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Abstract

A binary triangle of size n is a triangle of zeroes and ones, with n rows, built with the same local
rule as the standard Pascal triangle modulo 2. A binary triangle is said to be balanced if the absolute
difference between the numbers of zeroes and ones that constitute this triangle is at most 1. In this
paper, the existence of balanced binary triangles of size n, for all positive integers n, is shown. This
is achieved by considering periodic balanced binary triangles.
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1 Introduction

The Steinhaus triangle ∇S associated to the finite sequence S = (a0, a1, . . . , an−1), of length n > 1 in
Z/2Z, is the triangle generated from S by the same local rule than the standard Pascal triangle modulo
2, that is the doubly indexed sequence ∇S = (ai,j)06i6j6n−1 defined by:

i) a0,j = aj , for all 0 6 j 6 n− 1,

ii) ai,j = ai−1,j−1 + ai−1,j , for all 1 6 i 6 j 6 n− 1.

Note that the sum in ii) is the sum modulo 2. This kind of binary triangles was introduced in [14] by
Hugo Steinhaus himself. For example, the Steinhaus triangle ∇S associated to S = 0010100 is depicted
in Figure 1.

The generalized Pascal triangle ∆(S1, S2) associated to the finite sequences S1 = (a0, a1, . . . , an−1)
and S2 = (b0, b1, . . . , bn−1), of length n > 1 in Z/2Z and with a0 = b0, is the doubly indexed sequence
∆(S1, S2) = (ai,j)06j6i6n−1 defined by:

i) ai,0 = ai and ai,i = bi, for all 0 6 i 6 n− 1,

ii) ai,j = ai−1,j−1 + ai−1,j , for all 1 6 j < i 6 n− 1.

For example, the generalized Pascal triangle ∆(S1, S2) associated to S1 = 0000101 and S2 = 0100001 is
depicted in Figure 1. Moreover, note that, for the constant binary sequences S1 = S2 = 11 · · · 1 of size
n, the triangle ∆(S1, S2) corresponds to the first n rows of the standard Pascal triangle modulo 2, the
Sierpinski triangle.

In this paper, a binary triangle is either a Steinhaus triangle or a generalized Pascal triangle. The
size of a binary triangle is the number of rows that constitute this triangle.

For any binary triangle T , let mT denote its multiplicity function, that is, the function mT : Z/2Z −→
N that assigns to each element x ∈ Z/2Z its multiplicity in T . The triangle T is said to be balanced if its
multiplicity function is constant or almost constant, i.e., if the multiplicity difference

δmT := |mT (1)−mT (0)|
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∇(0010100) ∆(0000101, 0100001)

Figure 1: Binary triangles

is such that δmT ∈ {0, 1}. Since they contain 14 zeroes and 14 ones, the triangles depicted in Figure 1
are balanced binary triangles of size 7.

The goal of this paper is to prove that there exist balanced binary triangles of size n, for all positive
integers n and for the both kinds of binary triangles. This completely solves a generalization of a problem
posed in 1964 by Hugo Steinhaus [14].

Steinhaus Problem. Does there exist, for any positive integer n ≡ 0 or 3 mod 4, a binary sequence S
of length n for which the associated triangle ∇S contains as many zeroes as ones?

Remark that a binary triangle of size n contains
(
n+1
2

)
elements. Therefore the condition n ≡ 0 or

3 mod 4 is a necessary and sufficient condition for having a triangle of size n containing an even number
of terms.

The Steinhaus Problem was solved for the first time by Heiko Harborth in 1972 [12]. In his paper,
Harborth constructively showed that, for every positive integer n ≡ 0 or 3 mod 4, there exist at least
four binary sequences S of length n such that ∇S is balanced. Since then, many solutions have appeared
[9, 10, 11]. All of them are constructive and correspond to the search of sequences generating balanced
triangles, that have some additional properties such as being antisymmetric or zero-sum.

The possible number of ones in a binary triangle was explored in [3]. The minimum number of ones
is obviously 0 since the triangle of zeroes of size n is always a binary triangle. Since a Steinhaus triangle
of size 2 contains either two ones and one zero, or three zeroes, it follows that the maximum number of
ones in a binary triangle of size n is at least 2

3

(
n+1
2

)
. The following result gives the average number of

ones and zeroes in binary triangles.

Proposition 1.1. The average number of ones and zeroes in a binary triangle of size n is exactly 1
2

(
n+1
2

)
.

Proof. By induction on n > 1.
First, for the Steinhaus triangles. For n = 1, the result is trivial. Suppose now that n > 2 and that

the result is true for any Steinhaus triangle of size n− 1. Let ∇S be the Steinhaus triangle of size n− 1
generated from the sequence S = (a0, a1, . . . , an−2). There exist exactly two sequences S′ of length n
such that we retrieve ∇S as the subtriangle ∇S′ \S′, that is, the last n−1 rows of the Steinhaus triangle
∇S′ of size n. These sequences S′ are of the form

S′ =

x, x+ a0, x+ a0 + a1, . . . , x+

i−1∑
j=0

aj , . . . , x+

n−2∑
j=0

aj

 ,

with x ∈ Z/2Z. Moreover, for all positive integers m, it is clear that there are 2m binary sequences of
length m and the same number of Steinhaus triangles of size m. It follows that, for all x ∈ Z/2Z, the
total number of x in the set of all the Steinhaus triangles of size n is the sum of twice the total number
of x in the set of Steinhaus triangles of size n − 1 and the total number of x in the set of sequences of
length n. This leads to the result that the average number of x in a Steinhaus triangle of size n is

1

2n

(
2× 2n−1 × 1

2

(
n

2

)
+ 2n−1n

)
=

1

2

(
n+ 1

2

)
,

for all x ∈ Z/2Z.
Now, for the generalized Pascal triangles. For n = 1 and n = 2, the result is clear. Suppose now

that n > 3 and that the result is true for any generalized Pascal triangle of size n − 2. Let ∆(S1, S2)
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be the generalized Pascal triangle of size n− 2 generated from the sequences S1 = (a0, a1, . . . , an−3) and
S2 = (b0, b1, . . . , bn−3), with a0 = b0. There exist exactly 24 couples (S′1, S

′
2) of sequences of length n such

that we retrieve ∆(S1, S2) as the subtriangle ∆(S′1, S
′
2) \ (S′1 ∪ S′2 \ {a0}), that is, the generalized Pascal

triangle obtained from ∆(S′1, S
′
2) by removing the left and right sides of the triangle. These couples of

sequences (S′1, S
′
2) are of the form

S′1 = (x1, x2, a0 + a1, a1 + a2, . . . , an−4 + an−3, x3) ,

S′2 = (x1, x2 + a0, b0 + b1, b1 + b2, . . . , bn−4 + bn−3, x4) ,

where x1, x2, x3, x4 ∈ Z/2Z. Moreover, for all positive integers m, it is clear that there are 22m−1 binary
sequences of length 2m − 1 and the same number of generalized Pascal triangles of size m. It follows
that, for all x ∈ Z/2Z, the total number of x in the set of all the generalized Pascal triangles of size n
is the sum of 24 times the total number of x in the set of generalized Pascal triangles of size n − 2 and
the total number of x in the set of sequences of length 2n− 1. This leads to the result that the average
number of x in a generalized Pascal triangle of size n is

1

22n−1

(
24 × 22(n−2)−1 × 1

2

(
n− 1

2

)
+ 22n−2(2n− 1)

)
=

1

2

(
n+ 1

2

)
,

for all x ∈ Z/2Z. This completes the proof.

This result shows that the Steinhaus Problem and the following generalization are natural.

Problem 1. Does there exist, for any positive integer n, a balanced Steinhaus triangle and a balanced
generalized Pascal triangle of size n?

As already announced before, this problem is positively solved in this paper. The solution presented
here is constructive and based on the analysis of periodic balanced binary triangles.

Let us begin with some definitions and terminology. Let S = (aj)j∈Z be a doubly infinite sequence

of Z/2Z. The derived sequence ∂S is the sequence obtained by pairwise adding consecutive terms of S,
that is, the sequence defined by

∂S = (aj−1 + aj)j∈Z .

This derivation process can be iterated and, for every positive integer i, the ith derived sequence ∂iS is
recursively defined by ∂i = ∂

(
∂i−1S

)
with ∂0S = S. The orbit OS is the sequence of all the iterated

derived sequences of S, that is,
OS =

(
∂iS

)
i∈N .

The orbit of S can also be seen as the doubly indexed sequence OS = (ai,j)(i,j)∈N×Z defined by:

i) a0,j = aj , for all j ∈ Z,

ii) ai,j = ai−1,j−1 + ai−1,j , for all i > 1 and for all j ∈ Z.

An example of orbit OS associated with the sequence

S = (. . . . . . , 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, . . . . . .)

is depicted in Figure 2.
Binary triangles can then been considered as appearing in orbits of binary sequences. Let ∇S(i0, j0, n)

denote the triangle build from the base to the top, whose principal vertex is at the position (i0, j0) ∈ N×Z
in the orbit OS = (ai,j)(i,j)∈N×Z and of size n, i.e., the Steinhaus triangle

∇S(i0, j0, n) = ∇(ai0,j0 , ai0,j0+1, . . . , ai0,j0+n−1) = (ai0+i,j0+j)06i6j6n−1 .

Let ∆S(i0, j0, n) denote the triangle build from the top to the base, whose principal vertex is at the
position (i0, j0) ∈ N× Z in the orbit OS and of size n, i.e., the generalized Pascal triangle

∆S(i0, j0, n) = ∆((ai0,j0 , ai0+1,j0 , . . . , ai0+n−1,j0), (ai0,j0 , ai0+1,j0+1, . . . , ai0+n−1,j0+n−1))

= (ai0+i,j0+j)06j6i6n−1 .

Example of triangles appearing in an orbit OS is represented in Figure 2.
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0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0

1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1

1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1

1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1

0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0

1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1

0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0

0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0

1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1

1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1

0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0

1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1

0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0

Figure 2: Binary triangles appearing in an orbit OS

0 0 1 0 0 1 1
0 1 1 0 1 0

1 0 1 1 1
1 1 0 0

0 1 0
1 1

0

0 0 1 0 0 1 1

0 1 1 0 1 0

1 0 1 1 1

1 1 0 0

0 1 0

1 1

0

Figure 3: Isomorphism between PT n and ST 2n−1

The sets of all the Steinhaus triangles of size n and of all the generalized Pascal triangles of size n are
denoted by ST n and PT n, respectively. It is clear that these sets are Z/2Z-vector spaces of dimension n
and 2n−1, respectively. Moreover, as depicted in Figure 3, there exists an obvious isomorphism between
PT n and ST 2n−1 since a generalized Pascal triangle of size n can be seen as the center of a Steinhaus
triangle of size 2n− 1.

A binary triangle of size n is constituted by
(
n+1
2

)
elements, the nth triangular number. Therefore,

a binary triangle of size n contains an even number of terms for n ≡ 0, 3 mod 4 and an odd number of
terms for n ≡ 1, 2 mod 4. It follows that a binary triangle T of size n is balanced if and only if

δmT =

{
0 for n ≡ 0, 3 mod 4,
1 for n ≡ 1, 2 mod 4.

In other words, a binary triangle T of size n is balanced if and only if either mT (0) = mT (1), for
n ≡ 0, 3 mod 4, or mT (0) = mT (1)± 1, for n ≡ 1, 2 mod 4. Then, the Steinhaus Problem only consists to
determine whether there exist balanced Steinhaus triangles containing an even number of terms, for all
the admissible sizes.

The main result of this paper is the following

Theorem 1.2. There exists a binary doubly infinite sequence S such that its orbit OS contains balanced
Steinhaus triangles and balanced generalized Pascal triangles of size n, for all positive integers n.

This theorem completely and positively solves Problem 1, the generalization of the Steinhaus Problem
for the two kinds of triangles, even when the triangles contain an odd number of terms. Note that the
existence of balanced Steinhaus triangles with odd cardinality was first announced, without proof, in [9].
For the generalized Pascal triangles, the result is known by the community but never written before.

This paper is organized as follows. In the next section, the behavior of the p-periodic sequences under
the action of the derivation process is studied and the set of p-tuples that generate p-periodic orbits
is determined, for all values of p. An equivalence relation on the set of p-periodic orbits is given in
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Section 3. This permits us to only consider the equivalence classes of p-periodic orbits and considerably
reduce the number of orbits to analyse in the sequel. Let (i0, j0) be a fixed position in the orbit OS and
r ∈ {0, 1, . . . , p−1} be a fixed residue class modulo p. In Section 4, necessary and sufficient conditions on
the family of Steinhaus triangles ∇S(i0, j0, pk+ r), for being balanced for all non-negative integers k, are
obtained. This leads to the proof of Theorem 1.2 in Section 5. Finally, we show in Section 6 that already
known results on balanced triangles modulo m can also be expressed like periodic balanced triangles.

2 Periodic orbits

For any n1-tuple X1 = (a0, a1, . . . , an1−1) and any n2-tuple X2 = (b0, b1, . . . , bn2−1) of elements in Z/2Z,
the concatenation X1.X2 is the (n1+n2)-tuple (a0, a1, . . . , an1−1, b0, b1, . . . , bn2−1). For any n-tuple X, the
kn-tuple Xk is recursively defined by Xk = X.Xk−1 for all integers k > 2, with X1 = X. For any n-tuple
X = (a0, a1, . . . , an−1), the doubly infinite sequence X∞ = (bj)j∈Z is defined by bkn+j = aj for all k ∈ Z
and for all j ∈ {0, 1, . . . , n− 1}. For any doubly infinite sequence S = (aj)j∈Z and any positive integer n,
we denote by S[n] the initial segment of length n of S, that is, the n-tuple S[n] = (a0, a1, . . . , an−1).

Let p be a positive integer and let S = (aj)j∈Z be a doubly infinite sequence of elements of Z/2Z. The
sequence S is said to be periodic of period p, or p-periodic, if aj+p = aj for all j ∈ Z. The p-periodicity of
S is denoted by S = (a0, a1, . . . , ap−1)

∞
, where the p-tuple (a0, a1, . . . , ap−1) is a period of length p of S.

First, it is clear that the periodicity of S is preserved under the derivation process.

Proposition 2.1. For any p-tuple (a0, a1, . . . , ap−1), we have

∂ (a0, a1, . . . , ap−1)
∞

= (ap−1 + a0, a0 + a1, . . . , ap−2 + ap−1)
∞

An infinite sequence (Ai)i∈N is said to be pseudo-periodic of period p if there exists i0 ∈ N such that
Ai+p = Ai for all i > i0.

Proposition 2.2. The orbit of a periodic sequence is a pseudo-periodic sequence.

Proof. Let S be a p-periodic sequence of Z/2Z and let OS =
(
∂iS

)
i∈N be its associated orbit. By

Proposition 2.1, we know that, for every non-negative integer i, the derived sequence ∂iS is a p-periodic
sequence. Since the number of p-tuples over Z/2Z and thus the number of p-periodic sequences of Z/2Z
is finite, we deduce that there exist 0 6 i1 < i2 such that ∂i1S = ∂i2S. This leads to

∂i+(i2−i1)S = ∂i−i1∂i2S = ∂i−i1∂i1S = ∂iS

for all i > i1. The sequence OS is then a pseudo-periodic sequence of period i2 − i1.

We can retrieve the case where the orbit is pseudo-periodic and not periodic in the papers of Harborth
[12] and of Eliahou and Hachez [9]. Here, we will study the special case where the orbit is fully periodic.

The orbit OS = (ai,j)(i,j)∈N×Z is said to be periodic of period p, or p-periodic, if every row and every

column is a p-periodic sequence, i.e., if the equalities

ai,j+p = ai,j and ai+p,j = ai,j

hold for all i ∈ N and all j ∈ Z. In other words, the orbit (ai,j)(i,j)∈N×Z is p-periodic if the equality

ai,j = ai,j

holds, for all (i, j) ∈ N × Z, where x is the rest in the euclidean division of x by p. For example, as
depicted in Figure 4, the orbit OX∞ associated with the 6-tuple X = 010100 is 6-periodic.

Any square Pi0,j0 = (ai0+i,j0+j)06i,j6p−1 of size p is said to be a period of the p-periodic orbit OS .
Remark that all the periods of a p-periodic orbit have the same multiplicity function, i.e., we have
mPi0,j0

= mP0,0
for all (i0, j0) ∈ N× Z.

The set of p-tuples of Z/2Z that generate p-periodic orbits is determined in the following result, that
also appears in [12].

Theorem 2.3. The orbit OX∞ associated with the p-tuple X = (a0, a1, . . . , ap−1) is p-periodic if and
only if the vector vX = (a0, a1, . . . , ap−1)t is in the kernel of the matrix Wp, where M t is the transposed
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0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0

0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1

1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1

0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1

1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0

0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1

1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1

0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1

1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

Figure 4: The 6-periodic orbit O010100∞

of the matrix M and Wp is the Wendt matrix of size p modulo 2, i.e., the circulant matrix of the binomial
coefficients modulo 2

Wp =



(
p
p

) (
p
p−1
) (

p
p−2
)
· · ·

(
p
1

)(
p
1

) (
p
p

) (
p
p−1
)
· · ·

(
p
2

)
...

...
...

...(
p
p−1
) (

p
p−2
) (

p
p−3
)
· · ·

(
p
p

)

 .

For proving this result, we use the following lemma where it is shown that each term of the orbit OS
can be expressed in function of the elements of the sequence S.

Lemma 2.4. Let OS = (ai,j)(i,j)∈N×Z be an orbit and let i0 be a non-negative integer. Then,

ai0+i,j =

i∑
k=0

(
i

k

)
ai0,j−k

for all (i, j) ∈ N× Z.

The proof of this lemma can be obtained by induction on i ∈ N.

Proof of Theorem 2.3. Let X = (a0, a1, . . . , ap−1) be a p-tuple and let OX∞ = (ai,j)(i,j)∈N×Z be its

associated orbit. Since, by definition, the sequence X∞ is p-periodic, we already know from Proposi-
tion 2.1 that the derived sequences ∂iX∞ are p-periodic for all non-negative integers i. Therefore the
equality ai,j+p = ai,j is always verified for all (i, j) ∈ N × Z. Thus, the orbit OX∞ is p-periodic if

and only if ai+p,j = ai,j for all (i, j) ∈ N × Z. By Lemma 2.4, we have ai+p,j =
∑i
k=0

(
i
k

)
ap,j−k and

ai,j =
∑i
k=0

(
i
k

)
a0,j−k for all (i, j) ∈ N × Z. This is the reason why the equality ai+p,j = ai,j holds

for all (i, j) ∈ N × Z if and only if ap,j = a0,j for all j ∈ Z. Moreover, since the sequences (a0,j)j∈Z
and (ap,j)j∈Z are p-periodic, we obtain that the orbit OX∞ is p-periodic if and only if ap,j = a0,j
for all j ∈ {0, 1, . . . , p − 1}. From Lemma 2.4 again, we know that ap,j =

∑p
k=0

(
p
k

)
a0,j−k for all

j ∈ {0, 1, . . . , p− 1}. Therefore the orbit OX∞ is p-periodic if and only if

(
p
1

)
a0,−1 +

(
p
2

)
a0,−2 + · · ·+

(
p
p

)
a0,−p = 0(

p
1

)
a0,0 +

(
p
2

)
a0,−1 + · · ·+

(
p
p

)
a0,−p+1 = 0

...(
p
1

)
a0,p−2 +

(
p
2

)
a0,p−3 + · · ·+

(
p
p

)
a0,−1 = 0

⇐⇒



(
p
1

)
ap−1 +

(
p
2

)
ap−2 + · · ·+

(
p
p

)
a0 = 0(

p
1

)
a0 +

(
p
2

)
ap−1 + · · ·+

(
p
p

)
a1 = 0

...(
p
1

)
ap−2 +

(
p
2

)
ap−3 + · · ·+

(
p
p

)
ap−1 = 0

,

i.e., if and only if the p-tuple X is in the kernel of the Wendt matrix Wp =
((

p
|i−j|

))
16i,j6p

modulo 2.

The set of p-tuples X that generate p-periodic orbits OX∞ is denoted by POp. It is then a Z/2Z-vector
space isomorphic to the kernel of the Wendt matrix Wp of size p modulo 2. Table 1 gives dim ker(Wp)
and then |POp| = 2dimker(Wp) for the first few values of p.
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p 1 2 3 4 5 6 7 8 9 10 11 12
dim ker(Wp) 0 0 2 0 0 4 6 0 2 0 0 8

p 13 14 15 16 17 18 19 20 21 22 23 24
dim ker(Wp) 0 12 14 0 0 4 0 0 8 0 0 16

Table 1: The first few values of dim ker(Wp)

For example, for p = 6, we have dim ker(W6) = 4 and |PO6| = 24 = 16. There are then 16 different
6-tuples that generate a 6-periodic orbit. More precisely, the set PO6 is given by

PO6 = 〈000101, 001010, 010001, 100010〉
= {000000, 000101, 001010, 001111, 010001, 010100, 011011, 011110,

100010, 100111, 101000, 101101, 110011, 110110, 111001, 111100} .

We retrieve here that the 6-tuple X = 010100 generates a 6-periodic orbit as depicted in Figure 4.

3 Symmetry group of POp

In this section, a symmetry group on the set of p-tuples that generate p-periodic orbits is defined. First,
the notion of translation and the action of the dihedral group D3 on periodic orbits are introduced.

3.1 Translation

Let OX∞ = (ai,j)(i,j)∈N×Z be the p-periodic orbit associated with X = (a0, a1, . . . , ap−1) ∈ POp. The

translate of X by the vector (u, v) ∈ Z2 is the p-tuple tu,v(X) = (a−u,j−v)06j6p−1. From Lemma 2.4, we
know that

tu,v(X) =

−u∑
k=0

(
−u
k

)
aj−v−k


06j6p−1

.

From the definition of tu,v(X), it is clear that

Otu,v(X)∞ =
(
ai−u,j−v

)
(i,j)∈N×Z

.

Therefore tu,v is an automorphism of POp. Moreover, the application(
Z2,+

)
−→ (Aut(POp), ◦)

(u, v) 7−→ tu,v

is a group morphism.
For example, the translate of the 6-tuple 010100 ∈ PO6 (Figure 4) by the vector (2, 3) is t2,3(010100) =

101000, as we can see in its orbit Ot2,3(010100)
∞ = O101000∞ depicted in Figure 5.

3.2 The dihedral group D3

First, consider the Steinhaus triangles ∇S = (ai,j)16i6j6n−1 of size n. The left and right sides of ∇S are
the sequences l(S) = (ai,i)06i6n−1 and r(S) = (ai,n−1)06i6n−1, respectively. From Lemma 2.4, we know
that l(S) and r(S) can be expressed in function of the elements of S = (aj)06j6n−1

l(S) =

(
i∑

k=0

(
i

k

)
ai−k

)
06i6n−1

and r(S) =

(
i∑

k=0

(
i

k

)
an−1−k

)
06i6n−1

.

The reversed sequence of S is the sequence read from the right to the left, that is i(S) = (an−1−j)06j6n−1.
Due to the symmetries involved in the local rule that generates ∇S, the Pascal local rule modulo 2,

it is known that the Steinhaus triangles ∇l(S), ∇r(S) and ∇i(S) correspond to the rotations of ∓120
degrees around the center of the triangle ∇S and the reflection across the vertical line through the center
of ∇S, respectively. More precisely, for all integers i and j such that 1 6 i 6 j 6 n− 1, we have

ai−1,j−1 + ai−1,j = ai,j ⇐⇒ ai−1,j + ai,j = ai−1,j−1 ⇐⇒ ai−1,j + ai−1,j−1 = ai,j .
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1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0

1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0

1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0

1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1

0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0

0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1

1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0

1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0

1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0

1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1

0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0

0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1

Figure 5: The translate t2,3(010100) = 101000

Therefore
∇l(S) = ∇(aj,j)16j6n−1 = (aj−i,j)06i6j6n−1,

∇r(S) = ∇(aj,n−1)16j6n−1 = (aj−i,n−1−i)06i6j6n−1,

∇i(S) = ∇(a0,n−1−j)06j6n−1 = (ai,n−1+i−j)06i6j6n−1.

Since
r3 = i2 = (ir)2 = id(Z/2Z)n ,

the subgroup of (Aut((Z/2Z)n), ◦), the group of automorphisms of the vector space of n-tuples over Z/2Z,
generated by r and i is isomorphic to the dihedral group D3〈

r, i
∣∣r3 = i2 = (ir)2 = id(Z/2Z)n

〉
= D3.

As depicted in Figure 6, it is easy to see that the multiplicity function of a Steinhaus triangle is
invariant under the action of the dihedral group D3. Indeed, for any finite sequence S, we have

m∇S = m∇r(S) = m∇i(S).

0 1 0 0
1 1 0

0 1
1

0 0 1 1
0 1 0

1 1
0

1 0 1 0
1 1 1

0 0
0

0 0 1 0
0 1 1

1 0
1

0 1 0 1
1 1 1

0 0
0

1 1 0 0
0 1 0

1 1
0

∇S ∇r(S) ∇r2(S) ∇i(S) ∇ri(S) ∇r2i(S)

Figure 6: Action of D3 on ∇(0100)

The study of rotationally symmetric triangles and dihedrally symmetric triangles, that are triangles
∇S such that S = r(S) and S = r(S) = i(S), respectively, can be found in [1, 2].

Now, we consider the restrictions of r and i to the vector space POp of p-tuples that generate p-periodic
orbits. Since we only consider these restrictions, they are also denoted by r and i in the sequel.

Proposition 3.1. For all positive integers p, we have

r (POp) = i (POp) = POp.

Proof. Let X ∈ POp and OX∞ = (ai,j)(i,j)∈N×Z. Then, by definition, r(X) = (aj,p−1)06j6p−1 and
i(X) = (a0,p−1−j)06j6p−1. Let Or(X)∞ = (bi,j)(i,j)∈N×Z and Oi(X)∞ = (ci,j)(i,j)∈N×Z. We will show that
bi,j = aj−i,−i−1 and ci,j = ai,i−j−1 for all i ∈ N and all j ∈ Z. We proceed by induction on i ∈ N. For
i = 0, by definition, we have that

b0,j = b0,j = aj,p−1 = aj,−1

and
c0,j = c0,j = a0,p−1−j = a0,−j−1

8



for all j ∈ Z. Suppose that the formulas are verified for a certain value of i − 1 > 0 and for all j ∈ Z.
Then,

bi,j = bi−1,j−1 + bi−1,j = aj−i,−i + aj−i+1,−i = aj−i,−i + aj−i+1,−i = aj−i,−i−1 = aj−i,−i−1

and

ci,j = ci−1,j−1 + ci−1,j = ai−1,i−j−1 + ai−1,i−j−2 = ai−1,i−j−1 + ai−1,i−j−1−1 = ai−1+1,i−j−1 = ai,i−j−1

for all j ∈ Z. The formulas are then proved and we deduce that bi,j = bi,j and ci,j = ci,j for all i ∈ N
and all j ∈ Z. Then the orbit Or(X)∞ and Oi(X)∞ are p-periodic. Therefore r(X) and i(X) are in POp.
This proves that r (POp) ⊂ POp and i (POp) ⊂ POp and implies that

POp = r3 (POp) ⊂ r2 (POp) ⊂ r (POp) ⊂ POp and POp = i2 (POp) ⊂ i (POp) ⊂ POp.

This concludes the proof.

It follows that r and i are automorphisms of the vector space POp and the subgroup of (Aut(POp), ◦)
generated by r and i is also isomorphic the dihedral group D3

D3 = 〈r, i〉 =
{
idPOp

, r, r2, i, ri, r2i
}
.

More precisely, for any p-tuple X, we have

OX∞ = (ai,j)(i,j)∈N×Z Oi(X)∞ = (ai,i−j−1)(i,j)∈N×Z
Or(X)∞ = (aj−i,−i−1)(i,j)∈N×Z Ori(X)∞ = (a−j−1,−i−1)(i,j)∈N×Z
Or2(X)∞ = (a−j−1,i−j−1)(i,j)∈N×Z Or2i(X)∞ = (aj−i,j)(i,j)∈N×Z

For instance, a representation of Og(010100)∞ for all g ∈ D3 is given in Figure 7.

1 1 0 0 1 1 1 1

0 0 1 0 1 0 0 0

0 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0

1 1 1 1 0 0 1 1

1 0 0 0 1 0 1 0

1 1 0 0 1 1 1 1

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

1 0 0 1 1 1 1 0

0 1 0 1 0 0 0 1

0 1 1 1 1 0 0 1

0 1 0 0 0 1 0 1

1 1 1 0 0 1 1 1

0 0 0 1 0 1 0 0

1 0 0 1 1 1 1 0

0 1 1 1 1 0 0 1

0 1 0 0 0 1 0 1

1 1 1 0 0 1 1 1

0 0 0 1 0 1 0 0

1 0 0 1 1 1 1 0

0 1 0 1 0 0 0 1

0 1 1 1 1 0 0 1

0 1 0 0 0 1 0 1

OX∞ Or(X)∞ Or2(X)∞

1 1 1 0 0 1 1 1

0 0 0 1 0 1 0 0

1 0 0 1 1 1 1 0

0 1 0 1 0 0 0 1

0 1 1 1 1 0 0 1

0 1 0 0 0 1 0 1

1 1 1 0 0 1 1 1

0 0 0 1 0 1 0 0

0 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0

1 1 1 1 0 0 1 1

1 0 0 0 1 0 1 0

1 1 0 0 1 1 1 1

0 0 1 0 1 0 0 0

0 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1

0 1 1 1 1 0 0 1

0 1 0 0 0 1 0 1

1 1 1 0 0 1 1 1

0 0 0 1 0 1 0 0

1 0 0 1 1 1 1 0

0 1 0 1 0 0 0 1

0 1 1 1 1 0 0 1

Oi(X)∞ Ori(X)∞ Or2i(X)∞

Figure 7: Action of D3 on O010100∞

3.3 The symmetry group of POp

Let G be the subgroup of (Aut(POp), ◦) generated by r, i, t1,0 and t0,1, that is,

G := 〈r, i, t1,0, t0,1〉 .

As in D3, the equality ir = r2i holds in G. The equalities involving the translations are listed below.

Proposition 3.2. For all (u, v) ∈ Z2, the equalities rtu,v = tv−u,−ur and itu,v = tu,u−v i hold.
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Proof. Let (u, v) ∈ Z2 and OX∞ = (ai,j)(i,j)∈N×Z be a p-periodic orbit. Then,

Ortu,v(X)∞ =
(
aj−i+u−v,−i−1+u

)
(i,j)∈N×Z

= Otv−u,−ur(X)∞

and
Oitu,v(X)∞ =

(
ai−u,i−j−1+v−u

)
(i,j)∈N×Z

= Otu,u−v i(X)∞ .

From these equalities, it is clear that each element g ∈ G can be uniquely written as

g = tu,vr
αiβ

with u, v ∈ {0, 1, . . . , p− 1}, α ∈ {0, 1, 2} and β ∈ {0, 1}. Therefore G is a group of order |G| = 6p2.

3.4 Equivalence classes of POp

Now, we consider the binary relation ∼G on the set POp defined by X1 ∼G X2 if and only if there
exists g ∈ G such that X2 = g(X1). Since G is a subgroup of (Aut(POp), ◦), it is clear that ∼G is an
equivalence relation on POp. Therefore, for searching balanced triangles, it is sufficient to examine only
one representative of each equivalence classe in the set POp := POp/ ∼G. In the sequel, the equivalence
class of the tuple X is denoted by X.

For example, for p = 6, we obtain that PO6/ ∼G is constituted by 3 equivalence classes that contain
the 16 tuples of PO6 generating 6-periodic orbits. More precisely,

PO6 = PO6/ ∼G = {{000000} , {110110, 101101, 011011} , {010100, 101000, 010001, 100010,
000101, 001010, 011110, 111100, 111001, 110011, 100111, 001111}}

=
{

000000, 110110, 010100
}

since
101101 = t0,5(110110) 101000 = t0,5(010100) 011110 = t5,0(010100)
011011 = t0,4(110110) 010001 = t0,4(010100) 111100 = t5,5(010100)

100010 = t0,3(010100) 111001 = t5,4(010100)
000101 = t0,2(010100) 110011 = t5,3(010100)
001010 = t0,1(010100) 100111 = t5,2(010100)

001111 = t5,1(010100)

The 6-periodic orbits associated with these 3 equivalence classes are depicted in Figure 8.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 1 1 0 1 1 0

0 1 1 0 1 1 0 1

1 1 0 1 1 0 1 1

1 0 1 1 0 1 1 0

0 1 1 0 1 1 0 1

1 1 0 1 1 0 1 1

1 0 1 1 0 1 1 0

0 1 1 0 1 1 0 1

1 1 0 0 1 1 1 1

0 0 1 0 1 0 0 0

0 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0

1 1 1 1 0 0 1 1

1 0 0 0 1 0 1 0

1 1 0 0 1 1 1 1

0 0 1 0 1 0 0 0

Figure 8: The set PO6 =
{

000000, 110110, 010100
}

Table 2 gives
∣∣POp∣∣ for the first few values of p.

4 Family of periodic balanced Steinhaus triangles with the same
principal vertex

In this section, we determine necessary and sufficient conditions for obtaining, in a p-periodic orbit, an
infinite family of balanced Steinhaus triangles with the same principal vertex.
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p 1 2 3 4 5 6 7 8 9 10 11 12
|POp| 1 1 22 1 1 24 26 1 22 1 1 28∣∣POp∣∣ 1 1 2 1 1 3 3 1 2 1 1 7

p 13 14 15 16 17 18 19 20 21 22 23 24
|POp| 1 212 214 1 1 24 1 1 28 1 1 216∣∣POp∣∣ 1 13 30 1 1 3 1 1 6 1 1 92

Table 2: The first few values of
∣∣POp∣∣

Proposition 4.1. Let S = X∞ with X ∈ POp, (i0, j0) ∈ N×Z and r ∈ {0, 1, . . . , p− 1}. The Steinhaus
triangles

Tk := ∇S(i0, j0, kp+ r)

are balanced for all non-negative integers k if and only if the triangle T0, the multiset difference T1 \ T0
and the period P are balanced, with p divisible by 4.

Proof. Suppose that (i0, j0) ∈ N × Z and r ∈ {0, 1, . . . , p − 1} are fixed. Let k ∈ N. Then, from the
periodicity of OS , we know that the Steinhaus triangle Tk = ∇S(i0, j0, kp + r) can be decomposed into
elementary blocks T0, T1 \ T0 and P , as represented in Figure 9 for k = 5.

T0

T1 \ T0 P P P P

T1 \ T0 P P P

T1 \ T0 P P

T1 \ T0 P

T1 \ T0

Figure 9: Decomposition of T5

More precisely, the triangle Tk is constituted by one block T0, k blocks T1 \ T0 and
(
k
2

)
blocks P . It

follows that the multiplicity function mTk
of the triangle Tk must verify that

mTk
= mT0

+ kmT1\T0
+

(
k

2

)
mP .

First, suppose that T0, T1 \ T0 and P are balanced with p divisible by 4. Since p is divisible by 4, it is
clear that the cardinalities |T1 \ T0| = pr +

(
p+1
2

)
and |P | = p2 are even. Therefore, since the multiset

difference T1 \ T0 and the period P are balanced, the multiplicity functions mT1\T0
and mP are constant.

It follows that δTK
= δT0 ∈ {0, 1} and thus the triangles Tk are balanced for all non-negative integers k.

Conversely, suppose that the triangles Tk are balanced for all non-negative integers k. Thus, the value
of (mTk

(0)−mTk
(1))− (mT0

(0)−mT0
(1)) is in the set {−2,−1, 0, 1, 2} for all k ∈ N. Therefore,

lim
k→+∞

(mTk
(0)−mTk

(1))− (mT0
(0)−mT0

(1))

k
= 0.

It follows that

lim
k→+∞

(mT1\T0
(0)−mT1\T0

(1)) +
k − 1

2
(mP (0)−mP (1)) = 0.

Then, we deduce that mT1\T0
(0) − mT1\T0

(1) = mP (0) − mP (1) = 0. Therefore the multiset difference
T1 \T0 and the period P are balanced and with even cardinalities. Finally, since |P | = p2 and |T1 \T0| =
pr +

(
p+1
2

)
, we conclude that p must be divisible by 4 in this case.
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This is the reason why, in the sequel of this paper, we only consider p-periodic orbits with a balanced
period and where p is divisible by 4.

Note that the period of the orbit generated from every element of a same equivalence class of POp
has the same multiplicity function. Let us denote by BPOp the set of all the equivalence classes of POp
having a balanced period. Table 3 gives

∣∣BPOp∣∣ for the first few values of p divisible by 4.

p 4 8 12 16 20 24
|POp| 1 1 256 1 1 65536∣∣POp∣∣ 1 1 7 1 1 92∣∣BPOp∣∣ 0 0 2 0 0 17

Table 3: The first few values of
∣∣BPOp∣∣

More precisely, the sets BPO12 and BPO24 are given below:

BPO12 =
{

001010001010, 111000001110
}

and

BPO24 =



110101100000000011010110, 111010010000000011101001, 011001001000000011100100,
011101101000000011110110, 001111101000000010111110, 111110000100000010111000,
100101000100000011010100, 110111000100000010011100, 111100010100000010110001,
101110010100000011111001, 101110010100000011111001, 110110100010000011111010,
110000010010000011100001, 101111110010000010011111, 100110000110000011111000,
000011101110000011101110, 100010100010100010100010


.

A representation of the orbits generated from the elements of BPO12 and BPO24 can be found in
Appendix A.

5 Periodic balanced triangles

In this section we will prove Theorem 1.2, the main result of this paper.
Let X be a p-tuple of Z/2Z, with p divisible by 4, such that X is in BPOp and let S := X∞. Now,

for each remainder r ∈ {0, 1, . . . , p − 1} and for each position (i0, j0) ∈ {0, 1, . . . , p− 1}2, we test if the
blocks ∇S(i0, j0, r) and ∇S(i0, j0, p + r) \ ∇S(i0, j0, r) are balanced. If this is the case, we know from
Proposition 4.1 that the Steinhaus triangles ∇S(i0, j0, kp+ r) are balanced for all non-negative integers
k.

Let RX denote the set of remainders r ∈ {0, 1, . . . , p − 1} for which there exists a position (i0, j0) ∈
{0, 1, . . . , p− 1}2 such that the Steinhaus triangles ∇S(i0, j0, kp + r) are balanced for all non-negative
integers k.

As announced in Table 3, the first values of p, divisible by 4, for which BPOp 6= ∅ are 12 and 24.
For p = 12, we find that RX = ∅ for each of the two equivalence classes X of BPO12. For p = 24, we
find that RX 6= ∅ for 15 of the 17 equivalence classes X of BPO24. Remark that the two equivalence

classes X of BPO24 such that RX = ∅ are exactly of the form X = Y 2 with Y ∈ BPO12. More precisely,
Table 4 gives the exact number of remainders constituting RX for each X ∈ BPO24.

For six equivalence classes X of BPO24, we find that |RX | = 24 and thus, from these 24-tuples,
we obtain the proof of Theorem 1.2 for Steinhaus triangles, i.e., there exist periodic orbits containing
balanced Steinhaus triangles of size n for all n > 1.

For instance, in the orbit OX∞ associated with the 24-tuple X = 011101101000000011110110, the
existence of balanced Steinhaus triangles for all the possible sizes can be obtained from at least 5 positions.
The following Steinhaus triangles ∇X∞(i0, j0, 24k + r) are balanced for all non-negative integers k:

(i0, j0) r
(5, 8) 5, 6, 11, 12, 14, 19, 20, 21, 22
(3, 11) 0, 1, 2, 3, 9, 10, 17, 19
(1, 14) 0, 5, 8, 13, 16, 21, 22, 23
(2, 12) 0, 1, 15, 18, 23
(5, 15) 4, 7, 21, 22, 23
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X |RX |
110101100000000011010110 18
111010010000000011101001 16
011001001000000011100100 23

011101101000000011110110 24
001111101000000010111110 17

111110000100000010111000 24
100101000100000011010100 24
110111000100000010011100 24
111100010100000010110001 24

X |RX |
101110010100000011111001 23

101001000010000010000100 24
110110100010000011111010 23
110000010010000011100001 20
101111110010000010011111 20
100110000110000011111000 23
000011101110000011101110 0
100010100010100010100010 0

Table 4: |RX | for all X ∈ BPO24

More explicitly, the following Steinhaus triangles ∇X∞0 [24k + r] are balanced for all non-negative inte-
gers k:

X0 r
000111001000010110011001 5, 6, 11, 12, 14, 19, 20, 21, 22
100001010111000011110101 0, 1, 2, 3, 9, 10, 17, 19
001000110101001101110000 0, 5, 8, 13, 16, 21, 22, 23
000011001011111010110010 0, 1, 15, 18, 23
010000101100110010001110 4, 7, 21, 22, 23

The family of balanced Steinhaus triangles ∇X∞(5, 8, 24k+ 5), appearing in the orbit OX∞ for X =
011101101000000011110110, is depicted in Figure 10, where empty and full squares correspond to 0 and 1
respectively. Indeed, we can verify that the blocks A := ∇X∞(5, 8, 5), B := ∇X∞(5, 8, 29)\∇X∞(5, 8, 5)
and the period P are balanced, since their multiplicity functions verify:

x mA(x) mB(x) mP (x)
0 8 210 288
1 7 210 288

The following proposition concludes the proof of Theorem 1.2 by showing that in an orbit OX∞
generated from a p-tuple X such that X ∈ BPOp, the existence of balanced Steinhaus triangles implies
that of balanced generalized Pascal triangles.

Proposition 5.1. Let S = X∞ with X ∈ BPOp, (i0, j0) ∈ N×Z, r ∈ {0, 1, . . . , p− 1} and p divisible by
4. Then, the Steinhaus triangles ∇S(i0, j0, kp+r) are balanced for all non-negative integers k if and only
if the generalized Pascal triangles ∆S(i0 + r+ 1, j0 + r, kp+ (p− 1− r)) are balanced for all non-negative
integers k.

Proof. As depicted in Figure 11, the orbit OS = (ai,j)(i,j)∈N×Z can be decomposed into elementary blocks
U0, U1, V0 and V1 defined by

U0 = ∇S(i0, j0, r),
U1 = ∇S(i0, j0, p+ r) \ (∇S(i0, j0, r) ∪∇S(i0 + p, j0 + p, r)),
V1 = ∆S(i0 + r + 1, j0 + r, r′),
V0 = ∆S(i0 + r + 1, j0 + r, p+ r′) \ (∆S(i0 + r + 1, j0 + r, r′) ∪∆S(i0 + p+ r + 1, j0 + p+ r, r′)),

where r′ = p− 1− r, and the period P defined by

P = {ap+r+i,j | i, j ∈ {0, 1, . . . , p− 1}} .

Since OS is p-periodic with P balanced and p divisible by 4, we already know from Proposition 4.1 that
the Steinhaus triangles ∇S(i0, j0, kp + r) are balanced for all non-negative integers k if and only if U0

and U1 ∪ U0 are balanced.
Similarly, the generalized Pascal triangles ∆S(i0 + r + 1, j0 + r, kp + p − 1 − r) are balanced for all

non-negative integers k if and only if V1 and V0 ∪ V1 are balanced.
First, since

U0 ∪ V0 = U1 ∪ V1 = P
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Figure 10: The balanced Steinhaus triangles ∇011101101000000011110110∞(5, 8, 24k + 5)
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U0

U0

U0

U1

U1

P

V1

V1

V1

V0

V0P

Figure 11: Decomposition of OS into elementary blocks U0, U1, V0 and V1

is balanced with an even cardinality, then we have mU0∪V0(x) = mU1∪V1(x) = p2

2 for all x ∈ Z/2Z. It
follows that

mU0∪U1
(x) = mU0

(x) + mU1
(x) = (p2/2−mV0

(x)) + (p2/2−mV1
(x)) = p2 −mV0∪V1

(x)

for all x ∈ Z/2Z. Therefore δmU0∪U1
= δmV0∪V1

. Moreover, since

mU0
(x)−mV1

(x) = (mU0
(x)+mU1

(x))−(mU1
(x)+mV1

(x)) = mU0∪U1
(x)−mU1∪V1

(x) = mU0∪U1
(x)−p2/2

for all x ∈ Z/2Z, it follows that

δmU0 − δmV1 = δmU0∪U1 = δmV0∪V1 .

Therefore the blocks U0 and U1 ∪ U0 are balanced if and only if the blocks V1 and V0 ∪ V1 are balanced.
This concludes the proof.

For instance, in the orbit OX∞ associated with the 24-tuple X = 011101101000000011110110, the
existence of balanced generalized Pascal triangles for all the possible sizes can then be obtained from at
least 5 positions. The following generalized Pascal triangles ∆X∞(i0, j0, 24k + r) are balanced for all
non-negative integers k:

(i0, j0) r
(2, 11) 0, 1, 2, 16, 19
(6, 13) 4, 6, 13, 14, 20, 21, 22, 23
(1, 19) 1, 2, 3, 4, 9, 11, 12, 17, 18
(3, 15) 0, 1, 2, 7, 10, 15, 18, 23
(5, 14) 0, 5, 8, 22, 23

More explicitly, the following generalized Pascal triangles ∆(X∞1 [24k + r], X∞2 [24k + r]) are balanced for
all non-negative integers k:

X1 X2 r
010111100010110001101100 000001100100101001001100 0, 1, 2, 16, 19
001101011100011011000110 010010111101111010010101 4, 6, 13, 14, 20, 21, 22, 23
000100010011111000100011 011010100000010101101111 1, 2, 3, 4, 9, 11, 12, 17, 18
000010110111000000000000 010000110100101100001000 0, 1, 2, 7, 10, 15, 18, 23
011101100110001101100011 001100100101001001100000 0, 5, 8, 22, 23

6 Periodic balanced triangles modulo m

The definitions of Steinhaus and generalized Pascal triangles can be extended in Z/mZ by considering
the sum modulo m as the local rule, instead of the sum modulo 2. Examples of Steinhaus and generalized
Pascal triangles modulo 7 are depicted in Figure 12.

The triangle T is said to be balanced if its multiplicity function is constant or almost constant, i.e., if

δmT := max {|mT (x1)−mT (x2)| | x1, x2 ∈ Z/mZ} ∈ {0, 1}.
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∇(2330445) ∆(012153, 065624)

Figure 12: Steinhaus and generalized Pascal triangles in Z/7Z

Note that, when the triangle T is of size n such that the triangular number
(
n+1
2

)
is divisible by m, the

triangle T is balanced if δmT = 0, i.e., if the multiplicity function mT is constant, equal to 1
m

(
n+1
2

)
. For

example, the triangles in Figure 12, ∇(2330445) and ∆(012153, 065624), are balanced in Z/7Z since they
contain all the elements of Z/7Z with the same multiplicity.

This generalization was introduced in [13], where the author posed the following problem.

Molluzzo Problem. Does there exist, for any positive integers m and n such that the triangular number(
n+1
m

)
is divisible by m, a balanced Steinhaus triangle modulo m of size n?

This problem is still largely open. It is positively solved only for m = 2 (Steinhaus Problem), 4 [8],
5, 7 [4] and for all m = 3k with k ∈ N [4, 5]. It is also known [4] that there exist some values of m and n
for which there do not exist balanced Steinhaus triangles: for n = 5 and m = 15 or n = 6 and m = 21.

In this section, some of these solutions are recalled because they involve balanced triangles that are
also periodic.

First, in [5], it was proved that, for any odd number m, the Steinhaus triangles generated from an
arithmetic progression with an invertible common difference in Z/mZ and of length n is balanced for all
n ≡ 0 or −1 mod ordm (2m)m, where ordm (2m) is the multiplicative order of 2m modulo m. For instance,
for (i mod m)i∈Z, the sequence of the integers modulo m, the Steinhaus triangle ∇(0, 1, 2, . . . , n− 1) is
balanced in Z/mZ for all n ≡ 0 or −1 mod ordm (2m)m. In the proof of this result, it appears that the
orbit generated from any arithmetic progression is periodic of period ordm (2m)m. This implies that all
these balanced Steinhaus triangles modulo an odd number m are also ordm (2m)m-periodic. Remark that
a generalization of this result in higher dimensions for balanced simplices can be found in [7] and these
simplices are also of periodic structure.

In [6], the following integer sequence S = (aj)j∈Z defined by a3j = j,
a3j+1 = −1− 2j,
a3j+2 = 1 + j,

for all j ∈ Z, is considered. Note that this sequence is an interlacing of three arithmetic progressions. It
was proved that, for every odd number m, the orbit of the projection of S in Z/mZ contains balanced
Steinhaus triangles of size n, for all n divisible by m and for all n ≡ −1 mod 3m, and balanced generalized
Pascal triangles of size n, for all n ≡ −1 mod n and for all n divisible by 3m. It was proved in [6] that
the orbit of this special sequence modulo m if periodic of period 6m. Thus, there exist periodic balanced
triangles of these size modulo m odd.

All these results lead to consider the following subproblem of the Molluzzo Problem.

Problem 2. Does there exist, for any positive integers m, infinitely many periodic balanced (Steinhaus
or generalized Pascal) triangles modulo m?

This problem is positively solved for any odd number m, in [6, 5], and for m = 2 in the present paper.
It remains to analyse the case where m is even and m > 4.
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A The 24-periodic orbits with balanced periods

In this appendix, the orbits of representatives Xi, for all the 17 elements of BPO24 =
{
X1, X2, . . . , X17

}
,

are depicted.

i Xi

1 110101100000000011010110
2 111010010000000011101001
3 011001001000000011100100
4 011101101000000011110110
5 001111101000000010111110
6 111110000100000010111000
7 100101000100000011010100
8 110111000100000010011100
9 111100010100000010110001

i Xi

10 101110010100000011111001
11 101001000010000010000100
12 110110100010000011111010
13 110000010010000011100001
14 101111110010000010011111
15 100110000110000011111000
16 000011101110000011101110
17 100010100010100010100010

Moreover, we have also obtained the orbits of the elements of BPO12 =
{
Y1, Y2

}
. Indeed, as already

remarked, we have X16 = Y 2
1 and X17 = Y 2

2 . Therefore the orbits OX16
∞ and OX17

∞ correspond to
OY1

∞ and OY2
∞ , respectively.
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OX1
∞ OX2

∞

OX3
∞ OX4

∞

OX5
∞ OX6

∞
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OX7
∞ OX8

∞

OX9
∞ OX10

∞

OX11
∞ OX12

∞
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OX13
∞ OX14

∞

OX15
∞ OX16

∞

OX17
∞
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