, for all (i, j) ∈ N × Z, where x is the remainder in the euclidean division of x by p. For example, as depicted in Figure 4, the orbit O X ∞ associated with the 6-tuple X = 010100 is 6-periodic. Note that a binary triangle appearing in a periodic orbit is simply a periodic binary triangle, as defined above. 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 Fig. 4: The 6-periodic orbit O010100∞ Any square P i0,j0 = (a i0+i,j0+j ) 0 i,j p-1 of size p is said to be a period of the p-periodic orbit O S . Remark that all the periods of a p-periodic orbit have the same multiplicity function, i.e., we have m Pi 0 ,j 0 = m P0,0 for all (i 0 , j 0 ) ∈ N × Z.

The set of p-tuples of Z/2Z that generate p-periodic orbits is given in the following theorem, that also appears in [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF].

Theorem 2.3. The orbit O X ∞ associated with the p-tuple X = (a 0 , a 1 , . . . , a p-1 ) is p-periodic if and only if the vector v X = (a 0 , a 1 , . . . , a p-1 ) t is in the kernel of the matrix W p which is the Wendt matrix of size p modulo 2, i.e., the circulant matrix of the binomial coefficients modulo 2

W p =         p p p p-1 p p-2 • • • p 1 p 1 p p p p-1 • • • p 2 . . . . . . . . . . . . p p-1 p p-2 p p-3 • • • p p         .
To prove this result, we use the following lemma where it is shown that each term of the orbit O S can be expressed as a function of the elements of the sequence S. The proof of this lemma is a straightforward induction.

Lemma 2.4. Let O S = (a i,j ) (i,j)∈N×Z be an orbit and let i 0 be a non-negative integer. Then,

a i0+i,j = i k=0 i k a i0,j-k for all (i, j) ∈ N × Z.
Proof of Theorem 2.3: Let X = (a 0 , a 1 , . . . , a p-1 ) be a p-tuple and let O X ∞ = (a i,j ) (i,j)∈N×Z be its associated orbit. Since, by definition, the sequence X ∞ is p-periodic, we already know from Proposition 2.1 that the derived sequences ∂ i X ∞ are p-periodic for all non-negative integers i. Therefore the equality a i,j+p = a i,j is true for all (i, j) ∈ N × Z. Thus, the orbit O X ∞ is p-periodic if and only if a i+p,j = a i,j for all (i, j) ∈ N × Z. The equality a i+p,j = a i,j holds for all (i, j) ∈ N × Z if and only if a p,j = a 0,j for all j ∈ Z. Moreover, since the sequences (a 0,j ) j∈Z and (a p,j ) j∈Z are p-periodic, the orbit O X ∞ is p-periodic if and only if a p,j = a 0,j for all j ∈ {0, 1, . . . , p -1}. From Lemma 2.4, we know that a p,j = p k=0 p k a 0,j-k for all j ∈ {0, 1, . . . , p -1}. Therefore the orbit O X ∞ is p-periodic if and only if

             p 1 a 0,-1 + p 2 a 0,-2 + • • • + p p a 0,-p = 0 p 1 a 0,0 + p 2 a 0,-1 + • • • + p p a 0,-p+1 = 0 . . . p 1 a 0,p-2 + p 2 a 0,p-3 + • • • + p p a 0,-1 = 0 ⇐⇒              p 1 a p-1 + p 2 a p-2 + • • • + p p a 0 = 0 p 1 a 0 + p 2 a p-1 + • • • + p p a 1 = 0 . . . p 1 a p-2 + p 2 a p-3 + • • • + p p a p-1 = 0
i.e., if and only if the p-tuple X is in the kernel of the Wendt matrix

W p = p |i-j| 1 i,j p modulo 2.
The set of p-tuples X that generate p-periodic orbits O X ∞ is denoted by PO p . It is then a Z/2Z-vector space isomorphic to the kernel of the Wendt matrix W p of size p modulo 2. We recall here that the 6-tuple X = 010100 generates a 6-periodic orbit as depicted in Figure 4.

3 Symmetry group of PO p

In this section, a symmetry group on the set of p-tuples that generate p-periodic orbits is defined. First, the notion of translation and the action of the dihedral group D 3 on periodic orbits are introduced.

Translation

Let O X ∞ = (a i,j ) (i,j)∈N×Z be the p-periodic orbit associated with X = (a 0 , a 1 , . . . , a p-1 ) ∈ PO p . The translate of X by the vector (u, v) ∈ Z 2 is the p-tuple t u,v (X) = (a -u,j-v ) 0 j p-1 . From Lemma 2.4, we know that

t u,v (X) =   -u k=0 -u k a j-v-k   0 j p-1
.

From the definition of t u,v (X), it is clear that

O tu,v(X) ∞ = a i-u,j-v (i,j)∈N×Z .
Therefore t u,v is an automorphism of PO p . Moreover, the application

Z 2 , + -→ (Aut(PO p ), •) (u, v) -→ t u,v
is a group morphism. For example, the translate of the 6-tuple 010100 ∈ PO 6 (Figure 4) by the vector (2, 3) is t 2,3 (010100) = 101000, as we can see in its orbit O t2,3(010100) ∞ = O 101000 ∞ depicted in Figure 5.

1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 Fig. 5: The translate t2,3(010100) = 101000

The dihedral group D 3

First, consider the Steinhaus triangles ∇S = (a i,j ) 0 i j n-1 of size n. The left and right sides of ∇S are the sequences l(S) = (a n-1-i,n-1-i ) 0 i n-1 and r(S) = (a i,n-1 ) 0 i n-1 , respectively. From Lemma 2.4, we know that l(S) and r(S) can be expressed as functions of the elements of S = (a j ) 0 j n-1

l(S) = n-1-i k=0 n -1 -i k a n-1-i-k 0 i n-1 and r(S) = i k=0 i k a n-1-k 0 i n-1
.

The reversed sequence of S is the sequence read from the right to the left, that is i(S) = (a n-1-j ) 0 j n-1 . Due to the symmetries involved in the local rule that generates ∇S, the Pascal local rule modulo 2, it is known that the Steinhaus triangles ∇l(S), ∇r(S) and ∇i(S) correspond to the rotations of ∓120 degrees around the center of the triangle ∇S and the reflection across the vertical line through the center of ∇S, respectively. More precisely, for all integers i and j such that 1 i j n -1, we have

a i-1,j-1 + a i-1,j = a i,j ⇐⇒ a i-1,j + a i,j = a i-1,j-1 ⇐⇒ a i-1,j-1 + a i,j = a i-1,j . (1) 
Therefore

∇l(S) = ∇(a n-1-j,n-1-j ) 0 j n-1 = (a n-1-j,n-1-j+i ) 0 i j n-1 , ∇r(S) = ∇(a j,n-1 ) 0 j n-1 = (a j-i,n-1-i ) 0 i j n-1 , ∇i(S) = ∇(a 0,n-1-j ) 0 j n-1 = (a i,n-1+i-j ) 0 i j n-1 . Since r 3 = i 2 = (ir) 2 = id (Z/2Z) n ,
the subgroup of (Aut((Z/2Z) n ), •), the group of automorphisms of the vector space of n-tuples over Z/2Z, generated by r and i is isomorphic to the dihedral group D 3 r, i r

3 = i 2 = (ir) 2 = id (Z/2Z) n = D 3 .
As depicted in Figure 6, it is easy to see that the multiplicity function of a Steinhaus triangle is invariant under the action of the dihedral group D 3 . Indeed, for any finite sequence S, we have The study of rotationally symmetric triangles and dihedrally symmetric triangles, that are triangles ∇S such that S = r(S) and S = r(S) = i(S), respectively, can be found in [START_REF] Barbé | Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2[END_REF]; [START_REF] Brunat | Symmetries in Steinhaus triangles and in generalized Pascal triangles[END_REF]. Now, we consider the restrictions of r and i to the vector space PO p of p-tuples that generate p-periodic orbits. Since we only consider these restrictions, they are also denoted by r and i in the sequel.

m ∇S = m ∇r(S) = m ∇i(S) . 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 ∇S ∇r(S) ∇r 2 (S) ∇i(S) ∇ri(S) ∇r 2 i(S)
Proposition 3.1. For all positive integers p, we have

r (PO p ) = i (PO p ) = PO p .
Proof: Let X ∈ PO p and O X ∞ = (a i,j ) (i,j)∈N×Z . Then, by definition, r(X) = (a j,p-1 ) 0 j p-1 and i(X) = (a 0,p-1-j ) 0 j p-1 . Let O r(X) ∞ = (b i,j ) (i,j)∈N×Z and O i(X) ∞ = (c i,j ) (i,j)∈N×Z . We will show that b i,j = a j-i,-i-1 and c i,j = a i,i-j-1 for all i ∈ N and all j ∈ Z. We proceed by induction on i ∈ N. For i = 0, by definition, we have that b 0,j = b 0,j = a j,p-1 = a j,-1 and c 0,j = c 0,j = a 0,p-1-j = a 0,-j-1 for all j ∈ Z. Suppose that the formulas are verified for a certain value of i -1 0 and for all j ∈ Z.

Then, using (1),

b i,j = b i-1,j-1 + b i-1,j = a j-i,-i + a j-i+1,-i = a j-i,-i + a j-i+1,-i = a j-i,-i-1 = a j-i,-i-1 and c i,j = c i-1,j-1 + c i-1,j = a i-1,i-j-1 + a i-1,i-j-2 = a i-1,i-j-1 + a i-1,i-j-1-1 = a i-1+1,i-j-1 = a i,i-j-1
for all j ∈ Z. This verifies the formulas and we deduce that b i,j = b i,j and c i,j = c i,j for all i ∈ N and all j ∈ Z. Then the orbit O r(X) ∞ and O i(X) ∞ are p-periodic. Therefore r(X) and i(X) are in PO p . This proves that r (PO p ) ⊂ PO p and i (PO p ) ⊂ PO p and implies that

PO p = r 3 (PO p ) ⊂ r 2 (PO p ) ⊂ r (PO p ) ⊂ PO p and PO p = i 2 (PO p ) ⊂ i (PO p ) ⊂ PO p .
This concludes the proof.

It follows that r and i are automorphisms of the vector space PO p and the subgroup of (Aut(PO p ), •) generated by r and i is also isomorphic to the dihedral group D 3

D 3 = r, i = id POp , r, r 2 , i, ri, r 2 i .
More precisely, for any p-tuple X, we have

O X ∞ = (a i,j ) (i,j)∈N×Z O i(X) ∞ = (a i,i-j-1 ) (i,j)∈N×Z O r(X) ∞ = (a j-i,-i-1 ) (i,j)∈N×Z O ri(X) ∞ = (a -j-1,-i-1 ) (i,j)∈N×Z O r 2 (X) ∞ = (a -j-1,i-j-1 ) (i,j)∈N×Z O r 2 i(X) ∞ = (a j-i,j ) (i,j)∈N×Z
For instance, a representation of O g(010100) ∞ for all g ∈ D 3 is given in Figure 7.

1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 O X ∞ O r(X) ∞ O r 2 (X) ∞
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O i(X) ∞ O ri(X) ∞ O r 2 i(X) ∞

The symmetry group of PO p

Let G be the subgroup of (Aut(PO p ), •) generated by r, i, t 1,0 and t 0,1 , that is,

G := r, i, t 1,0 , t 0,1 .
As in D 3 , the equality ir = r 2 i holds in G. The equalities involving the translations are listed below.

Proposition 3.2. For all (u, v) ∈ Z 2 , the equalities rt u,v = t v-u,-u r and it u,v = t u,u-v i hold.

Proof: Let (u, v) ∈ Z 2 and O X ∞ = (a i,j ) (i,j)∈N×Z be a p-periodic orbit. Then,

O rtu,v(X) ∞ = a j-i+u-v,-i-1+u (i,j)∈N×Z = O tv-u,-ur(X) ∞ and O itu,v(X) ∞ = a i-u,i-j-1+v-u (i,j)∈N×Z = O tu,u-vi(X) ∞ .
From these equalities, it is clear that each element g ∈ G can be uniquely written as

g = t u,v r α i β with u, v ∈ {0, 1, . . . , p -1}, α ∈ {0, 1, 2} and β ∈ {0, 1}. Therefore G is a group of order |G| = 6p 2 .

Equivalence classes of PO p

Now, we consider the binary relation ∼ G on the set PO p defined by X 1 ∼ G X 2 if and only if there exists g ∈ G such that X 2 = g(X 1 ). Since G is a subgroup of (Aut(PO p ), •), it is clear that ∼ G is an equivalence relation on PO p . Therefore, to search balanced triangles, it is sufficient to examine only one representative of each equivalence classe in the set PO p := PO p / ∼ G . In the sequel, the equivalence class of the tuple X is denoted by X and the lexicographically smallest tuple X is used as the representative of each equivalence class X.

For example, for p = 6, PO 6 / ∼ G consists of 3 equivalence classes that contain the 16 tuples of PO 6 generating 6-periodic orbits. More precisely, PO 6 = PO 6 / ∼ G = {{000000} , {000101, 001010, 001111, 010001, 010100, 011110, 100010, 100111, 101000, 110011, 111001, 111100} , {011011, 101101, 110110}} = 000000, 000101, 011011 since 001010 = t 0,5 (000101) 100010 = t 0,1 (000101) 101101 = t 0,1 (011011) 001111 = t 1,3 (000101) 100111 = t 1,4 (000101) 110110 = t 0,2 (011011) 010001 = t 0,2 (000101) 101000 = t 0,3 (000101) 010100 = t 0,4 (000101) 110011 = t 1,5 (000101

) 011110 = t 1,2 (000101) 111001 = t 1,0 (000101) 111100 = t 1,1 (000101) 
The 6-periodic orbits associated with these 3 equivalence classes are depicted in Figure 8. Table 2 gives PO p for the first few values of p.

Family of periodic balanced Steinhaus triangles with the same principal vertex

In this section, we determine necessary and sufficient conditions for obtaining, in a p-periodic orbit, an infinite family of balanced Steinhaus triangles with the same principal vertex. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0
|PO p | 1 1 2 2 1 1 2 4 2 6 1 2 2 1 1 2 8 PO p 1 1 2 1 1 3 3 1 2 1
|PO p | 1 2 12 2 14 1 1 2 4 1 1 2 8 1 1 2 16 PO p 1 13 30 1 1 3 1 1 6 1 1 92
Tab. 2: The first few values of POp Proposition 4.1. Let S = X ∞ with X ∈ PO p , (i 0 , j 0 ) ∈ N×Z and r ∈ {0, 1, . . . , p-1}. The Steinhaus triangles T k := ∇S(i 0 , j 0 , kp + r)

are balanced for all non-negative integers k if and only if the triangle T 0 , the multiset difference T 1 \ T 0 and the period P are balanced, with p divisible by 4.

Proof: Suppose that (i 0 , j 0 ) ∈ N × Z and r ∈ {0, 1, . . . , p -1} are fixed. Let k ∈ N. Then, from the periodicity of O S , we know that the Steinhaus triangle T k = ∇S(i 0 , j 0 , kp + r) can be decomposed into elementary blocks T 0 , T 1 \ T 0 and P , as represented in Figure 9 for k = 5.

T 0 

T 1 \ T 0 P P P P T 1 \ T 0 P P P T 1 \ T 0 P P T 1 \ T 0 P T 1 \ T 0
m T k = m T0 + km T1\T0 + k 2 m P .
First, suppose that T 0 , T 1 \ T 0 and P are balanced with p divisible by 4. Since p is divisible by 4, it is clear that the cardinalities |T 1 \ T 0 | = pr + p+1 2 and |P | = p 2 are even. Therefore, since the multiset difference T 1 \ T 0 and the period P are balanced, the multiplicity functions m T1\T0 and m P are constant. It follows that δ T K = δ T0 ∈ {0, 1} and thus the triangles T k are balanced for all non-negative integers k.

Conversely, suppose that the triangles T k are balanced for all non-negative integers k. Thus, the value of (m

T k (0) -m T k (1)) -(m T0 (0) -m T0 (1)) is in the set {-2, -1, 0, 1, 2} for all k ∈ N. Therefore, lim k→∞ (m T k (0) -m T k (1)) -(m T0 (0) -m T0 (1)) k = 0. It follows that lim k→∞ (m T1\T0 (0) -m T1\T0 (1)) + k -1 2 (m P (0) -m P (1)) = 0.
Then, we deduce that m T1\T0 (0) -m T1\T0 (1) = m P (0) -m P (1) = 0. Therefore the multiset difference T 1 \ T 0 and the period P are balanced and with even cardinalities. Finally, since |P | = p 2 and |T 1 \ T 0 | = pr + p+1 2 , we conclude that p must be divisible by 4 in this case. This is the reason why, in the sequel of this paper, we only consider p-periodic orbits with a balanced period and where p is divisible by 4.

Note that the period of the orbit generated from every element of a same equivalence class of PO p has the same multiplicity function. Let us denote by BPO p the set of all the equivalence classes of PO p having a balanced period. Tab. 4: The representatives Xi of BPO24 = X1, X2, . . . , X17

Periodic balanced triangles

In this section we will prove Theorem 1.2, the main result of this paper.

Let X be a p-tuple of Z/2Z, with p divisible by 4, such that X is in BPO p and let S := X ∞ . Now, for each remainder r ∈ {0, 1, . . . , p -1} and for each position (i 0 , j 0 ) ∈ {0, 1, . . . , p -1} 2 , we test if the blocks ∇S(i 0 , j 0 , r) and ∇S(i 0 , j 0 , p + r) \ ∇S(i 0 , j 0 , r) are balanced. If this is the case, we know from Proposition 4.1 that the Steinhaus triangles ∇S(i 0 , j 0 , kp + r) are balanced for all non-negative integers k.

Let R X denote the set of remainders r ∈ {0, 1, . . . , p -1} for which there exists a position (i 0 , j 0 ) ∈ {0, 1, . . . , p -1}

2 such that the Steinhaus triangles ∇S(i 0 , j 0 , kp + r) are balanced for all non-negative integers k.

From Table 3, the first values of p, divisible by 4, for which BPO p = ∅ are 12 and 24. For p = 12, we find that R Yi = ∅ for each of the two equivalence classes BPO 12 = Y 1 , Y 2 . For p = 24, we find that R Xi = ∅ for the first 15 of the 17 equivalence classes of BPO 24 = X 1 , X 2 , . . . , X 17 . Note that the two equivalence classes X of BPO 24 such that R X = ∅ are exactly of the form X = Y 2 with Y ∈ BPO 12 (as already seen X 16 = Y 2 1 and X 17 = Y 2 2 ). More precisely, For six equivalence classes X of BPO 24 , we find that |R X | = 24 and thus, from these 24-tuples, we obtain the proof of Theorem 1.2 for Steinhaus triangles, i.e., there exist periodic orbits containing balanced Steinhaus triangles of size n for all n 1.

For instance, in the orbit O X ∞ This generalization was introduced in [START_REF] Molluzzo | Steinhaus graphs[END_REF], where the author posed the following problem.

r (i 0 , j 0 ) p -1 -r (i 0 + r -p, j 0 + r + 1 -p) Z l Z r 0 (
Molluzzo Problem. Does there exist, for any positive integers m and n such that the triangular number (Chappelon andEliahou, 2012), 5, 7 (Chappelon, 2008a) and for all m = 3 k with k ∈ N (Chappelon, 2008a,b). It is also known (Chappelon, 2008a) that there exist some values of m and n for which there do not exist balanced Steinhaus triangles: for n = 5 and m = 15 or n = 6 and m = 21.

In this section, some of these solutions are recalled because they involve balanced triangles that are also periodic.

First, in Chappelon (2008b), it was proved that, for any odd number m, the Steinhaus triangles generated from an arithmetic progression with an invertible common difference in Z/mZ and of length n is balanced for all n ≡ 0 or -1 mod ord m (2 m )m, where ord m (2 m ) is the multiplicative order of 2 m modulo m. For instance, for (i mod m) i∈Z , the sequence of the integers modulo m, the Steinhaus triangle ∇(0, 1, 2, . . . , n -1) is balanced in Z/mZ for all n ≡ 0 or -1 mod ord m (2 m )m. In the proof of this result, it appears that the orbit generated from any arithmetic progression is periodic of period ord m (2 m )m. This implies that all these balanced Steinhaus triangles modulo an odd number m are also ord m (2 m )mperiodic. Note that a generalization of this result in higher dimensions for balanced simplices can be found in [START_REF] Chappelon | Balanced simplices[END_REF] and these simplices also have periodic structure.

In [START_REF] Chappelon | A universal sequence of integers generating balanced Steinhaus figures modulo an odd number[END_REF], the following integer sequence S = (a j ) j∈Z defined by    a 3j = j, a 3j+1 = -1 -2j, a 3j+2 = 1 + j, for all j ∈ Z, is considered. Note that this sequence is an interlacing of three arithmetic progressions. It was proved that, for every odd number m, the orbit of the projection of S in Z/mZ contains balanced Steinhaus triangles of size n, for all n divisible by m and for all n ≡ -1 mod 3m, and balanced generalized Pascal triangles of size n, for all n ≡ -1 mod n and for all n divisible by 3m. It was proved in [START_REF] Chappelon | A universal sequence of integers generating balanced Steinhaus figures modulo an odd number[END_REF] that the orbit of this special sequence modulo m is periodic of period 6m. Thus, there exist periodic balanced triangles of these size modulo m odd. All these results lead to consider the following subproblem of the Molluzzo Problem.

Problem 2. Does there exist, for any positive integer m, infinitely many periodic balanced (Steinhaus or generalized Pascal) triangles modulo m?

This problem is positively solved for any odd number m (Chappelon, 2008b[START_REF] Chappelon | A universal sequence of integers generating balanced Steinhaus figures modulo an odd number[END_REF], for m = 2 (the present paper), for m = 4 only for Steinhaus triangles [START_REF] Chappelon | On the problem of Molluzzo for the modulus 4[END_REF] and for m ∈ {6, 8, 10} (Eliahou and Gensane). It remains to analyse the case where m is even and m 12.
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 2 Fig. 2: Binary triangles appearing in an orbit OS
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 6 Fig. 6: Action of D3 on ∇(0100)
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 7 Fig. 7: Action of D3 on O010100∞
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 8 Fig. 8: The set PO6 = 000000, 000101, 011011
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 9 Fig. 9: Decomposition of T5 More precisely, the triangle T k is constituted by one block T 0 , k blocks T 1 \ T 0 and k 2 blocks P . It follows that the multiplicity function m T k of the triangle T k must verify that

Fig. 10 :

 10 Fig. 10: The balanced Steinhaus triangles ∇X ∞ 9 (6, 9, 24k + 6)

  m, a balanced Steinhaus triangle modulo m of size n? This problem is still largely open. It is positively solved only for m = 2 (Steinhaus Problem), 4

  Table 1 gives dim ker(W p ) and |PO p | = 2 dim ker(Wp) for the first few values of p.For example, for p = 6, we have dim ker(W 6 ) = 4 and |PO 6 | = 2 4 = 16. There are then 16 different 6-tuples that generate a 6-periodic orbit. More precisely, the set PO 6 is given by

	p	1	2	3	4	5	6	7	8	9 10 11 12
	dim ker(W p )	0	0	2	0	0	4	6	0	2	0	0	8
	p	13 14 15 16 17 18 19 20 21 22 23 24
	dim ker(W p )	0 12 14 0	0	4	0	0	8	0	0 16
			Tab. 1: The first few values of dim ker(Wp)				
	PO 6 = 000101, 001010, 010001, 100010							
	= {000000, 000101, 001010, 001111, 010001, 010100, 011011, 011110,	
	100010, 100111, 101000, 101101, 110011, 110110, 111001, 111100} .

  Table 3 gives BPO p for the first few values of p divisible by 4. The first few values of BPOp More precisely, we obtainBPO 12 = Y 1 , Y 2 = 000001110111, 000101000101and BPO 24 = X 1 , X 2 , . . . , X 17 , where the 17 representatives X i are given in Table4. Note thatX 16 = Y 2 1 and X 17 = Y 2 2 . Therefore the orbits O X ∞ 16 and O X ∞ 17 correspond to O Y ∞ 1and O Y ∞ 2 , respectively. A representation of the orbits generated from the elements of BPO 12 and BPO 24 can be found in Appendix A.

	p	4 8 12 16 20	24
	|PO p |	1 1 256 1	1 65536
	PO p	1 1	7	1	1	92
	BPO p	0 0	2	0	0	17
	Tab. 3: i X i		i			X i
	1 000000000110101101101011	10 000000101001110110011111
	2 000000001001011110010111	11 000001000010010100100001
	3 000000010010011000100111	12 000001000101101101011111
	4 000000010110111001101111	13 000001001000001110000111
	5 000000010111110001111101	14 000001001111110111111001
	6 000000100001111100011101	15 000001100001100100011111
	7 000000100010100100101011	16 000001110111000001110111
	8 000000100011101100111001	17 000101000101000101000101
	9 000000101000111110001101				

  Table 5 gives the exact number of remainders constituting R X for each X ∈ BPO 24 .

	i	X i	|R Xi |
	1	000000000110101101101011	18
	2	000000001001011110010111	16
	3	000000010010011000100111	23
	4	000000010110111001101111 24
	5	000000010111110001111101	17
	6	000000100001111100011101 24
	7	000000100010100100101011 24
	8	000000100011101100111001 24
	9	000000101000111110001101 24
	10	000000101001110110011111	23
	11 000001000010010100100001 24
	12	000001000101101101011111	23
	13	000001001000001110000111	20
	14	000001001111110111111001	20
	15	000001100001100100011111	23
	16	000001110111000001110111	0
	17	000101000101000101000101	0
		Tab. 5: |R	

X | for all X ∈ BPO24

associated with the 24-tuple X 9 = 000000101000111110001101, the
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existence of balanced Steinhaus triangles for all the possible sizes can be obtained from at least 4 positions. Table 6 gives positions (i 0 , j 0 ) in the orbit O X ∞ 9 for which the Steinhaus triangles ∇X ∞ 9 (i 0 , j 0 , 24k + r) are balanced for all non-negative integers k and the corresponding 24-tuples Z such that ∇Z ∞ [24k + r] = ∇X ∞ 9 (i 0 , j 0 , 24k + r). r (i 0 , j 0 ) Z 0, 4,7,8,12,13,15,16,21,22,23 (1, 11) 010000100101110000011110 1, 2, 3,5,10,17,18,19,20,21 (1, 6) 111100100001001011100000 0, 1, 6, 9, 14, 22, 23 (6, 9) 000111010101000101001100 11

(3, 3) 000110011101001011001011

The family of balanced Steinhaus triangles ∇X ∞ 9 (6, 9, 24k + 6), appearing in the orbit O X ∞ 9 for X 9 = 000000101000111110001101, is depicted in Figure 10, where empty and full squares correspond to 0 and 1 respectively. Indeed, we can verify that the blocks T 0 := ∇X ∞ 9 (6, 9, 6), T 1 \ T 0 := ∇X ∞ 9 (6, 9, 30) \ ∇X ∞ 9 (6, 9, 6) and the period P are balanced, since their multiplicity functions, given in The following proposition concludes the proof of Theorem 1.2 by showing that in an orbit O X ∞ generated from a p-tuple X such that X ∈ BPO p , the existence of balanced Steinhaus triangles implies that of balanced generalized Pascal triangles.

Proposition 5.1. Let S = X ∞ with X ∈ BPO p , (i 0 , j 0 ) ∈ N × Z, r ∈ {0, 1, . . . , p -1} and p divisible by 4. Then, the Steinhaus triangles ∇S(i 0 , j 0 , kp + r) are balanced for all non-negative integers k if and only if the generalized Pascal triangles ∆S(i 0 + r + 1, j 0 + r, kp + (p -1 -r)) are balanced for all non-negative integers k.

Proof: As depicted in Figure 11, we consider in the orbit O S = (a i,j ) (i,j)∈N×Z the elementary blocks

where i 0 = i 0 + r + 1, j 0 = j 0 + r and r = p -1 -r, and the period

Since O S is p-periodic with P balanced and p divisible by 4, we already know from Proposition 4.1 that the Steinhaus triangles ∇S(i 0 , j 0 , kp + r) are balanced for all non-negative integers k if and only if U 0 and U 1 ∪ U 0 are balanced. 

is balanced with an even cardinality, then we have

for all x ∈ Z/2Z. Therefore δm U0∪U1 = δm V0∪V1 . Moreover,

(2) for all x ∈ Z/2Z. Since p is divisible by 4, we already know from Proposition 4.1 that U 0 ∪ U 1 has an even number of elements. Therefore, if U 0 ∪ U 1 is balanced, then δ U0∪U1 = 0 and we deduce from (2)

Therefore the blocks U 0 and U 1 ∪ U 0 are balanced if and only if the blocks V 1 and V 0 ∪ V 1 are balanced. This concludes the proof.

Using Proposition 5.1 and the families of balanced Steinhaus triangles appearing in the orbit O X ∞ 9 associated with the 24-tuple X 9 = 000000101000111110001101 given in Table 6, we obtain the existence of balanced generalized Pascal triangles for all the possible sizes. For all non-negative integers k, we know that the generalized Pascal triangle ∆X ∞ 9 (i 0 , j 0 , 24k + r) is balanced for the values of 

) are also given in Table 8.

Moreover, in the orbit O X ∞ 9 associated with the 24-tuple X 9 = 000000101000111110001101, the existence of balanced generalized Pascal triangles for all the possible sizes can also be obtained from only 6 positions. This result is not obtained by using Proposition 5.1 but by testing, at each position (i 0 , j 0 ) and for each remainder r, if the elementary blocks V 1 and

The corresponding values appear in Table 9. Tab. 9: Other balanced triangles The triangle T is said to be balanced if its multiplicity function is constant or almost constant, i.e., if

Note that, when the triangle T is of size n such that the triangular number n+1 2 is divisible by m, the triangle T is balanced if δm T = 0, i.e., if the multiplicity function m T is constant, equal to 1 m n+1 2 . For example, the triangles in Figure 12, ∇(2330445) and ∆(012153, 065624), are balanced in Z/7Z since they contain all the elements of Z/7Z with the same multiplicity.

A The 24-periodic orbits with balanced periods

In this appendix, the orbits of representatives X i , for all the 17 elements of BPO 24 = X 1 , X 2 , . . . , X 17 , are given. Moreover, we have also obtained the orbits of the elements of BPO 12 = Y 1 , Y 2 . Indeed, as already remarked, we have