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Abstract. By reconstructing past hydrologic variations in the
Northern Caribbean Sea and their influence on the stability
of the Atlantic Meridional Overturning Circulation (AMOC)
during the last 940 ka, we seek to document climate changes
in this tropical area in response to the Mid-Pleistocene Tran-
sition (MPT). Using core MD03-2628, we estimated past
changes in sea surface salinity (SSS) using1δ18O, the dif-
ference between the modern, and the pastδ18O of seawater
(obtained by combining alkenone thermometer data with the
δ18O of the planktonic foraminiferaGlobigerinoides ruber
(white) and corrected for ice-sheet volume effects). Today,
the lowest SSS values in the area studied are associated with
the northernmost location of the Inter-Tropical Convergence
Zone (ITCZ). The1δ18O record obtained from core MD03-
2628 exhibits glacial/interglacial cyclicity with higher values
during all glacial periods spanning the last 940 ka, indicat-
ing increased SSS. A long-term trend was also observed in
the 1δ18O values that exhibited a shift toward lower val-
ues for interglacial periods during the last 450 ka, as com-
pared to interglacial stages older than 650 ka. A rise in
SSS during glacial stages may be related to the southern-
most location of the ITCZ, which is induced by a steeper
cross-equator temperature gradient and associated with re-
duced northward cross-equatorial oceanic transport. There-
fore, the results suggest a permanent link between the trop-
ical salinity budget and the AMOC during the last 940 ka.
Following the MPT, lower salinities during the last five in-
terglacial stages indicated a northernmost ITCZ location that
was forced by changes in the cross-equator temperature gra-
dient and that was associated with the poleward position of
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Southern Oceanic Fronts that amplify the transport of heat
and moisture to the North Atlantic. These processes may
have contributed to the amplification of the climate cycles
that followed the MPT.

1 Introduction

The Mid-Pleistocene Transition (MPT) corresponds to a pe-
riod of pronounced change within the climate system that
varies between 1.5 Ma to 650 ka depending upon the paleo-
climatic archive utilized (e.g., Head and Gibbard, 2005). The
MPT led to the emergence of low-frequency, quasi-periodic
climate cycles of asymmetrical shape and 100-ka in length,
especially well-defined for the last 450 ka following a transi-
tional interval (Tzedakis et al., 2009; Yin and Berger, 2010).
In the absence of a marked change in insolation forcing (e.g.,
Maslin and Ridgwell, 2005), several hypotheses have been
explored in order to explain this transition and include long-
term changes in the atmospheric CO2 (Clark et al., 2006),
changes in ice-sheet bedrock – the so-called “regolith hy-
pothesis” (Clark and Pollard, 1998), or changes in ice-sheets
dynamics (e.g., Berger et al., 1999; Tziperman and Gildor,
2003; Bintanja and van de Wal, 2008) leading to the pro-
gressive synchronization of the Northern Hemisphere and
Antarctic ice-sheets (Raymo et al., 2006). The latter hypoth-
esis implies a series of internal feedbacks, including changes
in the deep-water circulation (McClymont et al., 2008) or the
oceanic carbon pool (Raymo et al., 1990 and 1997; Mix et al.,
1995; Schmieder et al., 2000; Hoogakker et al., 2006). Other
studies have invoked the role of the tropics (McClymont and
Rosell-Meĺe, 2005; Liu et al., 2008) or the Southern Hemi-
sphere (Raymo et al., 2006; Schulz and Zeebe, 2006; Köhler
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and Bintanja, 2008). However, no theory has supplanted an-
other and no real consensus has been adopted to explain the
causes for the MPT (e.g., Raymo and Huybers, 2008). In
particular, the relationships between low and high latitudes
during this time period remain unexplored (Rutherford and
D’Hondt, 2000).

The tropical Atlantic is a key area for the modern cli-
mate system due to its role in the stability of the Atlantic
Meridional Overturning Circulation (AMOC) which trans-
ports warm and salty waters from low latitudes into the North
Atlantic. The efficiency of the AMOC may have a major im-
pact on global climate change, particularly in northern At-
lantic areas as suggested by model experiments and paleo-
climatic data (e.g., Rahmstorf, 2002). Specifically, model
simulations suggest that the strength of the AMOC is more
sensitive to changes in the Atlantic salt budget than to vari-
ations in sea-surface temperature (SST) and, therefore, point
to the importance of reconstructing past changes in low lat-
itude hydrologic cycles (Rahmstorf et al., 2005; Rahmstorf,
2006). Under modern conditions, the Atlantic salt budget
is determined by a combination of local and regional pro-
cesses partly linked to tropical climate dynamics, such as the
following:

1. The seasonal migration of the inter tropical convergence
zone (ITCZ) which impacts the local salt budget in the
tropical Atlantic through direct freshwater inputs via
precipitation, as well as by the amount of freshwater
exported toward the Pacific (Broecker et al., 1990; Za-
ucker and Broecker, 1992).

2. The duration and amplitude of the northward shift of the
ITCZ. The northern ITCZ location is associated with the
enhanced cross-equatorial transport of salt and heat into
the North Atlantic (e.g., Dahl et al., 2005). The effect
of ITCZ migration is clearly observed for meridional
heat transport in the oceans, showing interhemispheric
asymmetrical behavior for the Atlantic basin (Trenberth
and Caron, 2001).

3. Remote control of the salt amount exported from the
Indian Ocean to the tropical Atlantic via the South At-
lantic through the “Agulhas leakage” (AL) under mod-
ern and past conditions (Gordon, 1996; Peeters et al.,
2004; Biastoch et al., 2008). The relationships between
tropical Atlantic hydrology, the AMOC, and climate
changes have been determined through estimations of
the salt budget at low latitudes during rapid climate
change (R̈uhlemann et al., 1999; Schmidt et al., 2004),
during glacial/interglacial climate transitions (Dürkoop
et al., 1997), and on long time scales (Haug and Tiede-
mann, 1998; Haug et al., 2001), as well as through mod-
elling studies (Wan et al., 2010).

In this study, we examined climate changes associated with
the MPT in the tropics by estimating past variations in hy-

drologic conditions in the northern Caribbean Sea and re-
lated changes in the AMOC. Here, we discuss the variations
of past sea-surface salinity (SSS) related to the ITCZ loca-
tion, and estimate past SSS at the core site using theδ18O of
seawater, by combining oxygen isotopic measurements ob-
tained from the surface-dwelling planktonic foraminiferGlo-
bigerinoides ruber(white) and using SSTs obtained from the
alkenone unsaturation index (UK ′

37) analysis. We corrected
the δ18O of seawater for ice-sheet volume effects and cal-
culated the1δ18O as the difference between the modern
and pastδ18O for seawater. Major trends observed in the
1δ18O record were that a marked glacial/interglacial pattern
spanned the entire record and that a shift toward decreased
SSS’s during interglacials occurred for the last 450 ka as
compared to the previous time interval (650–940 ka). On
the glacial/interglacial timescale, the core MD03-2628 re-
sults emphasize the existing link between the ITCZ and the
AMOC for the past 940 ka. The results obtained for inter-
glacial stages for the last 450 ka allowed us to discuss the
causes and consequences of ITCZ migration following the
MPT, as well as the possible relationships between changes
in oceanic and atmospheric northward heat transfer associ-
ated with ITCZ migration.

2 Modern climate and hydrologic parameters

Core MD03-2628 was retrieved in the Walton Basin (26.56 m
of length, 17◦21.26′ N, 77◦42.45′ W, 846 m water depth,
Fig. 1) during the IMAGES MD132 expedition, aboard R.V.
Marion Dufresnein 2003. All of the details regarding the
core’s sedimentology are given in the auxiliary material of
Sepulcre et al. (2009). The Walton Basin is located in the
northeastern portion of the Nicaragua Rise, which separates
the Colombian Basin from the Cayman Basin (Fig. 1a). The
Walton Basin consists of a deep seaway between the Ja-
maican shelf and the Pedro Bank, with water depths rang-
ing between 200 and 2000 m (Fig. 1b). Modern climate
and oceanographic data near the core MD03-2628 location
(Fig. 1b) were extracted from the DASILVA dataset (pre-
cipitation and evaporation rates were obtained at 17.5◦ N,
77.5◦ W, da Silva et al., 1994), the NOAA data center (at-
mospheric temperature at Montego Bay, 18.47◦ N, 77.99◦ W,
Jamaica), and the LEVITUS (1994) dataset (at 17.5◦ N,
77.5◦ W).

2.1 Climatology and hydrologic parameters

The climate in the Caribbean Sea is typically tropical with-
out a pronounced cooling season (Fig. 2a). A maximum
easterly zonal wind at 925 hPa in the Caribbean region is
called the Caribbean Low-Level Jet (CLLJ). The CLLJ is at
its maximum in winter (Fig. 1a), when the atmospheric tem-
perature gradient between the Caribbean zone and the Trop-
ical North Atlantic is large and the ITCZ is further south
(Wang and Lee, 2007). The summer wet period extends from
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Fig. 1. The modern setting of the studied zone and the location
of core MD03-2628.(a) The climatic and oceanic context of the
Caribbean Sea; the purple arrows represent surface currents; the
green arrows represent winds; and the blue hatched zones repre-
sent the seasonal extreme positions of the Inter-Tropical Conver-
gence Zone (ITCZ, e.g., Haug et al., 2003). The locations of cores
ODP 999A (12◦45′ N, 78◦44′ W, 2827 m in water depth, pink star);
DSDP 502 (11◦ N, 80◦ W, 3051 m in water depth, gray star); and
ODP 847 (0◦ N, 95◦ W, 3373 m in water depth, orange star) are
also specified.(b) A zoom-in of the Walton Basin and the loca-
tion of core MD03-2628 (WBk: Walton Bank). The location for
the LEVITUS (1994) and the DASILVA (da Silva et al., 1994) sta-
tions at 17.5◦ N, 77.5◦ W; and for the NOAA (station 78388) station
(18.47◦ N, 77.99◦ W) are also specified in Fig. 1b (adapted from
Reijmer and Andresen, 2007).

May to November and can be divided in two time intervals
(Fig. 2b, Taylor et al., 2002). From May to July, precipitation
reaches 90 mm month−1 and from August to November, dur-
ing the hurricane season, values increase to 130 mm month−1

as a result of ITCZ positioning (Figs. 1a, 2b, and 3c; see
Sect. 2.2 for details). Evaporation rates (Fig. 2c) exhibit
small seasonal variations, with maximum values occurring
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Fig. 2Fig. 2. Monthly climate and sea-surface water parameters.(a) At-
mospheric temperature from NOAA climate station 78388;(b) pre-
cipitation;(c) evaporation rates from the DASILVA dataset (da Silva
et al., 1994);(d) Sea-surface salinity (SSS); and(e) temperature
(SST) from the LEVITUS (1994) dataset.

during winter (183 mm month−1 in December) and minimal
values occurring during spring (120 mm month−1 in May).
Seasonal changes may be related to the strength of the CLLJ
(see above).

Near the core MD03-2628 location, hydrographic condi-
tions indicate that SST-monthly variations are limited, within
a range of 26.5 to 29◦C, with a trend of high and low val-
ues during boreal summer and winter, respectively (Fig. 2e).
Monthly surface water salinity (SSS) ranges between 35.6
and 36.1 p.s.u. (Fig. 2d) and is mainly controlled by sea-
sonal ITCZ migration and freshwater advection (see Sect. 2.2
for details) (Fig. 1a). SSS minimum values are linked to the
northern location of the ITCZ at the studied site in Septem-
ber, and from October to December to a “late” contribution
of the freshwater supply from the Orinoco River (see be-
low). SSS maximum values are reported in July. No clear
relationship appears to exist between the evaporation rate and
SSS at the core MD03-2628 location (Fig. 2c and d).
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Fig. 3. Maps of precipitation rates(a–d) and sea surface salinities(e–h) during March (a ande), June (b and f), September (c andg),
and December (d andh). The core MD03-2628 location is shown by a star, and the ITCZ position is shown by the thick beige line (e.g.,
Haug et al., 2003). The Orinoco and Amazon Rivers are indicated by the O and A letters, respectively. Maps were constructed from
http://ingrid.ldeo.columbia.edu/using the DASILVA (da Silva et al., 1994) and LEVITUS (1994) datasets.

2.2 Salinity variability and surface-water circulation

Caribbean Surface Water (0–50 m) flows from the southeast
toward the northwest within the Caribbean Current (Fig. 1a)
(Wüst, 1964; Tomczak and Godfrey, 2003), and results from
the mixing of South Atlantic Water from the Guyana Cur-
rent and Equatorial water from the North Equatorial Current
(Fig. 1a) (Schmitz and Richardson, 1991).

Seasonal SSS variations are determined by the position of
the ITCZ through both direct inputs of freshwater from lo-
cal precipitation and by the advection of low SSS water from
surface currents. In March, the ITCZ is located southwards
and provides freshwater to the Amazon Basin (Fig. 3a). The
freshwater supply to the studied area is limited and SSS val-
ues are 35.9 p.s.u. (Figs. 2d and 3e). In June, the ITCZ
is located further north above the Orinoco Basin (Fig. 3b).
During that time, the maximum discharge of the Amazon
River is observed (Fig. 3f, Morrisson and Nowlin, 1982;
Müller-Karger et al., 1988; Hernandez-Guerra and Joyce,

2000; Hellweger and Gordon, 2002; Chérubin and Richard-
son, 2007). However, the low SSS waters that are trans-
ported northward through the Guyana Current do not reach
the northern Caribbean Sea (Figs. 2d, 3f and g). As a re-
sult, the SSS value at the site location is high (36.1 p.s.u.,
Figs. 2d and 3f). The northward migration of the ITCZ
in September results in high precipitation rates within the
studied area (Figs. 2b and 3c) and SSS values decrease
to 35.8 p.s.u. (Figs. 2d and 3g). Freshwaters originating
from the Orinoco River flow westward into the Caribbean
Sea (Fig. 3g, Ch́erubin and Richardson, 2007). In De-
cember, the ITCZ moves southward (Fig. 3d) and Orinoco
freshwaters reach the study area causing a decrease in SSS
to a level of 35.7 p.s.u. (Chérubin and Richardson, 2007)
(Figs. 2d and 3h).

Under modern conditions, SSS seasonal variability at the
core site is best explained by the northward position of the
ITCZ during boreal summer as a result of in situ freshwater
input by precipitation during September and the “delayed”
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advection of low SSS waters during late summer (September
to November) from the Orinocco River, for which freshwa-
ter supply occurs in June. Therefore, in the following, we
associate low SSS values with the northern location of the
ITCZ.

2.3 Oceanic intermediate and deep-water circulation

Below surface waters, Subtropical UnderWater (SUW) lies
between 50 and 300 m in the Walton Basin (Fig. S1). The
SUW water mass originates in the Sargasso Sea and is char-
acterized by a salinity maximum of 36.7 p.s.u. (Morrison
and Nowlin, 1982). At the studied site, Antarctic Interme-
diate Water (AAIW) is found at intermediate water depths
(300–1000 m) and is mixed with underlying North Atlantic
Deep Water (NADW) (Ẅust, 1964; Fratantoni et al., 1997;
Tomczak and Godfrey, 2003). Between 900 and 1900 m,
the Caribbean Sea is filled with upper NADW mixed with
AAIW, as well as with Upper Circumpolar Deep Water that
has a salinity of approximately 35 p.s.u. (Wüst, 1964; Fratan-
toni et al., 1997; Johns et al., 2002 in Schmidt et al., 2006a;
Tomczak and Godfrey, 2003).

2.4 Globigerinoides ruberand coccolithophorid
distribution within the water column

Even if the Caribbean Sea is an oligotrophic area, its primary
productivity (PP) shows seasonal variability. Maximum PP
occurs between February and April when nutrients are car-
ried to the northern Caribbean Sea either from upwelling ac-
tivity that is created by the CLLJ (M̈uller-Karger et al., 1988;
Hu et al., 2004) in the Southern portion of the Caribbean Sea,
or by river plumes that are carried by the Guyana Current
(Martinez et al., 2007 and references therein).

The planktonic foraminifer speciesG. ruber inhabits
the upper portion of the water column, between 0 and 20 m
(Schmuker and Schiebel, 2002, Fig. S1), with correspond-
ing temperature and salinity averaged values of 27◦C and
35.9 p.s.u., respectively (February to April period, Fig. 2d
and e).

Coccolithophorids that produce C37 alkenone molecules
occupy the entire photic zone of the Caribbean Sea, corre-
sponding roughly to the depth of the nutricline (Kameo et
al., 2004, Fig. S1). In the Northern Caribbean Sea, the nutri-
cline fits within the limit of surface waters and the SUW (i.e.
the first 50 m of the water column, Fig. S1).

Under modern conditions, coccolithophorids (Kameo et
al., 2004) andG. ruber(Schmuker and Schiebel, 2002) both
dwell in nearly the same depth range within the water col-
umn of the Caribbean Sea. Today, the seasonality signal
is small in SST for the Northern Caribbean Sea (Sect. 2.1
and Fig. 2). The thermocline is not well-defined, with nearly
constant temperature values of approximately 27◦C down to
50 m in water depth, followed by a progressive decrease to
reach 15◦C at 400 m (Fig. S1). Therefore, in the following

we consider that coccolithophorids andG. ruber inhabit al-
most identical temperature conditions (Fig. S1).

3 Methods

Core MD03-2628 was sampled at every 20 cm interval for
the δ18O analysis and for the UK

′

37 determination. Samples
for δ18O measurements were wet-sieved for the<63 µm, 63–
150 µm, and>150 µm fractions and dried in an oven at 50◦C.
G. ruber (250–355 µm) was hand-picked from the>150 µm
fraction. Samples for the alkenone analysis were freeze-dried
and ground in a mortar. All of the preparations and instru-
mental measurements were carried out at CEREGE.

δ18O measurements were performed on five to ten in-
dividuals of G. ruber using a Finnigan Delta Advantage
mass spectrometer directly coupled to an automatic carbon-
ate preparation device (Kiel Device III), dedicated to the
analysis of small samples providing low gas amounts and cal-
ibrated to the international scale (Vienna Pee Dee Belemnite
VPDB). Analytical precision of the method was controlled
with the regular standard analyses of NBS19 and was better
than 0.04‰ forδ18OVPDB (1σ ; n = 169). The reproducibility
of this approach was tested using replicate measurements of
G. ruber from the same level at different depths in the core,
and showed no significant shift (Table S1).

The analytical procedure and the extraction method for the
C37 alkenone measurements are fully described in Sonzogni
et al. (1997). The quality of the measurements carried out
at CEREGE was confirmed by an international intercalibra-
tion study (Rosell-Meĺe et al., 2001). The analytical accuracy
was approximately 0.01 (1σ). SSTs were calculated with the
UK ′

37 index using the calibrations of Sonzogni et al. (1997)
and Conte et al. (2006). The global calibration provided by
Conte et al. (2006) sought to take into account the full range
of temperatures by using a polynomial approach, with an un-
certainty of±0.6◦C. Indeed, there is a decrease in the sen-
sitivity of the UK ′

37 proxy at temperatures above 24◦C. The
work of Sonzogni et al. (1997) was specifically performed
for temperatures higher than 24◦C. Sonzogni et al. (1997)
provided a detailed analysis for higher temperatures, with a
linear relationship between the UK ′

37 proxy and temperatures,
and an uncertainty of±0.7◦C. SST records from both cal-
culations are presented and discussed below (Sect. 4.2. and
Fig. 4b).

4 Results

4.1 Stable isotope record

Chronology in core MD03-2628 is based upon theG. ru-
ber δ18O record (Fig. 4a) as well as paleomagnetic mea-
surements and has been fully described elsewhere (see aux-
iliary material in Sepulcre et al., 2009 for details). Briefly,
the age model was obtained using a correlation for theδ18O

www.clim-past.net/7/75/2011/ Clim. Past, 7, 75–90, 2011



80 S. Sepulcre et al.: Sea-surface salinity variations in the northern Caribbean Sea

0 200 400 600 800 1000
Age (kyr)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

°C

δ18O G. ruber

UK’ calibration from Sonzogni et al. (1997)37

2                     6                8            10            12              14             16          18         20         22     24

UK’ calibration from Conté et al. (2006)37

a)

b) SST alkenones

V
P

D
B

 (
%

o
)

MPT
100 kyr cycles

Fig. 4

24

25

26

27

28

29

Fig. 4. Core MD03-2628 records for:(a) theδ18O of the planktonic
foraminifera Globigerinoides ruber(green curve and dots); and
(b) sea-surface temperatures as determined by the UK ′

37 index and
calculated with the Sonzogni et al. (1997) (red curve and squares)
and Conte et al. (2006) (yellow curve and triangles) calibrations.
Light gray bars and even numbers show the glacial stages as de-
fined by δ18O. The yellow area indicates the 650 to 450 ka time
interval, when the duration and shape of the climate cycles changed
(see text for details).

record with a reference record (Lisiecki and Raymo, 2005)
using the software “Analyseries” (Paillard et al., 1996). The
isotopic correlation was supported by the identification of
the paleomagnetic events in core MD03-2628, such as the
Delta (∼685 ka), the Kamikatsura (∼900 ka), the Santa Rosa
(∼940 ka), and the Bruhnes-Matuyama reversal (∼780 ka).
The core MD03-2628 record spans the last 940 ka, up to MIS
24 (Fig. 4a). The average sedimentation rates for interglacial
and glacial periods were 4 and 2 cm ka−1, respectively, with
a corresponding time-resolution of 5 and 10 ka.

To test the isotopic stratigraphy established with theδ18O
of G. ruber, the δ18O of the benthic foraminiferaCibici-
doides wuellerstorfi(250–355 µm) was measured on core
MD03-2628 for the last five glacial-interglacial Terminations
in order to evaluate the synchronicity between bothδ18O
records over glacial-interglacial changes (data not shown).
The records are in good agreement, indicating that the corre-
lation procedure would have been the same when using the
benthicδ18O record of core MD03-2628, and then reinforc-
ing the original chronological framework established for core
MD03-2628 at the studied temporal resolution.

A relative uncertainty was estimated for the core MD03-
2628 age model by comparing the original age model from
Sepulcre et al. (2009) to two other chronologies based on
the stacking for the MD03-2628δ18O of G. ruberto the fol-
lowing: (1) the compositeδ18O record of Asian stalagmites

dated using Uranium-Thorium measurements compiled by
Cheng et al. (2009) for the last 350 ka (Fig. S2a), and (2)
the Antarctic CO2 record with the Kawamura et al. (2007)
chronology based on the O2/N2 ratio for the last 360 ka
(Fig. S2b). Mean age differences of – 2.4 ka (std. dev. = 2.5,
n = 33) and 2.3 ka (std. dev. = 6.9,n = 19) were obtained be-
tween the published age model (Sepulcre et al., 2009) and
the new chronology based on the Cheng et al. (2009) stalag-
mite δ18O record for interglacial and glacial stages, respec-
tively. Calculations obtained using an age model based on the
Kawamura et al. (2007) record yielded average differences
of – 1.3 ka (std. dev. = 3.6,n = 33) during interglacials, and of
0.01 ka (std. dev. = 4.2,n = 19) during glacials. Therefore, the
differences between the three chronologies are minor com-
pared to the temporal resolution of our study (Fig. S3). Taken
together, as a conservative estimate, we chose a mean relative
error for the age model of core MD03-2628 of approximately
±2.5 ka.

The δ18O values of G. ruber ranged from −2.2‰
(Holocene) to 1.2‰ (MIS 16) (Fig. 4a). The results are
in good agreement with previous planktonicδ18O records
from the Caribbean Sea spanning the last 350 ka (Wolff et
al., 1998; Schmidt et al., 2004 and 2006a). With the excep-
tion of MIS 16, theδ18O values for glacials are nearly con-
stant at approximately 0–0.4‰ for the overall record. From
940 to 650 ka, glacial-interglacial amplitudes for theδ18O
variations through glacial Terminations were approximately
1‰, with values for interglacials ranging between−1.4 and
−0.7‰ (Fig. 4a). Between 650 and 450 ka (from MIS 16
to MIS 13), we observed a very high value for MIS 16, out
of range for other glacialδ18O values recorded, and aδ18O
value for MIS 14 as high as a cold event during MIS 15
(Fig. 4a). Glacial-interglacial amplitudes spanning Termina-
tions from 450 ka to the core top increased to approximately
2‰, as compared to the oldest time interval. The change
in amplitude is due to a shift in interglacial stage values to-
ward lowerδ18O, ranging from−2.2 to−1.4‰ (Fig. 4a). In
the following, we define three time intervals corresponding
to downcore variations in theδ18O of G. ruber, as follows:
(1) the period older than 650 ka, (2) the 650–450 ka time-
interval, and (3) the last 450 ka.

The core top value for theδ18O of G. ruber was−2‰,
very close to the expected value (−2.3‰) obtained when us-
ing the equation of Mulitza et al. (2003) and modern hydro-
logic data (theδ18Oseawater= 1.01‰ from the Global Seawa-
terδ18O Database (Schmidt et al., 1999) and the mean annual
SST = 27.8◦C at the core location). The Mulitza et al. (2003)
equation provided a result that is in better agreement with
measuredδ18O than the Bemis et al. (1998) equation. The
core topδ18O value was close to the calculated value even
when we considered the possible shifts between modern and
fossil G. ruber from Holocene samples (Waelbroeck et al.,
2005). In the following, we used the equation of Mulitza et
al. (2003) to calculate theδ18O record of seawater.

Clim. Past, 7, 75–90, 2011 www.clim-past.net/7/75/2011/



S. Sepulcre et al.: Sea-surface salinity variations in the northern Caribbean Sea 81

°C

°C

0 100 200 300 400 500

Age (kyr)

2            6        8          10       12
a) MD03-2628 Alkenones SST

25

26

27

28

°C

b) ODP999A 
Mg/Ca SST

(Schmidt et al., 2006)

c) ODP999A 
Faunal Assemblages SST 

(Martinez et al., 2007)

23

24

25

26

27

28

24

25

26

27

28

29

30

Fig. 5
Fig. 5. A comparison of the MD03-2628 sea-surface temperature
(SST) record with other SST reconstructions in the Caribbean Sea.
(a) A zoom-in for the last 500 ka for the SST results obtained using
the UK ′

37 index on core MD03-2628;(b) and(c) results obtained on
ODP core 999A (Fig. 1a) by(b) Schmidt et al. (2004 and 2006a),
with Mg/Ca SST results (red curve and dots) and by(c) Martinez et
al. (2007), with mean annual values of faunal SST reconstructions
(pink curve and dots). Light gray bars and even numbers are the
same as in Fig. 4.

4.2 Paleosea-surface temperatures

The SST records of core MD03-2628 calculated using the
Sonzogni et al. (1997) and Conte et al. (2006) calibrations
both exhibited a well-defined glacial-interglacial cyclicity,
with lower values during glacials (Fig. 4b). No long term
trend was observed for both SST records.

With the Sonzogni et al. (1997) calibration, the core top
SST was 27.7◦C, in good agreement with modern annual
SST (Fig. 2e). SST values ranged from a minimum value
of 24.8◦C (MIS 22) to a maximum value of 28.1◦C (MIS
15). Interglacial and glacial stages had an average SST of
27.3◦C (±0.07◦C, 1σm with σm =

σ
√

n
, n = 69) and 26.5◦C

(±0.14◦C, 1σm, n =33 ), respectively. The average ampli-
tude of the glacial-interglacial change was approximately
1.9◦C (±0.17◦C, 1σm, n = 11), with values ranging from
0.78◦C to 2.8◦C (Terminations VI and X, respectively).

By using the calibration of Conte et al. (2006), we ob-
tained SST values ranging from 26.2◦C during MIS 8 and
MIS 22, and 28.6◦C during MIS 15. The SST at the core top
was 28.3◦C, which is slightly higher than the annual mod-
ern SST value of 27.8◦C (Fig. 2e). The average interglacial
and glacial SST values were 28◦C (±0.04◦C, 1σm, n = 69)
and 27.3◦C (±0.1◦C, 1σm, n = 33), respectively. SST vari-
ations during the Terminations ranged from 0.3 to 2.1◦C for

Terminations V and X, respectively, with an average value of
1.2◦C (±0.15◦C, 1σm, n = 11).

The average SST values calculated using both calibration
methods are in good agreement if we take into account the
related uncertainties. The main difference relies on the am-
plitude of the SST change during the Terminations which
is due to a higher sensitivity of the Sonzogni et al. (1997)
calibration in a temperature range warmer than 24◦C, such
as at the core MD03-2628 site, as compared to the calibra-
tion of Conte et al. (2006). Therefore, in the following, we
use the SST reconstruction from the Sonzogni et al. (1997)
calibration.

Since, here, we present the first alkenone-based SST re-
construction available for the Caribbean Sea, our data were
compared with previous SST records from the same area
obtained from micropaleontological assemblages (Hüls and
Zahn, 2000; Schmidt et al., 2006a; Martinez et al., 2007),
and foraminiferal Mg/Ca (Hastings et al., 1998; Schmidt et
al., 2004 and 2006a) (ODP core 999A, Figs. 1a and 5).

The SST difference through Termination I was well-
documented, showing a glacial to interglacial change rang-
ing from 1 to 4◦C (Fig. 5b and c). Thus, a value of approxi-
mately 2◦C, as determined in core MD03-2628 (Fig. 5a), is
within the range of previous reconstitutions.

For the last 350 ka, all of the SST records exhibited
a glacial/interglacial pattern with a similar amplitude for
glacial Terminations except for the MIS 5e and Termination
IV Mg/Ca-SSTs, and the MIS 3 micropaleontological-SSTs
(Fig. 5).

When comparing Mg/Ca and alkenone SST records, most
of the differences were within the uncertainties of both pale-
othermometers (±0.4 and±0.7◦C, respectively). However,
additional factors might imprint SST reconstructions as low
sedimentation rates at the core MD03-2628 location that may
have smoothed the SST signal and its amplitude as compared
to the record of Schmidt et al. (2006a). For the 360–465 ka
time-interval, differences between both reconstructions are
related to the dissolution processes described at the core ODP
999A site by Schmidt et al. (2006a).

Alkenone and micropaleontological SST records are sim-
ilar and within the uncertainties of both methods (±0.7 and
±0.5–1.5◦C, respectively), except for the time-interval older
than 450 ka. According to Martinez et al. (2007), the aver-
age distance to the nearest analog tends to increase with time
with maximum values reached during MIS 13-14. There-
fore, SST reconstructions based upon micropaleontological
assemblages can not be considered as fully robust before
450 ka.

Finally, part of the observed discrepancies may also be
related to the different core sites, and in particular the
nearly permanent location inside the Atlantic Warm Pool
for core ODP 999A, unlike core MD03-2628 (for a com-
plete discussion, see Ziegler et al., 2008). Additionally, SST
records from core ODP 999A exhibited differences between
reconstructions depending on the proxy utilized, whereas
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they were determined on the same marine archive (Schmidt
et al., 2006a; Martinez et al., 2007). Therefore, even when
taking into account the few differences between available
SST reconstructions, general agreement was found between
the alkenone-SST record in core MD03-2628 and other SST
records, supporting the application of alkenone-SST for es-
timations of paleohydrological variability in the northern
Caribbean Sea. The impact of these SST differences on the
calculation of theδ18O of seawater is evaluated in Sect. 4.3.

4.3 The calculation of local surfaceδ18O variability

By combining theδ18O of G. ruber and the alkenone-SST
records of core MD03-2628, we estimated theδ18O of sea-
water at the core location (Fig. 6a). Since foraminifera and
coccolithophorids have different ecologies, we first consid-
ered the potential impact of past changes in their growth
depth and seasonality on the hydrological reconstruction.
Under modern conditions, coccolithophorids andG. ruber
inhabit nearly the same depth range within the water col-
umn (Fig. S1 and Sect. 2.4., Kameo et al., 2004; Schmuker
and Schiebel, 2002). Reconstructions of the stratifica-
tion between surface and subsurface waters in the Northern
Caribbean Sea for the past 300 ka have shown that coccol-
ithophorid populations were controlled by the nutrient sup-
ply rather than the temperature influence, and that the studied
groups are always occupied within the first 50 m of the water
column (Kameo et al., 2004).G. ruberis a symbiont-bearing
species, so its migration in the water column deeper than
50 m seems unlikely. The impact of past seasonality changes
is difficult to estimate. At the core MD03-2628 site, we know
from modern conditions that the seasonality signal in the SST
record is weak (Fig. 2e). Additionally, low sedimentation
rates may have contributed to smooth the record. Therefore,
we assume that past changes in the growth depth and season-
ality did not significantly bias the climatic record at the core
MD03-2628 site at the studied temporal resolution.

Glacial-interglacial variability was well-expressed in the
past δ18O of seawater, with values ranging from 1.05 to
4.12‰ and with a trend of higherδ18O during glacials.
Glacial values were nearly constant for the 940–650 ka time
interval when compared to the 450–0 ka period, with val-
ues of 3.08± 0.06‰ (1σm, n = 12) and 2.97± 0.07‰ (1σm,
n = 15), respectively. Interglacial stages displayed the same
pattern as theδ18O of G. ruber, with lower values of 0.61‰

(±0.07, 1σsum, whereσsum=
√

σ 2
1 +σ 2

2 ) for the last 450 ka
(1.7‰± 0.05, 1σm, n = 37) as compared to the 940–650 ka
time interval (2.3‰± 0.04, 1σm, n = 24). Taking into ac-
count the uncertainty of the SST reconstruction (± 0.7◦C)
led to an error of 0.23‰ for the calculation of the pastδ18O
of seawater, a value that is lower than the difference of 0.61‰
observed for interglacial stages from 940–650 ka and from
450–0 ka, and the average glacial-interglacial amplitude of
1.46‰ (±0.17, 1σm, n = 11).

a)
2               6               8        10          12         14          16       18      20        22   24

0           200  400  600  800  1000
Age (kyr)

c) MD03-2628 Δδ18O water (this study)

1

2

3

4

Δδ18O water(reconstructed-modern)

b)Δδ18O relative to present

-0.5

0

0.5

1

1.5

2

2.5

δ18O of G. ruber corrected from alkenones SST (this study)  MD03-2628

MPT

Benthic Δδ18O, Lisiecki and Raymo (2005)

 Δδ18O due to ice-sheet volume 
Bintanja and van de Wal (2008)

 Δδ18O due to ice-sheet volume
Waelbroeck et al. (2002)

1.5

-0.5

0

0.5

1

2

100 kyr cycles

V
S

M
O

W
 (

%
o
)

V
S

M
O

W
 (

%
o
)

V
S

M
O

W
 (%

o )

Fig. 6
Fig. 6. The calculation steps for the correction procedure for MD03-
2628 δ18O for Globigerinoides ruber. (a) The core MD03-2628
δ18O record (blue curve and dots) corrected for temperature effects
using sea-surface temperatures (from the UK ′

37 index) and the equa-
tion of Mulitza et al. (2003). The error bar at the left shows the error
in the calculation due to SST uncertainty.(b) The global oceanic
1δ18O relative to the present; the global benthic1δ18O stack from
Lisiecki and Raymo (2005) is shown in dark blue. From this record,
Bintanja and van de Wal (2008) extracted the ice-volume effect
(IVE, orange curve) in global1δ18O. The IVE effect was also re-
contructed by Waelbroeck et al. (2002) (pink curve). See the text
for calculation details.(c) Variations in theδ18O of seawater rel-
ative to modern values (noticed1δ18O) at the core MD03-2628
location calculated using the records in(a) and(b). The black bold
line is the average of a global IVE correction from Waelbroeck et
al. (2002) and Bintanja and van de Wal (2008). The standard devia-
tion is indicated by the thin lines and includes the variability of both
IVE reconstructions as well as an uncertainty of±2.5 ka on the core
MD03-2628 age model. See the text for calculation details. Light
gray bars, even numbers, and yellow area are the same as in Fig. 4.
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As discussed in Sect. 4.2., differences between SST
records in the Caribbean Sea are documented and may con-
tribute to the variability observed in the calculatedδ18O of
seawater. However, on glacial-interglacial timescales, the
temperature signal only accounts for approximately 0.2‰,
on average, of the total amplitude of theδ18O of seawa-
ter change (1.46‰) during Terminations. Additionally, the
long-term trend observed for theδ18O of G. ruber and for
the calculatedδ18O of seawater is not documented in SST
reconstructions from the Caribbean Sea. Therefore, we
believe that the discrepancies between the different paleo-
temperature reconstructions have little influence on the vari-
ability for theδ18O of seawater.

As a second step, we corrected the MD03-2628δ18O
of seawater from global ice volume changes. For the last
430 ka, two reconstructions for the ice volume effect (IVE)
obtained from Waelbroeck et al. (2002) and Bintanja and
van de Wal (2008) were used (Fig. 6b). In general, good
agreement was observed between the IVE curves for the last
430 ka (Fig. 6b). We calculated the differentδ18O IVE’s pro-
vided within the records of Bintanja and van de Wal (2008)
and Waelbroeck et al. (2002) by including the age model un-
certainty of±2.5 ka for core MD03-2628. We used these
different estimations to correct theδ18O of seawater at the
core MD03-2628 site from the IVE. At the studied temporal
resolution, a shift of±2.5 ka does not affect the phase re-
lationships between the differentδ18O IVE reference curves
and core MD03-2628δ18O and SST records. Finally, the cal-
culatedδ18O of seawater takes into account the core MD03-
2628 age model uncertainty and the variability induced us-
ing two different IVE corrections. For an easier comparison,
here, we present the difference between theδ18O of seawater
in the past and theδ18O of modern seawater (1.01‰), indi-
cated as1δ18O (Fig. 6c). As expected, the uncertainties are
higher during glacial stages, when sedimentation rates are
lower.

The conversion for theδ18O of seawater into paleo-SSS
values may be uncertain due to a lack of information regard-
ing the temporal evolution for theδ18O of the seawater/SSS
relationship (that is theδ18Oseawater= 0.263(±0.06)· S-
8.57(±1.99) at the core site if we consider calibrations from
the Caribbean Sea and the Tropical Atlantic of Watanabe et
al., 2001, Steph et al., 2006, and Regenberg et al., 2009).
Therefore, we decided to discuss the change in1δ18O as
a proxy for variations in SSS relative to modern conditions
(Fig. 6c). The1δ18O record exhibited a glacial/interglacial
pattern with high and low values during glacial and inter-
glacial stages, respectively, for the last 940 ka (Fig. 6c). Av-
erage interglacial values were 0.5‰ (±0.05‰, 1σm, n = 37)
for the last 450 ka, and 0.95‰ (±0.05‰, 1σm, n = 24) for
the 940–650 ka time-interval, resulting in a1δ18O difference
between the two periods of 0.45‰ (±0.07‰, 1σsum). On
the contrary, we observed a trend of nearly constant1δ18O
for all of the glacial stages throughout the record, with av-
erage values of 1.36‰ (±0.07‰, 1σm, n = 12) and 1.26‰

(± 0.07‰, 1σm, n = 15), from 940 to 650 ka and from 450 to
0 ka, respectively. Hereafter, we refer to an average glacial
1δ18O value of 1.31‰ (±0.09‰, 1σsum) for both time-
intervals.

On glacial-interglacial timescales, variations in the1δ18O
from −0.35 to 0.65‰ have been described for the last 130 ka
in the Caribbean Sea (Schmidt et al., 2004). For the same
time interval,1δ18O results ranged from−0.02 and 1.5‰.
A higher 1δ18O amplitude of change in core MD03-2628
may be related to a less pronounced variability in the SST
record when compared to previous studies, mainly due to the
low resolution of core MD03-2628 sampling and a decrease
in sedimentation rates during glacial stages (Fig. 5). In spite
of the difference in the1δ18O amplitude, the same trend
was found in both reconstructions with high values during
glacials and low values during interglacials. Additionally, the
average glacial/interglacial difference for core MD03-2628
1δ18O resulted in 0.8‰ (±0.1‰, 1σsum), in good agreement
with the amplitudes of 0.5 and 0.8‰ as determined for the
last two glacial Terminations in the Caribbean Sea, respec-
tively (Schmidt et al., 2004), and with a study in the tropical
Atlantic for the last Termination (Wolff et al., 1998).

5 Discussion

Reconstruction for the regional1δ18O of seawater in the
Northern Caribbean Sea has revealed two major trends – a
marked glacial/interglacial pattern spanning the last 940 ka
and a shift toward lower surface water1δ18O during inter-
glacial stages over the last 450 ka (Fig. 7a). In both cases the
results are interpreted as changes in the salinity budget at the
core location. After validating our reconstructions, the cli-
mate mechanisms responsible for these hydrologic changes
and their implications are discussed according to the follow-
ing main lines:

1. Processes influencing the ITCZ location on glacial-
interglacial timescales. We refer to the evidence for
the ITCZ migration in paleoclimatic records and dis-
cuss the mechanisms involved based on modeling re-
sults. Changes in the cross-equatorial transport of salt
and heat into the North Atlantic associated with the
ITCZ migration, and their related consequences on the
AMOC, are also considered;

2. Using the mechanisms pointed out for the glacial-
interglacial timescale, we discuss the possible causes
and consequences of an ITCZ migration for interglacial
stages spanning the last 450 ka, following the MPT. We
explore changes in oceanic and atmospheric heat trans-
fers in particular that may have been associated with
ITCZ movement, and examine how these different pro-
cesses may have contributed to the amplification of the
climate cycles after the MPT.
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Fig. 7. (a)Mean variations for theδ18O of seawater relative to mod-
ern values (noticed1δ18O) at the core MD03-2628 location, as a
proxy for past sea-surface salinities (SSS) (the black bold line and
full circles, the thin lines indicate the standard deviation). The light
blue bold line represents the average glacial values for the 950–650
and the 450–0 ka time interval. The thin blue lines are the error at
1 σm. The red bold lines represent, for each time interval (950–650
and 450–0 ka), the associated mean1δ18O value for interglacial
stages (thin red lines exhibit the error given by 1σm). The red
arrow indicates the shift in past-SSS values for interglacial stages
occuring after 650 ka.(b) A comparison between the planktonic
δ18O records of core MD03-2628 (green curve and dots, this study)
with theδ18O of G. sacculiferrecords from the Southern Caribbean
Sea (DSDP 502, Fig. 1a, Prell, 1982, gray curve and dots), and the
Equatorial Pacific (ODP 847, Fig. 1a, Farell et al., 1995, orange
curve and dots).(c) The sea-surface temperature record from the
Antarctic sector of the South Atlantic (core ODP 1090, Becquey
and Gersonde, 2002).(d) The global benthicδ18O record from
Lisiecki and Raymo (2005) in dark blue, and past atmospheric CO2
concentrations in light green (Luthi et al., 2008). Light gray bars,
even numbers, and yellow area are the same as in Fig. 4.

5.1 The validity of 1δ18O reconstructions

5.1.1 Glacial/interglacial1δ18O changes

The glacial/interglacial pattern for the1δ18O record in core
MD03-2628 is clearly documented for the entire record, ex-
cept for MIS 20 and 22 (Fig. 7a). Even if the mean1δ18O
value changed over time (see below), glacial/interglacial
variations of1δ18O were maintained downcore, suggest-
ing that the surface water salinity increase in the northern
Caribbean Sea during glacial stages was a recurrent feature
of the last million years. Similar patterns have previously
been described for the last glacial/interglacial cycle in the
Caribbean Sea (Schmidt et al., 2004) and in the western trop-
ical Atlantic for the last 350 ka (D̈urkoop et al., 1997). Under
modern conditions, the northern position of the ITCZ during
boreal summer modulates the freshwater supply to the stud-
ied area and, thus, the SSS variability (see Sect. 2.2). The
main process for explaining an increase in SSS at the core
site is a southern position for the ITCZ that would prevent
direct and indirect freshwater supplies during glacial peri-
ods. Evidence for southward displacement has already been
determined in other paleoclimatic records from the same area
(e.g., Schmidt et al., 2004; Ziegler et al., 2008 and references
therein). Additionally, it is generally accepted that glacial
stages are associated with a reduced AMOC (e.g., Stouffer
et al., 2006; Lynch-Stieglitz et al., 2007). Therefore, a re-
duced cross-equatorial flow would keep salty surface waters
at low latitudes rather than transport them to the high lati-
tudes of the northern Atlantic (Crowley, 1992). Such a fea-
ture is found in the core MD03-26281δ18O record, which
reflects an increase in salinity during glacial periods span-
ning the last 940 ka, in agreement with previous modelling
studies and paleoceanographic records from tropical areas
(Rühlemann et al., 2004; Dahl et al., 2005) (Fig. 7a).

5.1.2 Long-term1δ18O shifts

The other remarkable feature in the1δ18O record of core
MD03-2628 is a shift toward lower values occurring during
interglacial stages after 450 ka (Fig. 7a). This trend in local
salinity in the northern Caribbean Sea is robust and is not an
artifact produced by the SST reconstruction (Figs. 4b and 5),
and/or by the global oceanicδ18O (Fig. 6). The SST record in
core MD03-2628 does not show any shift between 650 ka and
450 ka (Fig. 4b), a feature that is supported by other tropical
SST records for the last million years (even if other areas
are controlled by different climate processes) (de Garidel-
Thoron, 2007; Liu et al., 2008). We have shown that the trend
observed in the1δ18O record already exists in the seawater
δ18O record reconstructed only by correcting theδ18O of G.
ruber for SST without considering the global mean oceanic
δ18O (Fig. 6a).

The effect of long-term changes in the preservation state of
planktonic foraminiferal tests onδ18O values can be ruled out
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since Sepulcre et al. (2009) have shown that calcium carbon-
ate minerals were well-preserved in core MD03-2628 over
the last 940 ka, as indicated by high amounts of metastable
fine aragonite as well as magnesian calcite.

The comparison between core MD03-2628δ18O results
and other planktonic records supports the fact that the ob-
served trend is related to Caribbean water hydrology. The
Globigerinoides sacculiferδ18O record at site ODP 847
in the Eastern Equatorial Pacific (Fig. 1a, Farrell et al.,
1995) does show constant mean values for the last million
years (Fig. 7b). On the other hand, theG. sacculiferδ18O
record from core DSDP 502 obtained from the Caribbean
Sea (Figs. 1a and 7b) also shows a significant difference (of
approximately 0.4‰) in meanδ18O values between the late
and early Quaternary (Prell, 1982).

Therefore, we suggest that the observed shift in the1δ18O
of core MD03-2628 reflects changes in the regional salin-
ity of the Caribbean Sea mainly during interglacial stages
(Fig. 7a). The ITCZ may have migrated farther northward
during interglacials over the last 450 ka (as compared to
the period before 650 ka), explaining these local hydrologic
changes. A northward position would bring more freshwa-
ter to the site and cause a salinity decrease during inter-
glacials, as observed during modern late summer conditions
(Figs. 2 and 3). An alternate explanation would be an in-
crease in ITCZ intensity following the MPT. Warmer SSTs in
the Northern tropics could have resulted in more intense at-
mospheric convection and thus, more intense rainfall result-
ing in reduced interglacial SSS. However, there is no clear
long-term trend observed in SST records from different loca-
tions of the tropical area over the MPT (de Garidel-Thoron,
2007; Liu et al., 2008). Therefore, the impact of warmer SST
on the ITCZ intensity at the MPT timescale seems unlikely,
and in the following, we discuss processes involved in ITCZ
migration.

5.2 Mechanisms for ITCZ migration and links with the
AMOC

The processes responsible for ITCZ migration at glacial-
interglacial timescales can be inferred both from modern
conditions and modelling results. The modern seasonal mi-
gration of the ITCZ is influenced by the cross-equator tem-
perature gradient, with a relatively warm Northern Hemi-
sphere compared to the Southern Hemisphere; this north-
south asymmetry implies that the ITCZ lies within the rela-
tively warm Northern Hemisphere for most of the year (e.g.,
Chiang et al., 2002 and 2003).

As mentioned previously by several authors (Chiang et al.,
2003; Broccoli et al., 2006; Stouffer et al., 2006), an inter-
hemispheric temperature contrast was initiated during peri-
ods of reduced AMOC and played an important role in ITCZ
displacement in the past on glacial/interglacial timescales. A
recent study focused on simulations of the last glacial maxi-
mum. Special emphasis on the ITCZ has shown that a south-

ward shift of the ITCZ, resulting from an increased equator
to pole temperature gradient in the Northern Hemisphere as-
sociated with glacial boundary conditions, is a robust feature,
since it has been observed in several model outputs (Bracon-
not et al., 2007). The associated oceanic response in the trop-
ical Atlantic is a warming of thermocline waters that results
from the decreased strength of the northward flowing current
in surface and thermocline waters (Rühlemann et al., 2004;
Dahl et al., 2005). Warm and salty waters stay in the tropics
without being exported to the north (Dahl et al., 2005; Wan
et al., 2010).

The interesting feature is that the ITCZ migration, which
is related to a change in the cross-equator temperature gra-
dient due to a reduced AMOC, has been mentioned for dif-
ferent timescales and corresponds to different modes of cli-
mate variability and thermohaline circulation (Mix et al.,
1986; D̈urkoop et al., 1997; Schmidt et al., 2004; Ziegler
et al., 2008); and occurs during rapid climate changes (e.g.,
Heinrich events) (R̈uhlemann et al., 1999; Vidal et al., 1999,
Schmidt et al., 2004 and 2006b; Weldeab et al., 2006; Ziegler
et al., 2008). Similar mechanisms for different timescales
may be involved and may help to explain ITCZ migration
in the past. We propose that North Atlantic variability inter-
acted with the ITCZ position over the MPT.

5.3 Links between the ITCZ location and climate
changes associated with the MPT

One possible interpretation for the low SSS estimates dur-
ing interglacial stages spanning the last 450 ka is a north-
ward shift of the ITCZ. The comparison between theδ18O
records of core MD03-2628 and core DSDP 502 suggests
that ITCZ migration influenced the Caribbean Sea overall
(Figs. 1a and 7b). In contrast, theδ18O record of core ODP
847 obtained from the Eastern Equatorial Pacific Ocean did
not record lowerδ18O values during interglacials spanning
the last 450 ka (Fig. 7b). Under modern conditions, core
ODP 847 lies at the southernmost limit of the ITCZ’s influ-
ence (Fig. 1a); therefore, a northward ITCZ migration would
not influence the core ODP 847 site.

One way to explain the northward ITCZ migration is a
change in the cross-equator temperature gradient that may be
related to an increased northward oceanic heat transfer dur-
ing the interglacials of the past 450 ka (Trenberth and Caron,
2001). Evidence of enhanced oceanic mass transport can be
found in results obtained from the South Atlantic (Peeters et
al., 2004). Faunal assemblages in the Cape Basin were used
to reconstruct the so-called “Agulhas leakage” (AL), an in-
dex for heat and salt export from the Indian Ocean into the
Atlantic Ocean. The temporal evolution of this index clearly
shows a marked variability with 100 ka-cycles with an en-
hanced export of warm and salty waters into the south At-
lantic during the past five glacial Terminations (Peeters et
al., 2004). The strong relationship between the efficiency
of the AL and the strength of the AMOC is supported by
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observations in the modern ocean and by model simulations
(Knorr and Lohmann, 2003; Biastoch et al., 2008). The in-
tensity of the AL depends on the location of Southern Ocean
oceanographic fronts (SOF) and the related Southern Hemi-
sphere westerlies (Rouault et al., 2009; Biastoch et al., 2009).
A poleward migration of the SOF induces changes in wind
stress that cause the resumption of the Agulhas currrent and,
as a consequence, intense leakage from the Indian Ocean to
the Atlantic Basin. At glacial-interglacial timescales, influ-
ence of the SOF migration on the AL and its impacts on the
AMOC has been invoked for extreme glacial stages (Bard
and Rickaby, 2009). On a longer timescale, a study based
on past SST from the South Atlantic spanning the MPT
has pointed to a shift toward higher SST values during in-
terglacial stages for the last 450 ka, as compared to older
interglacial stages (Becquey and Gersonde, 2002, Fig. 7c).
The abrupt change in SST values reflects a southernmost
SOF location, implying a stronger AL for the last five inter-
glacial stages as compared to interglacials older than 650 ka
(Becquey and Gersonde, 2002, Fig. 7c). These long-term
changes in the SOF location may have induced a more vigor-
ous AMOC during interglacial stages of the last 450 ka. An
enhanced northward oceanic transfer during the interglacial
stages could have promoted more intense heat transport to
high latitudes, and therefore, warming of the Northern Hemi-
sphere (Chiang et al., 2003; Braconnot et al., 2007; Togg-
weiler, 2009). As a result, the ITCZ could have moved north-
ward. Finally, the combination of a northernmost ITCZ loca-
tion and an increase in oceanic heat transfer may be involved
in the amplification of climate cycles during the last 450 ka
(Fig. 7d).

A final piece of evidence for a long-term migration of the
SOF during the MPT is derived from the change in atmo-
spheric CO2. Model simulations have shown links between
the location of the SOF and atmospheric CO2 through the
oceanic carbon pump efficiency (Saenko et al., 2005; Tog-
gweiler et al., 2006; Toggweiler and Russell, 2008; Köhler
and Bintanja, 2008). The recent record of atmospheric CO2
from the EPICA spanning the last 800 ka clearly shows a dif-
ference in the glacial-interglacial amplitude for CO2 changes
between the last five climate cycles, and for periods older
than 450 ka (Luthi et al., 2008, Fig. 7d). Profound changes in
the carbon cycle may need to be invoked in order to explain
the transition of the overall climate system from the 41-ka to
the 100-ka world.

6 Conclusions

The goal of this study was to evaluate the impact of changes
in the climate system following the Mid-Pleistocene Transi-
tion (MPT) on the tropical Atlantic Ocean by evaluating past
variations in the hydrologic cycle in the Northern Caribbean
Sea. In core MD03-2628, we estimated past sea surface
salinities (SSS) using reconstructions of the past changes of

seawaterδ18O relative to modern conditions (1δ18O). The
δ18O of seawater was obtained by combining the alkenone
sea-surface temperature record with theδ18O of G. ruber
and by applying a correction for the ice-sheet volume ef-
fect over the last 940 ka. Today, the main control on SSS
at the core site is the modern seasonal inter-tropical con-
vergence zone (ITCZ) migration. Variations in the1δ18O
displayed a pattern of lower and higher SSS during inter-
glacial and glacial stages, respectively, over the past 940 ka.
Glacial stage values for1δ18O were nearly constant for the
last 940 ka, whereas interglacial values for the 940–650 ka
time-period were higher than for the 450–0 ka interval.

The core MD03-26281δ18O record allowed us to docu-
ment the relationships between the low latitude hydrologic
cycle and the Atlantic Meridional Overturning Circulation
(AMOC) at the glacial/interglacial timescale over the last
940 ka. We propose that for all glacial periods during the last
940 ka, the southward position of the ITCZ induced an in-
crease in SSS at the studied site, in association with a reduced
AMOC, keeping warm and salty waters at low latitudes, as
previously suggested for the last glacial period. On a longer
timescale, the1δ18O results highlight the response of tropi-
cal areas to climate changes associated with the MPT. A shift
in the1δ18O values reflects the northward migration of the
ITCZ during the last five interglacial periods, when com-
pared to the time-period before 650 ka. Northward move-
ment during interglacial stages could have been associated
with an enhanced cross-equatorial oceanic transport, as sup-
ported by evidence from the South Atlantic. The combina-
tion of enhanced northward atmospheric and oceanic trans-
fers could have participated in the amplification of climate
cycles during the last 450 ka.

Supplementary material related to this
article is available online at:
http://www.clim-past.net/7/75/2011/
cp-7-75-2011-supplement.pdf.
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