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Abstract

We define and study the following two-player game on a graph G. Let k ∈ N∗. A set of k
guards is occupying some vertices of G while one spy is standing at some node. At each turn,
first the spy may move along at most s edges, where s ∈ N∗ is his speed. Then, each guard
may move along one edge. The spy and the guards may occupy the same vertices. The spy has
to escape the surveillance of the guards, i.e., must reach a vertex at distance more than d ∈ N
(a predefined distance) from every guard. Can the spy win against k guards? Similarly, what
is the minimum distance d such that k guards may ensure that at least one of them remains
at distance at most d from the spy? This game generalizes two well-studied games: Cops and
robber games (when s = 1) and Eternal Dominating Set (when s is unbounded).

We consider the computational complexity of the problem, showing that it is NP-hard (for
every speed s and distance d) and that some variant of it is PSPACE-hard in DAGs. Then, we
establish tight tradeoffs between the number of guards, the speed s of the spy and the required
distance d when G is a path or a cycle.

Keywords: Cops and Robber games, graphs, PSPACE-hard

1 Introduction

We consider the following two-player game on a graph G, called Spy-game. Let k, d, s ∈ N be
three integers such that k > 0 and s > 0. One player uses a set of k guards occupying some
vertices of G while the other player plays with one spy initially standing at some node. This is
a full information game, thus any player has full knowledge of the positions and previous moves
of the other player. Note that several guards and even the spy could occupy the same vertex.

Initially, the spy is placed at some vertex of G. Then, the k guards are placed at some
vertices of G. Then, the game proceeds turn-by-turn. At each turn, first the spy may move
along at most s edges (s is the speed of the spy). Then, each guard may move along one edge.
The spy wins if, after a finite number of turns (after the guards’ move), it reaches a vertex at

∗This work has been partially supported by ANR project Stint under reference ANR-13-BS02-0007, ANR program
“Investments for the Future” under reference ANR-11- LABX-0031-01, the associated Inria team AlDyNet, the project
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0083-00047.01.00/13, with Federal Univ. of Ceara, Brasil.
†Email address: nicolas.nisse@inria.fr
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distance greater than d from every guard. The guards win otherwise, in which case we say that
the guards control the spy at distance d, i.e. there is always at least one guard at distance at
most d from the spy.

Given a graph G and two integers d, s ∈ N, s > 0, let the guard-number, denoted by gns,d(G),
be the minimum number of guards required to control a spy with speed s at distance d, against
all spy’s strategies.

1.1 Preliminary remarks

We could define the game by placing the guards first. In that case, since the spy could choose its
initial vertex at distance greater than d from any guard, we need to slightly modify the rules of
the game. If the guards are placed first, they win if, after a finite number of turns, they ensure
that the spy always remains at distance at most d from at least one guard. Equivalently, the
spy wins if it can reach infinitely often a vertex at distance greater than d from every guard.
We show that both versions of the game are closely related. In what follows, we consider the
spy-game against a spy with speed s that must be controlled at distance d for some fixed integers
s > 0 and d.

Claim 1. If the spy wins against k guards in the game when it starts first, then it wins in the
game when it is placed after the k guards.

Proof of the claim. Assume that the spy has a winning strategy S when it is placed first. In
particular, there is a vertex v0 ∈ V (G) such that, starting from v0 and whatever be the strategy
of the guards, the spy can reach a vertex at distance > d from every guard. If the spy is placed
after the guards, its strategy first consists in reaching v0, and then in applying the strategy S
until it is at distance > d from every guard. The spy repeats this process infinitely often. �

The converse is not necessarily true, however we can prove a slightly weaker result which is
actually tight. For this purpose, let us recall the definition of the well known Cops and robber
game [17, 7]. In this game, first k cops occupy some vertices of the graph. Then, one robber
occupies a vertex. Turn-by-turn, each player may move its token (the cops first and then the
robber) along an edge. The cops win if one of them reaches the same vertex as the robber after
a finite number of turns. The robber wins otherwise. The cop-number cn(G) of a graph G is
the minimum number of cops required to win in G [1].

Claim 2. If k guards win in the game when the spy is placed first in a graph G, then k+cn(G)−1
guards win the game when they are placed first.

Proof of the claim. Assume that k guards have a winning strategy when the spy is placed first.
Such a strategy S is defined as follows. For any walk W = (v0, v1, · · · , v`) of the spy1, each
guard gi (1 ≤ i ≤ k) is assigned a vertex posi(W ), such that, for any vertex w ∈ V (G) at
distance at most s from v` and for any i ≤ k, posi(W ·w) ∈ N [posi(W )] where N [x] denote the
set of vertices at distance at most one from x ∈ V . Moreover, for any walk W = (v0, · · · , v`) of
the spy, there exists i ≤ k such that the distance between v` and posi(W ) is at most d.

Now, let us assume that k + cn(G) − 1 guards are placed first. We show that after a finite
number of turns, when the spy has followed any walk W , the vertices posi(W ) are occupied for
all 1 ≤ i ≤ k and then the guards occupying these vertices can follow S and so win.

Let 0 ≤ j < k and assume that the spy has followed the walk W = (v0, · · · , v`) (in particular,
the spy occupies v`) and that the vertices posi(W ) are occupied for all 1 ≤ i ≤ j (j = 0 means
no such vertex is occupied). The guards occupying the vertices pos1(W ), · · · , posj(W ) follow
their strategy S. There remains k + cn(G)− 1− j ≥ cn(G) “free” guards. A team of cn(G) of
free guards will target the position posj+1(W ) (which acts as a robber moving at speed one in

1Here, a walk is a sequence of vertices (possibly with repetitions) such that two consecutive vertices in the sequence
are at distance at most s.
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G). Therefore, after a finite number of steps, one free guard reaches posj+1(W ′) (where W ′ is
the walk that the spy has followed until this step). Continuing this way, after a finite number
of steps, after that the spy has followed some walk W ∗, the vertices posi(W

∗) are occupied for
all 1 ≤ i ≤ k. These k guards can go on executing S and win, which concludes the proof. �

The bound of the previous claim is tight. Indeed, for any graph G, gn1,0(G) = 1 since one
guard can be placed at the initial position of the spy and then follow it. On the other hand, if
the guards are placed first, the game (for s = 1 and d = 0) is equivalent to the classical Cops
and robber game and, therefore, cn(G) guards are required.

1.2 Related work

Further relationship with Cops and robber games. The Cops and robber game
has been generalized in many ways [6, 11, 2, 8, 9]. In [6], Bonato et al. proposed a variant with
radius of capture. That is, the cops win if one of them reaches a vertex at distance at most d (a
fixed integer) from the robber. The version of our game when the guards are placed first and
for s = 1 is equivalent to Cops and robber with radius of capture. Indeed, when the spy is not
faster than the guards, capturing the spy (at any distance d) is equivalent to controlling it at
such a distance: once a guard is at distance at most d from the spy, it can always maintain this
distance (by following a shortest path toward the spy).

This equivalence is not true anymore as soon as s > 1. Indeed, one cop is always sufficient
to capture one robber in any tree, whatever be the speed of the robber or the radius of capture.
On the other hand, we prove below that Θ(n) cops are necessary to control a spy with speed
at least 2 at some distance d in any n-node path. This is mainly due to the fact that, in the
spy-game, the spy may cross (or even occupy) a vertex occupied by a guard. Therefore, in what
follows, we only consider the case s ≥ 2.

Note that the Cops and robber games when the robber is faster than the cops is far from
being well understood. For instance, the exact number of cops with speed one required to
capture a robber with speed two is unknown in 2-dimensional grids [10, 5]. One of our hopes
when introducing the Spy-game is that it will lead us to a new approach to tackle this problem.

Generalization of Eternal Domination. A d-dominating set of a graph G is a set
D ⊆ V (G) of vertices such that any vertex v ∈ V (G) is at distance at most d from a vertex in
D. Let γd(G) be the minimum size of a d-dominating set in G. Clearly, gns,d(G) ≤ γd(G) for
any s, d ∈ N. However these two parameters may differ arbitrarily as shown by the following
example. Let G be the graph obtained from a cycle C on n-vertices by adding one node x
and, for any v ∈ C, adding a path of length d + 1 between v and x. It is easy to check that
γd(G) = Ω(n/d) while gns,d(G) = 2 (the two guards moving on x and its neighbors).

In the eternal domination game [12, 13, 15, 16], a set of k defenders occupy some vertices
of a graph G. At each turn, an attacker chooses a vertex v ∈ V and the defenders may move
to adjacent vertices in such a way that at least one defender is at distance at most d (a fixed
predefined value) from v. Several variants of this game exist depending on whether exactly one
or more defenders may move at each turn [13, 15, 16]. It is easy to see that the spy-game,
when the spy has unbounded speed (equivalently, speed at least the diameter of the graph) is
equivalent to the Eternal Domination game when all defenders may move at each turn.

Eternal Domination and Spy game are also related to Patrolling games where a team of
patrollers must move in a graph such that every vertex must never be unoccupied during more
than d consecutive steps where d is a fixed parameter [4, 18]. In particular, since at each step,
no vertex is at distance more than d from some patroller, the minimum size of a team for
the Patrolling game provides an upper bound on the minimum number of guards required for
controlling the spy at distance d, whatever be its speed.
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1.3 Our contributions

In this paper, we initiate the study of the spy-game for s ≥ 2. In Section 2, we study the
computational complexity of the problem of deciding the guard-number of a graph. We prove
that computing gns,d(G) is NP-hard for any s ≥ 2 and d ≥ 0, in the class of graph G with
diameter at most O(d). Then, we show the problem is PSPACE-complete in the case of DAGs
(where guards and spy have to follow the orientation of arcs, but distances are in the underlying
graph). Then, we consider particular graph classes. In Section 3, we precisely characterize the
cases of paths and cycles. Precisely, for any d ≥ 0, s ≥ 2, we prove that, for any path Pn on n
vertices:

gns,d(Pn) =

 n

2d+ 2 +
⌊

2d
s−1

⌋
 ,

and, for any cycle Cn with n vertices:

• gns,d(Cn) =
⌈

n
2d+3

⌉
if 0 ≤ 2d < s− 1;

• If 2d ≥ s − 1, let 2d = q(s − 1) + r (0 ≤ r < s − 1) and 2d = q′s + r′ (0 ≤ r′ < s). Let
(q∗, r∗) = (q, r) if s odd and (q∗, r∗) = (q′, r′) otherwise. Then,⌈

n+ 2q

2(d+ q) + 3

⌉
≤ gns,d(Cn) ≤

⌈
n+ 2q∗

2(d+ q∗)− r∗

⌉
.

Notations. We consider connected simple graphs. Given a graph G = (V,E) and v ∈ V , let
N(v) = {w | vw ∈ E} denote the set of neighbors of v and let N [v] = N(v) ∪ {v}.

2 Complexity

2.1 NP-hardness

In this section, we prove that the Spy-Game with speed s and distance d is NP-hard for any
s ≥ 2 and d ≥ 0. Precisely, we prove the following theorem.

Theorem 3. Let s ≥ 2 and d ≥ 0 be two fixed integers. The problem that takes an n-node graph
G and an integer k ∈ N as inputs and aims at deciding whether gns,d(G) ≤ k is NP-hard, W[2]-
hard (when parameterized by the number of guards) and α lnn-inapproximable in polynomial
time for some constant 0 < α < 1, unless P=NP.

The proof follows the five Lemmas below. The reduction is from the Set Cover Problem
and is divided in three cases: (i) s ≥ 2d+ 2, (ii) d+ 1 < s < 2d+ 2 and (iii) s ≤ d+ 1.

An instance of the Set Cover Problem is a family S = {S1, . . . , Sm} of sets and an integer
c, and the objective is to decide if there exists a subfamily C = {Si1 , . . . , Sic} ⊆ S such that
|C| ≤ c and Si1 ∪ . . . ∪ Sic = U , where U = S1 ∪ . . . ∪ Sm (we say that C is a set cover of
U). Given an instance (S, c) of Set Cover, we construct a graph G = Gs,d(S, c) and an integer
K = Ks,d(S, c) such that there exists a cover C ⊆ S of U with size at most c if and only
if gs,d(G) ≤ K. Note that the reductions presented below are actually FPT-reduction and
preserve approximation ratio. Therefore, since the Set Cover Problem is W[2]-hard (when
parameterized by the size c of the set cover) and has no α ln(n) approximation algorithm for
some constant 0 < α < 1 (unless P=NP) [3], we not only prove the NP-hardness but also the
fact that the problem is W[2]-hard (when parameterized by the number of guards) and cannot
be approximated in polynomial time up to some logarithmic ratio (unless P = NP ).
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Definition 4. Given integers s ≥ 2 and d ≥ 0, let p = p(s, d) = d+
⌈
d+1
s−1

⌉
and q = q(s, d) be

q(s, d) =


0, if d+ 1 < s < 2d+ 2,

d+
⌈

d
s−1

⌉
, if s ≤ d+ 1,

d, otherwise.

Let (S, c) an instance of Set Cover, where S = {S1, . . . , Sm}, and let U = S1 ∪ . . . ∪ Sm =
{u1, . . . , un}. Let K = Ks,d(S, c) be:

Ks,d(S, c) =


c, if d+ 1 < s < 2d+ 2,

c+ 2, if s ≤ d+ 1 and 1 ≤ d mod (s− 1) < s
2 − 1,

c+ 1, otherwise,

where r = d mod (s− 1) is the remainder of the division of d by s− 1.
Let G = Gs,d(S, c) be the graph defined as follows: for every set Sj ∈ S, create a new vertex

Sj in G and, for every element ui ∈ U , create a path Ui with p vertices ui,1, . . . , ui,p. Make
{S1, . . . , Sm} be a clique in G (add all possible edges). If ui ∈ Sj , add the edge ui,1Sj in G.
Create a new vertex z0 and add all possible edges between z0 and {S1, . . . , Sm} in G. Finally, if
q > 0, create a path Z with q vertices z1, . . . , zq, and add the edge z0z1. Moreover, if s ≤ d+ 1
and 1 ≤ d mod (s − 1) < s

2 − 1, then create a path Z ′ with q vertices z′1, . . . , z
′
q and add the

edge z0z
′
1.

See Figures 1-3 for examples.

s = 5
d = 2
p = 3
q = 0

K = 3

z0

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,3 u2,3 u3,3 u4,3 u5,3 u6,3 u7,3 u8,3 u9,3

s = 5
d = 3
p = 4
q = 0

K = 3

z0

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,4 u2,4 u3,4 u4,4 u5,4 u6,4 u7,4 u8,4 u9,4

Figure 1: Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5}, S1 =
{1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
Cases for speed s = 5 and distance d = 2, 3. Illustration of the proof of Lemma 5.

Lemma 5. Given a graph G and an integer K > 0, deciding if gs,d(G) ≤ K is NP-hard for
every s, d ≥ 0 such that d+ 1 < s < 2d+ 2.

Proof. Reduction from Set Cover. Let (S, c) be an instance of Set Cover. Recall Definition 4
and let p = p(s, d) = d+ 1, q = q(s, d) = 0, G = Gs,d(S, c) and K = Ks,d(S, c) = c.

Firstly, suppose that there is no cover C of U with at most c sets in S. We prove that the
spy wins against at most K = c guards. Precisely, the spy starts in z0 and can win in one step.
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Indeed, since there are at most K guards and there is no cover of U with c sets in S, then there
exists some 1 ≤ i ≤ n such that there is no guard in N [Ui]. Thus, the spy goes to ui,p in one
step (note that the distance from z0 to ui,p is p + 1 = d + 2 ≤ s). During the guards’ step, no
guard can reach a vertex of Ui, and so the spy remains at distance at least d from all guards.
Therefore, the spy wins.

Now, suppose that there is a cover C = {Sj1 , . . . , Sjc} of U with c sets in S. For ease of
presentation, we prove that c = K guards win if they are placed first. By Claim 1, this is
sufficient to prove that gs,d(G) ≤ K. The strategy of the guards is as follows. Occupy initially
the vertices Sj1 , . . . , Sjc . Since C is a cover of U , we can define for any element ui ∈ U an index
c(i) such that ui ∈ Sc(i) ∈ C.

If the spy is not in {u1,p, . . . , un,p}, then the guards occupy the initial vertices and then they
control the spy. If the spy is in a vertex ui,p, then the guard occupying Sc(i) goes to ui,1 and
control the spy. Since s < 2d + 2, the spy cannot go from ui,p to other vertex uj,p in one step
(j 6= i). Thus, if the spy leaves ui,p, the guards reoccupy the initial vertices. With this strategy,
the guards win the game.

s = 5
d = 0
p = 1
q = 0

K = 4

z0

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

s = 5
d = 1
p = 2
q = 1

K = 4

z0 z1

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,2 u2,2 u3,2 u4,2 u5,2 u6,2 u7,2 u8,2 u9,2

Figure 2: Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5}, S1 =
{1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
Cases for speed s = 5 and distance d ∈ {0, 1}. Illustration of the proof of Lemma 6.

Lemma 6. Given a graph G and an integer K, deciding if gs,d(G) ≤ K is NP-hard for every
s, d ≥ 0 such that s ≥ 2d+ 2.

Proof. Reduction from Set Cover. Let (S, c) be an instance of Set Cover. Recall Definition 4
and let p = p(s, d) = d+ 1, q = q(s, d) = d, G = Gs,d(S, c) and K = Ks,d(S, c) = c+ 1.

Firstly, suppose that there is no cover C of U with at most c sets in S. We prove that the spy
wins against at most K = c+ 1 guards. Precisely, the spy starts in zq and can win in one step.
Indeed, if initially no guard occupies a vertex in {z0, . . . , zq}, then the spy wins immediately.
Therefore, let us assume that there is at least one guard in {z0, . . . , zq}. Since there are c + 1
guards, then there is at most c guards outside {z0, . . . , zq}. Since there is no cover of U with c
sets in S, then there exists some 1 ≤ i ≤ n such that there is no guard in N [Ui]. Thus, the spy
goes to ui,p in one step (note that the distance from zq to ui,p is p + q + 1 = 2d + 2 ≤ s) and
wins since no guard can reach a vertex in Ui (i.e., no vertex at distance at most d from ui,p)
during the next step.

Now, suppose that there is a cover C = {Sj1 , . . . , Sjc} of U with c sets in S. For ease of
presentation, we prove that c + 1 = K guards win if they are placed first. By Claim 1, this is
sufficient to prove that gs,d(G) ≤ K. The strategy of the guards is as follows. Occupy initially
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the vertices z0, Sj1 , . . . , Sjc . Since C is a cover of U , we can define for any element ui ∈ U an
index c(i) such that ui ∈ Sc(i) ∈ C.

If the spy occupies a vertex not in {u1,p, . . . , un,p}, then the guards keep their initial positions
and control the spy. If the spy occupies the vertex ui,p, then the guard occupying Sc(i) goes
to ui,1 (controlling the spy) and the guard occupying z0 goes to Sc(i). If the spy leaves ui,p
and occupies a vertex uj,p with c(i) = c(j), then the guard in Sc(i) goes to uj,1 (controlling the
spy) and the guard in ui,1 goes to Sc(i). If the spy leaves ui,p and occupies a vertex uj,p with
c(i) 6= c(j), then the guard occupying Sc(j) goes to uj,1 (controlling the spy), the guard in Sc(i)
goes to Sc(j) and the guard in ui,1 goes to Sc(i). If the spy leaves ui,p to some vertex not in
{u1,p, . . . , un,p}, then the guards reoccupy the initial vertices: the guard in Sc(i) goes to z0 and
the guard in ui,1 goes to Sc(i). With this strategy, the guards win the game.

Now consider the case d+ 1 ≥ s ≥ 2. The next auxiliary lemma will very useful.

Lemma 7. Let s, d ≥ 0 be two integers such that d + 1 ≥ s ≥ 2, let p = p(s, d) = d +
⌈
d+1
s−1

⌉
,

q = q(s, d) = d +
⌈

d
s−1

⌉
and r = d mod (s − 1). Note that p = q + 1 if r = 0 and p = q

otherwise.
Let ` ∈ {p, q}, let P = (x−1, x0, · · · , x`) be a path and let us consider one guard playing the

game in P against a spy with speed s and at distance d.

(a) There is a winning strategy for the guard ensuring that the guard is in x0 when the spy
occupies a vertex in {x−1, · · · , xr};

(b) If r > 0, there are no winning strategies for the guard ensuring that it is in x0 when the
spy is in xj for j > r;

(c) If ` = q, there are no winning strategies for the guard ensuring that it is in x−1 when the
spy is in x0.

(d) If ` = p, for every winning strategy for the guard, it must never occupy x−1.

Proof. (a). We first consider the case ` = q. The strategy is defined as follows. If the spy

occupies a vertex in {x−1, · · · , xr}, then the guard is at x0. For any 0 < j ≤
⌊

d
s−1

⌋
, if the

spy occupies a vertex in {xr+1+(j−1)s, · · · , xr+js}, then the guard is at xj . Note first that
the strategy is well defined: for any move of the spy, the guard either stays idle or moves to

a neighbor. Moreover, for any 0 ≤ j ≤
⌊

d
s−1

⌋
, the distance between them is r + j(s − 1).

While j ≤
⌊

d
s−1

⌋
, this distance is at most r +

⌊
d
s−1

⌋
(s − 1) = d (by definition of r). It only

remains to show that the strategy is defined for all possible positions of the spy. Note that

the strategy is well defined when the spy occupies xh for all h ≤ r +
⌊

d
s−1

⌋
s. If r = 0, then

r+
⌊

d
s−1

⌋
s = d+

⌈
d
s−1

⌉
= q = ` and we are done (all positions have been considered). If r > 0,

then r +
⌊

d
s−1

⌋
s = d +

⌊
d
s−1

⌋
− 1 = q − 1 = ` − 1. Therefore, it only remains to define the

strategy when the spy is in x`, in which case, the guard occupies x1+b d
s−1c.

Now, let us assume that ` = p. Note that, if r > 0, then p = q and therefore, this case has
already been treated. Hence, let us consider the case r = 0.

The strategy is defined as follows. If the spy is at x−1 or x0, then the guard is at x0. For

any 0 < j ≤
⌊

d
s−1

⌋
, if the spy occupies a vertex in {x(j−1)s+1, · · · , xjs}, then the guard is at

xj . Since r = 0, xb d
s−1cs = xq = xp−1 = x`−1. Therefore, it only remains to define the position

of the guard when the spy occupies x`, in which case, the guard is at xb d
s−1c+1. Moreover, the

distance between the spy and the guard is at most `− (
⌊

d
s−1

⌋
+ 1) ≤ d.
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(b). If r > 0 and the spy starts at xr+1, then it goes at full speed toward x`. After j =
⌊

d
s−1

⌋
steps, the spy occupies xh for h = 1 + r +

⌊
d
s−1

⌋
s = ` (as shown above when r > 0), and the

guard can only occupy a vertex in {x−1, · · · , xj}. Therefore, the distance between them is at

least 1 + r +
⌊

d
s−1

⌋
(s− 1) = 1 + d and the spy wins.

(c). If r > 0, the spy first goes to xr+1 while the guard can only go to x0 and the result
follows from the previous item. If r = 0, then the spy goes at full speed toward x`. After

j =
⌊

d
s−1

⌋
steps, the spy occupies xh for h =

⌊
d
s−1

⌋
s = ` (as shown in item (a)), and the guard

can only occupy a vertex in {x−1, · · · , xj−1}. Therefore, the distance between them is at least

1 +
⌊

d
s−1

⌋
(s− 1) = 1 + d and the spy wins.

(d). Finally, assume that the spy starts in x−1 and goes at full speed to x`. After j > 0
steps, the spy occupies xjs−1 and the guard occupies xj−1. Therefore, the distance between them

is j(s − 1) which is at most d if and only if j ≤
⌊

d
s−1

⌋
. Let us set j0 =

⌊
d
s−1

⌋
and note that

sj0−1 = s
⌊

d
s−1

⌋
−1 = (s−1)

⌊
d
s−1

⌋
+
⌊

d
s−1

⌋
−1 = d−r+

⌊
d
s−1

⌋
−1 = d−r+

⌈
d+1
s−1

⌉
−2 = p−2−r.

After step j0, the spy occupies xsj0−1 and is at distance exactly d from the guard. During the
step j0+1, the spy can progress by at least two edges toward xp (because s ≥ 2 and sj0−1 ≤ p−2)
while the guard can progress of at most one edge. Therefore, the distance between them is at
least d+ 1 and the spy wins.

Now, let us consider the case when s ≤ d+ 1 and r = d mod (s− 1) ≥
⌈
s
2

⌉
− 1 or r = 0.

s = 5
d = 4
p = 6
q = 5

K = 4

z0 z1 z5

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,6 u2,6 u3,6 u4,6 u5,6 u6,6 u7,6 u8,6 u9,6

s = 5
d = 5
p = 7
q = 7

K = 5

z0 z1 z7

z′1 z′7

S1 S2 S3 S4 S5

u1,1 u2,1 u3,1 u4,1 u5,1 u6,1 u7,1 u8,1 u9,1

u1,7 u2,7 u3,7 u4,7 u5,7 u6,7 u7,7 u8,7 u9,7

Figure 3: Reduction from Set Cover instance (S, c), where c = 3, S = {S1, S2, S3, S4, S5}, S1 =
{1, 2, 3}, S2 = {2, 6, 7}, S3 = {4, 5, 6}, S4 = {3, 5, 7}, S5 = {7, 8, 9} and U = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
Cases for speed s = 5 and distance d ∈ {4, 5}. Illustration of the proofs of Lemma 8 (left) and
Lemma 9 (right).

8



Lemma 8. Given a graph G and an integer K, deciding if gs,d(G) ≤ K is NP-hard for every
s, d > 0 such that 2 ≤ s ≤ d+ 1 and r = d mod (s− 1) ∈ {

⌈
s
2

⌉
− 1, . . . , s− 2, 0}.

Proof. Reduction from Set Cover. Let (S, c) be an instance of Set Cover. Recall Definition

4 and let p = p(s, d) = d+
⌈
d+1
s−1

⌉
, q = q(s, d) = d+

⌈
d
s−1

⌉
, r = d mod (s− 1), G = Gs,d(S, c)

and K = Ks,d(S, c) = c+ 1.
Firstly, suppose that there is no cover C of U with at most c sets in S. We prove that the spy

wins against at most K = c+ 1 guards. Precisely, the spy starts in z0 and can win as follows. If
no guards are occupying a vertex in {z0, . . . , zq}, then by Lemma 7(c) the spy can move to zq
and win. Therefore, there must be a guard in {z0, . . . , zq} and so, at most c guards occupying
vertices in V (G) \ {z0, . . . , zq}. Since there is no cover of U with at most c sets in S, then there
exists some 1 ≤ i ≤ n such that there is no guard in N [Ui]. Thus, the spy goes at full speed
s from z0 to ui,p. The conditions are similar to the ones of Lemma 7(e) where the vertices in
X = N(u1,p) \Ui (which are not occupied) play the role of x0, and the vertices of N(X) \N [Ui]
(containing z0) play the role of x−1. Therefore, the spy eventually wins.

Now, suppose that there is a cover C = {Sj1 , . . . , Sjc} of U with c sets in S. In what follows,
we describe a winning strategy for K = c + 1 guards. The strategy of the guards will ensure
that there is always a guard at every vertex of C. Recall that, since C is a cover of U , we can
define for any element ui ∈ U an index c(i) such that ui ∈ Sc(i) ∈ C.

The strategy is defined as follows.

• If the spy occupies a vertex in {z0, S1, . . . , Sm}, then the guards occupy the vertices in
{z0, Sj1 , . . . , Sjc}.

• If the spy occupies a vertex in Ui for i ≤ n, let Pi be the path induced by Ui, Sc(i) and z0.
Let us apply Lemma 7(a) on Pi with ` = p, z0 plays the role of x−1 and Sc(i) plays the role
of x0. By Lemma 7(a), there exists a strategy allowing one guard to control the spy and
such that the guard occupies Sc(i) if the spy occupies a vertex in {z0, Sc(i), ui,1, · · · , ui,r}.
In that case, one guard, called the follower, follows the strategy defined by Lemma 7(a).
The other guards occupy the vertices in {Sj1 , . . . , Sjc} if the follower does not occupy Sc(i),
and they occupy {z0, Sj1 , . . . , Sjc} \ {Sc(i)} if the follower is at Sc(i).

• If the spy occupies a vertex in Z, let Z ′ be the path induced by Z, z0 and any vertex Sj .
Let us apply Lemma 7(a) on Z ′ with ` = q, Sj plays the role of x−1 and z0 plays the role
of x0. By Lemma 7(a), there exists a strategy allowing one guard to control the spy and
such that the guard occupies z0 if the spy occupies a vertex in {z0, ui,1, · · · , ui,r} or any
vertex Sj .
In that case, one guard, called the follower, follows the strategy defined by Lemma 7(a).
The other guards occupy the vertices in {Sj1 , . . . , Sjc}.

For any position of the spy, the above strategy ensures that at least one guard controls the
spy (by Lemma 7(a)). Hence, it only remains to prove that the strategy is valid, i.e., that, for
any move of the spy, the guards can move accordingly. There are several cases to be considered.

• If the spy goes from a vertex in some Ui to another vertex of the same Ui or to a vertex
in {z0, S1, . . . , Sm}. Then, the follower moves accordingly to the strategy of Lemma 7(a).
If this move leads the follower to Sc(i) (in particular, by the property of the strategy of
Lemma 7(a), it is the case if the spy reaches a vertex in {z0, S1, . . . , Sm}), then the guard
that was occupying Sc(i) goes to z0. Therefore, all guards’ moves are valid (if they move,
they go to one of their neighbors).
By symmetry of the strategy (which is positional), the strategy of the guards is also valid
if the spy moves from {z0, S1, . . . , Sm} to some Ui.
The case when the spy goes from a vertex of Z to Z, or from Z to {z0, S1, . . . , Sm} is
similar.

• If the spy goes from a vertex in Ui to a vertex in Uj for some i 6= j. Note that, by the
property of the strategy of Lemma 7(a), the follower has to be either in ui,1 or in Sc(i) after
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the spy’s move (this is because, if the spy is able to go from Ui to Uj , it could also have
gone to z0, and the strategy ensures that, in that case, the follower must be able to reach
Sc(i)).
If the follower was in ui,1 (after the spy’s move), then the guard at Sc(j) becomes the new
follower (recall that all vertices in {Sj1 , . . . , Sjc} are always occupied). If the strategy of
the follower (in Pj) asks it to move, the new follower moves (in which case, it goes to uj,1),
then the guard at ui,1 goes to Sc(i). Finally, if c(i) 6= c(j), the guard that was occupying
Sc(i) goes to Sc(j). If the strategy of the follower is to stay idle, then the guard at ui,1 goes
to Sc(i) and the guard that was at Sc(i) goes to z0.
Otherwise, the follower was at Sc(i), then the guards occupy {z0, Sj1 , . . . , Sjc}. In that case,
the guard at Sc(j) becomes the new follower. If it has to move (to uj,1), then the guard at
z0 replaces it at Sc(j).
It is important to note that, in all cases, when the spy enters in Uj , the new follower was
occupying Sc(j) (which plays the role of x0 in Lemma 7(a)), and therefore it can apply the
strategy described in Lemma 7(a).

• The last case is when the spy goes from a vertex in Ui to a vertex in Z. If z0 was occupied by
a guard then it becomes the follower and apply the strategy of Lemma 7(a)). If z0 was not
occupied, then it means that the guards were occupying the vertices in {u1,i, Sj1 , . . . , Sjc}.
In particular, the follower was occupying ui,1 (because, by the property of the strategy of
Lemma 7(a), this guard must be able to go to Sc(i) (i.e., x0) when the spy can reach z0
(playing the role of x−1). Moreover, if the guard is occupying ui,1, it must be because the
spy was (before its last move) at ui,h for h > r (otherwise, by the property of the strategy,
the guard would be at Sc(i)).

There are two cases depending whether r = 0 or r ≥
⌈
s
2

⌉
− 1 (the moves are the same, but

the reason of their validity is different).

– If r = 0, note that p = q + 1. In that case, Lemma 7(a) can be applied on the path
(u1,i, Sc(i), z0, · · · , zq) (playing the role respectively of (x−1, x0, x1, · · · , xp)). Therefore,
the guard at Sc(i) becomes the follower. It goes to z0 while the guard at u1,i goes to
Sc(i).

– If r ≥
⌈
s
2

⌉
− 1, because the spy was at ui,h for h > r, this implies that, after its move,

the spy reaches a vertex zq ∈ Z for q ≤ r. In that case, the guard at Sc(i) goes to z0
and becomes the follower (this satisfies the conditions of the strategy of Lemma 7(a),
because q ≤ r) and the guard at u1,i goes to Sc(i).

Finally, let us consider the case s ≤ d+ 1 and 1 ≤ r = d mod (s− 1) < s
2 − 1. Recall that,

in this case, we have added another path Z ′ to Gs,d(S, c).

Lemma 9. Given a graph G and an integer K, deciding if gs,d(G) ≤ K is NP-hard for every
s, d > 0 such that s ≤ d+ 1 and 1 ≤ r = d mod (s− 1) < s

2 − 1.

Proof. Reduction from Set Cover. Let (S, c) be an instance of Set Cover. Recall Definition 4

and let p = p(s, d) = d+
⌈
d+1
s−1

⌉
, q = q(s, d) = d+

⌈
d
s−1

⌉
, G = Gs,d(S, c) and K = Ks,d(S, c) =

c+ 2. Notice that, since r = d mod (s− 1) 6= 0, then p = q.
Firstly, suppose that there is no cover C of U with at most c sets in S. We prove that the

spy wins against at most K = c + 2 guards. Precisely, the spy starts in z′r+1 and proceeds as
follows. If no guards are occupying a vertex in {z′1, . . . , z′q}, then by Lemma 7(b) the spy can
move at full speed to z′q and win. Moreover, if no guards are occupying a vertex in {z0, . . . , zq},
then, in one step, the spy goes to zr+1 (which is at distance 2r + 2 < s by the assumption on
r) and, by Lemma 7(b), the spy will win by moving at full speed to zq. Therefore, there must
be at most c guards at the vertices in V (G) \ {z0, z1, z′1, . . . , zq, z′q}. Since there is no cover of U
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with c sets in S, then there exists some 1 ≤ i ≤ n such that there is no guard in N [Ui]. Thus,
in one step, the spy can go to ui,r+1 (at distance 2r + 3 ≤ s by the assumption on r). From
Lemma 7(b) the spy can move to ui,p and wins.

Now, suppose that there is a cover C = {Sj1 , . . . , Sjc} of U with c sets in S. In what follows,
we describe a winning strategy for K = c + 2 guards. Recall that, since C is a cover of U , we
can define for any element ui ∈ U an index c(i) such that ui ∈ Sc(i) ∈ C. The strategy of the
guards will ensure that there is always a guard at every vertex of C ∪ {z0}. In addition, the last
guard, called follower, follows the strategy described in Lemma 7(a) in one of the paths Ui, for
1 ≤ i ≤ n, Z or Z ′ depending on the position of the spy.

More precisely, if the spy is occupying a vertex in {z0, S1, . . . , Sm}, the guards occupy the
vertices z0, z0, Sj1 , . . . , Sjc (two guards in z0). When the spy arrives at a vertex in Ui for some
i ≤ n (resp., in Z or Z ′), the guard at Sc(i) (resp., at z0) plays the role of the follower in
the corresponding path. The other c + 1 guards reorganize themselves to occupy the vertices
z0, Sj1 , . . . , Sjc .

In particular, when the spy goes from one path Ui (resp., Z, resp., Z ′) to another path Uj
or Z or Z ′, Lemma 7(a) ensures that the previous follower was either at ui,1 of Sc(i) (resp., z1
or z0, resp., z′1 or z0). Therefore, it is possible for the guards (which are not the new follower)
to reorganize themselves to occupy the vertices z0, Sj1 , . . . , Sjc .

The details are similar to the ones provided in the proof of Lemma 8 and are omitted.

2.2 PSPACE-hardness in the directed case

Then, we consider a variant of our game played on digraphs. In this variant, both the guards
and the spy can move only by following the orientation of the arcs. However, the distances are
the ones of the underlying undirected graph. Moreover, in this section, we consider the variant
when the guards are placed first. Recall that, in this setting, the goal of the guards is to control
the spy after a finite number of steps. Given a digraph D and two integers d, s ∈ N, s > 0,
let ~gns,d(D) denote the minimum number of guards required to control a spy with speed s at
distance d in the digraph D and in this variant.

Theorem 10. The problem of computing ~gns,2 is PSPACE-hard in the class of DAGs.

The result is obtained by reducing the PSPACE-complete Quantified Boolean Formula in
Conjunctive Normal Form (QBF) problem. Given a set of boolean variables x1, . . . , xn and a
boolean formula F = C1 ∧C2 ∧ . . .∧Cm where Cj is a disjunction of literals, the QBF problem
asks whether the expression φ = Q1x1Q2x2 . . . QnxnF is true, where every Qi is either ∀ or ∃.

Proof. For ease of readability, the proof below is given for d = 2 but can easily be adapted for
any distance d.

Let φ be a quantified boolean formula with n boolean variables. We construct a DAG Dφ

such that φ is true if and only if n guards control a spy at distance 2 in Dφ after a finite number
of turns.

For each Qixi of φ we construct a gadget digraph Di. If Qi = ∃ then V (Di) = {wi−1, z1i , z2i ,
z3i , z

4
i , xi, x

∗
i , xi, x

∗
i , yi, vi, v

′
i, wi}, the arcs between the vertices are shown in figure 4a. If Qi = ∀

then V (Di) = {wi−1, z1i , z2i , z3i , z4i , xi, x∗i , xi, x∗i , yi, yi, vi, vi, v′i, wi}, the arcs between the vertices
are shown in figure 4b.

Observe that the vertex wi appears in both Di and Di+1. It remains to establish a relation-
ship between each clause and the variables it contains. For each clause Ci we create a vertex ci
in Dφ and add an arc from wn to ci. We also add an arc from ci to xi(xi) if clause Ci contains
the literal xi(xi).

An example of the digraph Dφ for φ = ∃x1∀x2(x1 ∨ x2) ∧ (x1 ∨ x2) is shown on figure 4c.
It remains to prove that φ is true if and only if ~gns,2(Dφ) = n.
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(a) gadget Di(∃) for existential quantifier.
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(b) Gadget Di(∀) for universal quantifier.
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x1

x1
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x2 x2

x2
* *

w2

c1 c2

(c) Example of the graph Dφ for the formula φ = ∃x1∀x2(x1 ∨ x2) ∧ (x1 ∨ x2).

Figure 4
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First note that, for each gadget Di, at least one guard has to pick a vertex from Si =
{z1i , z2i , z3i } as his initial position, otherwise the spy would pick z1i as his initial position and
no guard could ever reach distance 2 from such a vertex, therefore the spy would win. We
will refer to the guard initially in Si as pi. Since Dφ has n such gadgets, then ~g2(Dφ) ≥ n.
Furthermore, assuming that each guard pi starts on z1i he can only occupy the vertices on the
set Ri = {z1i , z2i , z3i , z4i , xi, x∗i , xi, x∗i } during the rest of the game.

Suppose that φ = false. We describe a winning strategy for the spy playing against n
guards. Let us assume that there is exactly one guard in each set Si, that is, the spy cannot
win by just initially positioning himself in one unprotected z1i . The spy starts on the vertex w0.

Now, suppose that the spy is in some wi−1 of Di(∀), then the only guard that can reach a
vertex at distance at most 2 from wi−1 is pi when he occupies the vertex z4i . The spy waits
until the guard pi moves to z4i , if the guard never does so the spy stays on wi−1 and wins the
game. Therefore, suppose that pi eventually moves to z4i , then the spy chooses between moving
to yi or yi, depending on the choice of the spy, the guard pi is then forced to move to x∗i or to
x∗i , because these are the only vertices that are reachable for any guards that are at distance
at most 2 from yi and yi respectively. If pi moves to x∗i the corresponding variable xi is set to
true. Otherwise, if pi moves to x∗i then xi = false. It means that for a quantified variable ∀xi
the spy chooses the value of xi.

If the spy is in some wi−1 of Di(∃), again, the only guard that can reach a vertex at distance
at most 2 from the spy is pi when he occupies the vertex z4i . The spy then waits until the guard
pi moves to z4i and then moves to yi, this time pi is not forced to move to specifically x∗i or to
x∗i , but he still must choose one of them. Again, if pi moves to x∗i the corresponding variable
xi is set to true, otherwise, if pi moves to x∗i then xi = false. It means that for a quantified
variable ∃xi the guards choose the value of xi.

When pn moves to x∗n or x∗n each guard is on x∗i (x
∗
i ) or xi(xi). Observe that each guard can

only reach a safe distance from the vertices cj corresponding to the clauses that contains the
literal he set true. Since φ = false then the spy can choose between yi and yi on gadgets Di(∀)
in such a way that no matter how the guards choose x∗i or x∗i on gadgets Di(∃) there is at least
one vertex cj that cannot be protected by any guard. Then the spy moves to such a vertex,
stays there and wins the game.

Suppose that φ = true. Each guard pi, i = 1, ..., n, will choose z3i as his initial position. If
the spy choose as his initial position z1i , z

2
i , z

3
i , z

4
i , x
∗
i or x∗i the guard pi does not need to move

since the spy is at distance at most 2 from z3i . The only vertices that the spy can go to from
these initial positions that are not under the protection of pi are xi or xi. If he goes to any of
them the guard pi just moves to z4i . Since the spy cannot move anymore and is at distance at
most 2 from a guard, the guards win the game. If the spy starts on some vi, vi or v′i then pi
moves to z4i , after that, if the spy goes to x∗i , x

∗
i or z4i then pi follows the same strategy from

above. Therefore, the spy, independent of his initial position, must eventually move to a vertex
wi, yi, yi or some clause vertex cj , otherwise he loses.

Suppose that the spy is in some vertex wi−1 of Di(∀) then the guard pi moves to z4i and
controls the spy. The spy must move to yi or yi forcing pi to move to x∗i or x∗i accordingly.
Again, for a quantified variable ∀xi the spy chooses the value of xi. After the spy moves from
yi(yi) the cop moves to xi(xi) and stays there forever.

Similarly, if the spy is in some vertex wi−1 of Di(∃) then the guard pi moves to z4i and
controls the spy. The spy must move to yi, this time pi is not forced to move to specifically
x∗i or to x∗i , but he still must choose one of them. Therefore, for a quantified variable ∃xi the
guards choose the value of xi. After the spy moves from yi the cop moves to xi or xi depending
of his previous movement and stays on that vertex forever.

Observe that after the spy moves from yn or yn every guard is at distance 2 from wn, at
distance 1 from each clause vertex that contains the literal he chose to set true and at distance
2 from each of the other literals of these clauses. Since φ = true then the guards can choose
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between yi and yi on gadgets Di(∃) in such a way that no matter how the spy chooses x∗i or
x∗i on gadgets Di(∀) all clause vertices are at distance 1 from at least one guard. Therefore the
only vertices reachable for the spy are at distance at most 2 from the guards.

Note that, although the construction above works for d = 2, it could be adapted to any d ≥ 2
by making the paths between certain pair of vertices have length d and adjusting the directions
of some arcs.

The question of the complexity of the spy game in undirected graphs is left open. Is it
PSPACE-hard, or more probably EXPTIME-complete as Cops and Robber games [14]? The
question of parameterized complexity is also open.

3 Case of paths and rings

In this section, we characterize optimal strategies in the case of two simple topologies.

3.1 Paths

First, let us consider the case of paths.

Theorem 11. Let s > 1 and d ≥ 0. Let P = (v0, · · · , vn−1) be any n-node path.

gns,d(P ) =

 n

2d+ 2 +
⌊

2d
s−1

⌋


Proof. Let us set 2d = q(s − 1) + r where q =
⌊

2d
s−1

⌋
and r < s − 1 (note that, if s > 2d + 1,

then q = 0 and r = 2d). Note also that 2d+ 2 + q = qs+ r + 2

Let us first show that the spy can win against at most

⌈
n

2d+2+b 2d
s−1c

⌉
− 1 guards. The

spy starts in v0, so there must be a guard, called Guard 1, at some vertex in {v0, · · · , vd}
to control the spy. Then, in q steps, the spy goes to vqs while Guard 1 can only reach a
vertex in {v0, · · · , vd+q}. Note that the distance between the spy and Guard 1 is then at
least qs − (d + q) = d − r. During the next step q + 1, the spy reaches vertex vqs+r+2 (note
that it is possible since r + 2 ≤ s). Guard 1 can only go to vd+q+1 and therefore it is at
distance at least d + 1 from the spy. Therefore, there must be another guard, called Guard 2,
occupying a vertex in {vqs+r+2−d, · · · , vqs+r+2+d} to control the spy. Going on this way, for

0 < j <

⌈
n

2d+2+b 2d
s−1c

⌉
− 1, after j(q + 1) turns, the spy occupies vertex vj(qs+r+2) and there

must be a guard, called Guard j+1, occupying some vertex in {vj(qs+r+2)−d, · · · , vj(qs+r+2)+d}.
Moreover, all the j previous guards (Guard 1 to Guard j) are occupying some vertices in

{v0, · · · , vj(qs+r+2)−d−1}. In particular, just after j0(q+1) turns, where j0 =

⌈
n

2d+2+b 2d
s−1c

⌉
−2,

all the

⌈
n

2d+2+b 2d
s−1c

⌉
− 1 guards are occupying vertices in {v0, · · · , vj0(qs+r+2)+d} while the spy

is at vj0(qs+r+2). Therefore, during the next q + 1 turns, the spy goes to v(j0+1)(qs+r+2). Note

that (j0 + 1)(qs+ r + 2) = (

⌈
n

2d+2+b 2d
s−1c

⌉
− 1)(qs+ r + 2) = (

⌈
n

2d+2+q

⌉
− 1)(2d+ 2 + q) < n,

so the move is possible. During these last q + 1 steps, all guards can only reach vertices
in {v0, · · · , vj0(qs+r+2)+d+q+1} and, therefore, are all at distance at least d + 1 from the spy
(indeed, (j0 + 1)(qs+ r + 2)− (j0(qs+ r + 2) + d+ q + 1) = d+ 1). Hence, the spy wins.
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Finally, let us describe a winning strategy for

⌈
n

2d+2+b 2d
s−1c

⌉
guards. For 0 ≤ j <

⌈
n

2d+2+b 2d
s−1c

⌉
−

1, let Pj = (vj(qs+r+2), · · · , v(j+1)(qs+r+2)−1). Moreover, for j0 =

⌈
n

2d+2+b 2d
s−1c

⌉
− 1, let

Pj0 = (vj0(qs+r+2), · · · , vn−1) (note that n−1 ≤ (j0+1)(qs+r+2)−1). The strategy simply uses

one guard, called Guard j, for each subpath Pj . Precisely, for any 0 ≤ j ≤
⌈

n

2d+1+b 2d
s−1c

⌉
− 1,

• for any 0 ≤ h < q, if the spy occupies a vertex in {vj(qs+r+2)+hs+1, · · · , vj(qs+r+2)+(h+1)s}
then Guard j occupies vj(qs+r+2)+d+h+1;

• if the spy occupies a vertex in {vj(qs+r+2)+qs+1, · · · , vj(qs+r+2)+qs+r+1}, then Guard j oc-
cupies vj(qs+r+2)+d+q+1;

• if the spy occupies vj(qs+r+2) or some subpath Pi, with i < j, then Guard j occupies
vj(qs+r+2)+d;

• Finally, if the spy occupies some subpath Pi, with i > j, then Guard j occupies vj(qs+r+2)+q+1+d.

It can be checked that, following this strategy, the guards always control the spy. Moreover, for
any move of the spy, the guards can move accordingly to this strategy.

3.2 Cycles

We then consider the case of cycles. Let us first start with the case 2d < s− 1.

Lemma 12. Let 0 ≤ 2d < s− 1. For any cycle Cn with n vertices,

gns,d(Cn) ≤
⌈

n

2d+ 3

⌉
.

Proof. Since the number of guards cannot decrease when n increases, we may assume that
n

2d+3 = k ∈ N. Let Cn = (v0, · · · , vn−1). Let us describe a strategy using k guards.
Assume that the spy is initially in v0. The guards are placed at vertices vd+j(2d+3), for any

0 ≤ j < k. Note that, in particular, the last guard is placed at vd+(k−1)(2d+3) = vn−d−3 since
n = (2d+ 3)k.

Now, the guards are at distance at most d from all vertices but the vertices {v2d+1+j(2d+3),
v2d+2+j(2d+3)} for any 0 ≤ j < k. If the spy goes to v2d+1+j(2d+3) for some 0 ≤ j < k, then
all guards move clockwise. If the spy goes to v2d+2+j(2d+3) for some 0 ≤ j < k, then all guards
move counter-clockwise. Both cases are symmetric to the initial one. In any other case, the
guards do not move. Clearly, such a strategy can perpetually ensure that at least one guard
controls the spy at distance d.

Lemma 13. Let s > 1 odd and d > 0 be two integers such that 2d
s−1 ∈ N∗. For any cycle Cn

with n nodes,

gns,d(Cn) ≤

⌈
n+ 2( 2d

s−1 )

2(d+ 2d
s−1 )

⌉
.

Proof. Let us set 2d = q(s− 1) where q = 2d
s−1 ∈ N∗, and let X = 2(d+ 2d

s−1 ) = q(s+ 1).

Since the number of guards cannot decrease when n increases, we may assume that
n+2( 2d

s−1 )

2(d+ 2d
s−1 )

=

n+2q
X = k ∈ N. Let us describe a strategy using k guards.

Let v0 be the initial position of the spy, and the cycle is (v0, · · · , vn−1). The guards are
placed at vertices vd+jX , for any 0 ≤ j < k. Let us call the guard at vd+jX as the Guard j, for
any 0 ≤ j < k. Note that, in particular, the Guard k − 1 is placed at vd+(k−1)X = vn−d since
n− 2d = (k− 1)X. Therefore, the initial configuration is symmetric according to the symmetry
axis passing through v0.
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• If the spy goes from v0 to any vertex in {v0, · · · , vbs/2c}, no guards move. Note that Guard
0 still control the spy.

• If the spy goes from {v0, · · · , vbs/2c} to a vertex in {vbs/2c+1, · · · , vbs/2c+s}, then Guard 0
also goes clockwise to vd+1. All other guards go counter-clockwise to vd+jX−1, for every
0 < j < k.

• For 0 < h < q, when the spy goes from a vertex in {vbs/2c+(h−1)s+1, · · · , vbs/2c+hs} to
a vertex in {vbs/2c+hs+1, · · · , vbs/2c+(h+1)s}, then Guard 0 also goes clockwise to vd+h+1.
Note that Guard 0 is at distance at most d from the spy. All other guards go counter-
clockwise to vd+jX−h−1, for every 0 < j < k.

• For 1 ≤ h ≤ q, when the spy goes from a vertex in {vbs/2c+(h−1)s+1, · · · , vbs/2c+hs} to a
vertex in {vbs/2c+(h−1)s+1, · · · , vbs/2c+hs}, no guards move.

The following remarks show that the rules above fully describe the strategy of k guards. That
is, the behaviour of the guards according to any spy’s move can be derived from above rules by
symmetry.

First, all previous moves are reversible. For instance, if the spy goes from {vbs/2c+1+hs, · · · ,
vbs/2c+(h+1)s} to {vbs/2c+1+(h−1)s, · · · , vbs/2c+hs} (for 1 ≤ h < q), then Guard 0 goes back to
vd+h, and all other guards go back to vd+jX−h, for every 0 < j < k.

Second, let us consider the configuration when the spy arrives in {vqs, · · · , vbs/2c+qs}. At
this step, for any 0 < j < k, Guard j is occupying vd+jX−q = vd+(j−1)X+X−q. Since X − q =
q(s+1)− q = qs, this means that, for any 0 < j < k, Guard j is occupying vertex vqs+d+(j−1)X .
Moreover, Guard 0 is occupying vertex vd+q = vqs−d. Therefore, the situation is symmetric to
the initial one up to a rotation (where vqs replaces v0, Guard 0 becomes Guard k−1, and Guard
j becomes Guard j − 1 for every 0 < j < k).

Corollary 14. Let 2d ≥ s − 1 > 0. Let 2d = q(s − 1) + r (0 ≤ r < s − 1) and 2d = q′s + r′

(0 ≤ r′ < s). Let (q∗, r∗) = (q, r) if s odd and (q∗, r∗) = (q′, r′) otherwise
For any cycle Cn with n nodes,

gns,d(Cn) ≤
⌈

n+ 2q∗

2(d+ q∗)− r∗

⌉
.

Proof. First, let us assume that s is odd. Let d′ = d − r/2 (note that r has to be even since

s is odd). By Lemma 13, gns,d′(Cn) ≤
⌈
n+2q

2(d′+q)

⌉
. Then, the result follows since gns,d(Cn) ≤

gns,d′(Cn).
If s is even, we use the fact that gns,d(Cn) ≤ gns+1,d(Cn) and apply the result above to

show that gns+1,d(Cn) ≤
⌈

n+2q′

2(d+q′)−r′

⌉
.

Lemma 15. Let s > 1 and d ≥ 0. Let Cn = (v0, · · · , vn−1) be any n-node cycle.

gns,d(Cn) ≥


n+ 2

⌊
2d
s−1

⌋
2(d+

⌊
2d
s−1

⌋
) + 3


Proof. Let us set 2d = q(s − 1) + r where q =

⌊
2d
s−1

⌋
and r < s − 1 (note that, if s > 2d + 1,

then q = 0 and r = 2d). Note also that 2d + 2 + q = qs + r + 2. All integers below must be
understood modulo n.

Let us show that the spy can win against a team of X <
⌈

n+2q
2(d+q)+3

⌉
guards. If the spy starts

in v0, there must be a guard, called Guard 1, at some vertex in {vn−d, · · · , v0, · · · , vd} to control
the spy. Since the spy’s speed is greater than the guards’ speed, the spy can move clockwise so
that he reaches a vertex that is distance d+ 2 from Guard 1 in a finite number of turns (before
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the guards’turn). Thus, after the guard turn, we may set v0 (up to renaming the vertices) to
be the new position of the spy and so, Guard 1 is at a vertex in {vn−d−3, vn−d−2, vn−d−1}.

Since Guard 1 is at distance at least d+ 1 from the spy, there must be another guard, called
Guard 2, occupying a vertex in {vn−d, · · · , v0, · · · , vd} to control the spy. The spy goes at full
speed clockwise and Guard 1 may go at full speed counterclockwise.

Then, after step q, the spy occupies vqs while Guard 2 occupies a vertex in {vqs−d, · · · , vd+q}.
During the next step (Step q+1) the spy goes to vqs+r+2 (note that it is possible since r+2 ≤ s).
In this case, Guard 2 can only go to a vertex in {vqs−d−1, · · · , vd+q+1} and therefore it is at
distance at least d+ 1 from the spy and cannot control it anymore.

Therefore, there must be another guard, called Guard 3, occupying a vertex in {vqs+r+2−d, · · · ,
vqs+r+2+d} to control the spy. Going on this way after (X − 1)(q + 1) steps, the spy is at
v(X−1)(qs+r+2) = vα while there are X guards occupying vertices in
{vn−(d+3+(X−1)(q+1)), · · · , v(X−2)(qs+r+2)+d+q+1} = {vβ , · · · , vγ}.
Note that α − γ = qs + r + 2 − d − q − 1 = 2d + 2 + q − d − q − 1 = d + 1. Therefore, the

distance between the spy and vγ is at least d + 1 and the spy can only be controlled from a
guard in vβ . The distance between vβ and vα is:

n− (d+ 3 + (X − 1)(q + 1) + (X − 1)(qs+ r + 2)) = n+ d+ 2q −X(2q + 2d+ 3).
Moreover, n+ d+ 2q −X(2q + 2d+ 3) > d if and only if n+2q

2(d+q)+3 > X.

Therefore, the distance between vα and vβ is at least d + 1 for X <
⌈

n+2q
2(d+q)+3

⌉
since X is

an integer and thus, no guard controls the spy which wins.

The above lemmas can be summarized with the following theorem.

Theorem 16. Let s > 1 and d ≥ 0 be two integers. For any cycle Cn with n nodes,

• gns,d(Cn) =
⌈

n
2d+3

⌉
if 0 ≤ 2d < s− 1;

• If 2d ≥ s − 1, let 2d = q(s − 1) + r (0 ≤ r < s − 1) and 2d = q′s + r′ (0 ≤ r′ < s). Let
(q∗, r∗) = (q, r) if s odd and (q∗, r∗) = (q′, r′) otherwise. Then,⌈

n+ 2q

2(d+ q) + 3

⌉
≤ gns,d(Cn) ≤

⌈
n+ 2q∗

2(d+ q∗)− r∗

⌉
.
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