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Abstract. The multiplication of High or Very High Resolution (spatial and 
spectral) remotely sensed images is an opportunity to characterize and identify 
urban objects. Image analyses methods using object-oriented approaches, based 
on the use of domain knowledge, are necessary to classify these data. A major 
issue in these approaches is domain knowledge formalization and exploitation. 
In this paper, we present a methodology to build an urban ontology adapted to 
the multi-level interpretation of multi-source images. Domain knowledge is 
stored independently in the urban ontology which contains a set of pre-defined 
terms characterizing urban domain concepts. The ontology is then used in a 
classification method in order to assign segmented regions into semantic 
objects. A matching process between the regions and the concepts of the 
ontology is proposed. The method is tested on Very High Resolution images 
(0.7m) on the urban area of Strasbourg (France).  
 
Keywords: urban object, ontology, Very High resolution remotely sensed 
images, semantic interpretation 
 
 

1. Introduction 
 
Urban planners are interested on up-to-date landcover/use information on urban 

objects at several spatial (1/100,000 to 1/10,000) and temporal scales. Acquiring 
automatically this information is complex, difficult and time-consuming if traditional 
data sources (ground survey techniques) are being used. The multiplication of High or 
Very High Resolution (spatial and spectral) remotely sensed images is an opportunity 
to characterize and identify these objects in urban and peri-urban areas. Images can be 
exploited to provide this spatial information, which can also be easily integrated in 
urban GIS platforms. 

Image interpretation is a difficult task which can be defined as the automatic 
extraction of the image semantic. It consists in obtaining useful spatial and thematic 
information on the objects by using human knowledge and experience [1]. In this 
domain, differences between the ‘visual’ interpretation of the spectral information and 
the semantic interpretation of the pixels are observed because of differences in the 
levels of abstraction. The semantic is not always explicitly contained in the image and 
depends on domain knowledge and on context. This problem is called the ‘semantic 
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gap’ and is defined as the lack of concordance between low-level information 
(automatically extracted from the images) and high-level information (analysed by 
urban experts) [2]. 

In order to reduce the semantic gap, image analyses methods using object-oriented 
approaches, based on the use of domain knowledge, are being developed [3,4]. These 
methods involve the segmentation of the images into homogeneous regions and the 
characterization of objects with a set of spectral (signature, index), spatial (shape) and 
topological (adjacency, inclusion) features. These features can be called upon in the 
classification process. Only few works has focused on the use of domain knowledge 
for classifying urban objects [5], and a major issue in these approaches is therefore 
domain knowledge formalization and exploitation.  

Building a knowledge base or an urban ontology is a difficult task because, most of 
the time, the knowledge is implicit and is held by the domain experts. Previous works 
in the knowledge acquisition field have already proved that it is still difficult to grasp 
knowledge directly from experts, by means of elicitation technique (interviews, 
observations). Domain experts are rarely able to provide an explicit description of 
their knowledge and of their reasoning [6,7]. 

In this paper, we present a methodology to build an urban ontology adapted to the 
multi-level interpretation of multi-source images. The work is a part of the French-
funded project FoDoMuSt which aims at developing a complete process of data 
mining for interpreting urban remotely sensed images. The methodology associates 
(1) segmentation of the images and their classification in regions using low-level 
descriptors (e.g. radiometry, texture, shape, size of the elements), and (2) use of 
domain knowledge in order to transform the segmented regions into semantic objects. 
Domain knowledge is stored independently in the urban ontology which contains a set 
of pre-defined terms characterizing urban domain concepts.  

The paper is structured in four sections. First, approaches using ontologies or 
domain knowledge in image analysis are discussed (Section 2). Second, the 
methodology to construct the urban ontology is presented (Section 3). Third, the 
matching process between the regions and the concepts of the ontology is proposed 
(Section 4). Finally, some experiments on Very High Resolution images (0.7m) on 
the urban area of Strasbourg (France) are proposed (section 5). 

 
 

2. Ontologies applied to images: state of the art 
 

An ontology can be defined as a simplified view of the world which is represented 
for specific purpose [8, 9, 10]. An ontology defines a set of representational terms 
called concepts, their characteristics and their relationships. It is the result of a 
consensus in an user community to clarify the communication [11]. According to the 
building process, an ontology can be generic [12] (such as WordNet [13, 14] and 
Sensus [15, 16, 17]) or domain-dependent.  

For our application of landcover/use analysis in urban and peri-urban areas, a 
domain-dependent ontology has been chosen. The objective is to help urban planners 
to map and update automatically information at several spatial and temporal scales.  
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2.1 Context: multi-source remotely sensed images 

The conceptualization of landcover/use thematic classes from remotely sensed 
images depends on the scale of the objects and on the spatial resolution of the aerial 
or satellite images. Some concepts only exist at a single spatial resolution (for 
instance, it is difficult to individualize a tree on a 20 m spatial resolution image) while 
other concepts exist at all spatial resolution (from instance, a lake can be identified 
from 30 to 1 m spatial resolution images). However, their instantiation change in 
terms of ‘spatial representation’. For instance, if a small street is divided into two 
branches when observed on a 20 m spatial resolution image, its representation is 
changed when observed on a 1 m spatial resolution. The conceptualization of thematic 
classes can be associated to an ontology putting together all the multi-level 
descriptors used by the urban experts to identify thematic classes. 

2.2 Related works 

Knowledge based systems have proved to be effective for complex object 
recognition [18] and for image analysis [19]. For instance, the SIGMA [19] and 
Schema [20] systems perform image analysis on aerial images by using several 
descriptors of objects. These systems give access to a high semantic level. 
Nevertheless, as pointed by [21] such systems are strongly domain-dependent as they 
integrate prior knowledge on the image. Their drawbacks consist in the fact that the 
domain knowledge is not clearly separated from the procedure, and that the 
knowledge bases are difficult to produce. 

Therefore, recent works have proposed to use ontologies to describe more clearly 
the knowledge of the studied domain. In [22] spatial relations between concepts are 
used to merge regions and to recognize objects. The exclusive use of spatial relations 
is however not possible in the case of remotely sensed images. This work points out 
the differences between domain knowledge and procedures. [23] proposed an 
ontology-based object learning and recognition system for image analysis. An 
interesting point is the separation of a local matching and a global matching procedure 
(e.g. the global matching combines the probabilities computed during the local 
matching). The descriptors used for the matching correspond to “visual concepts” 
which are learnt during the learning phase. The matching function is then dependent 
of these visual concepts. The authors state that the global matching should take into 
account the hierarchy of the ontology. [24] proposed an ontology-based object 
detection for video analysis, using a segmentation process, while [12] used a neural 
network method to classify objects in pre-defined classes. Then, the proposed system 
determines if the image may be classified by a concept from an ontology. [25] 
proposed a genetic algorithm of ontology-driven semantic image analysis. Some low-
level descriptors are extracted from the image and are used to match with the 
ontology. A set of hypothesis (region, list of possible concepts and their degrees of 
confidence) are then tested with a genetic algorithm to determine the optimal image 
interpretation. Only spatial relations (8 directional relations) are used by the system. 

Using domain-dependant ontologies for object analysis from muti-source remote-
sensed images presents two main challenges: the first is the extraction of the semantic 
concepts from several spatial and spectral resolution images, and the second is the 
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construction of the ontology. A key issue is to identify appropriate concepts to 
describe the thematic objects for a multi-scale representation of the territory. As well, 
the ontology has to be adapted to the multi-scale mapping of urban area (from 
1/100,000 to 1/10,000), and should consist in a multi-scale definition of the objects.  

 
 

3. Construction of the urban ontology 
 

The urban ontology is built in order to assign the segmented regions from remotely 
sensed images into semantic objects. The knowledge domain has to be modelled as a 
scene-knowledge detailing how each object appears in each image. The proposed 
ontology is then adaptative and implies that all urban objects are neither described at 
all scales, nor classified at all resolutions. 

Even if no standard type of ontology exists for each domain of application [26], 
[27] proposes a 3-steps methodology to construct the ontology. The first step (Section 
3.1) is a phase of specification which consists in identifying the concepts used in 
urban management. The second step (Section 3.2) is a phase of conceptualization 
which consists in storing this knowledge in a dictionary. The third step (Section 3.3) 
is a phase of formalization which consists in modelling this knowledge in an ontology 
and in implementing it in a computer-usable form.  

3.1 Phase of specification 

The inventory of semantic objects is based on urban object typologies and 
nomenclatures defined by experts. There is a wide range of urban object 
nomenclatures for remotely sensed data such as the Corine Land Cover nomenclature 
defined for Landsat images (30m spatial resolution), the Spot Thema nomenclature 
defined for Spot images (5m to 20m) or the French national landcover database 
BDCarto©IGN (defined for aerial photographs and Spot images). A detailed 
terminological analysis of these nomenclatures showed that there none of this 
typology is really adapted to map urban areas at 1/10,000. In this context, since Very 
High spatial Resolution satellite images can be used to extract urban objects at this 
scale [28], a high level of description has been established according to the users’ 
needs. 

The proposed nomenclature distinguishes thirty-five urban objects or thematic 
classes, merged in five levels. The nomenclature is dedicated to the mapping of the 
urban characteristics of western cities [29]. Table 1 presents an extract of this 
common nomenclature based on housing thematic classes. This fifth level is based on 
dictionary of urban objects defined in urban GIS Platform and on the minimal spatial 
resolution defined to identify these objects [30]. 
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Tab. 1. Extract of the nomenclature used to map urban area from 1/100,000 to 1/10,000 scale. 

 

3.2 Phase of conceptualization 

A set of landcover/use terms representing the linguistic expression of the urban 
planner knowledge has been collected. This set of terms is defined as a hierarchy with 
related definitions stored in a lexicon. Then the conceptualization phase has consisted 
in organizing and structuring the elements of the lexicon into a taxonomy of concepts.  

The taxonomy has then been adapted and enriched because all the urban concepts 
are not always identifiable on the images and because the spectral responses of the 
pixels mainly provide information about the landcover properties. Thus, the taxonomy 
explicitly distinguishes ‘image object’(IO) and ‘built object’ (BO).  

An ‘image object’ (IO) is defined as an ‘object directly identifiable on images for a 
specific spatial resolution’. Three ranges of spatial resolution are defined [30]: [0.5m-
5m[, [5m-15m] and ]15m-30m]. Each IO is distinguished into ‘simple’ or ‘aggregate’ 
IO. A ‘single IO’ (IOs) is ‘an object for which only one group of homogeneous pixels 
(region) is sufficient to identify the concept to which it refers’. An ‘aggregate IO’ 
(IOa) is defined as ‘an object for which several groups of homogeneous pixels 
(regions) are necessary to identify the concept to which it refers’. For instance on the 
range [0.5m-5m], a tree is an IOs because it can be identified with one group of pixel 
(Figure 1a), and a tree row is an IOa because it is composed of several individual or 
grouped trees (Figure 1b).  

A ‘built object’ (BO) requires to use spatial knowledge to be identified. A BO is 
then always composed of several IO organized within a spatial pattern. For instance, a 
park is a BO because it is composed of a specific pattern of trees associated to 
grassland, and water bodies (Figure 1c). Specific relationships between each IO can 
be set up to identify the BO.  

The taxons are classified into three classes in accordance to their spectral response 
and their thematic interpretation. More precisely a ‘thematic code’ (mineral, 
vegetation, water) is assigned. The class of mineral object distinguishes buildings, 
ways and equipments. A ‘color code’ is also added to describe this class with 
reference to their ‘natural color’ (White, Gray/Black, Orange) on the images. 
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Fig. 1. Conceptualisation of an urban object. Example of: (a) a single ‘image object’ (IOs) such 
as a tree, (b) an aggregate ‘image object’ (IOa) such as a line of trees, and (c) a ‘built object’ 
(BO) such as a park.  

All the concepts are stored in a dictionary, adapted from [31], which contains 
three categories of information: 
(1) Some characteristics to identify the objects: name, representation in a GIS 

database (point, polyline or polygone), type of IO (single, aggregate), range of 
spatial resolution at which the object is identifiable, color code, and ‘thematic 
code’; 

(2) A qualitative (textual definition) and a quantitative description of the ‘real 
world’-objects in terms of radiometric measures. The textual definition is a result 
of a consensus between the urban users’ needs, and the radiometric measures are 
obtained from spectra-radiometer measurements [32]. The latest information is 
only available for some vegetation classes (species) and some urban material 
(roof, asphalt, etc). A graphic illustration (orthophotograph of the object) is also 
added; 

(3) A description of the IO in terms of low-level descriptors (color, shape, texture, 
context or spatial relationships). The Table 2 summarizes the proposed 
descriptors. 

Tab. 2: The low-level descriptors identified for each IO. 

Descriptors Comments 
Spectral reflectance Range of observed values in 4 spectral bands: Blue (B) – Green 

(G) – Red (R) – near-infrared (NIR) 
Normalized Difference 
Vegetation Index 
(NDVI) 

Range of observed values of NDVI 

Soil Brightness Index 
(BI) 

Range of observed values of BI 

Shape properties Range of observed values of area, perimeter, elongation, diameter, 
compactness (Miller index), and solidity 
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Texture Range of observed values of the homogeneity index and of the 
variance derived from the co-occurrence grey-level matrix 
(Haralick, 1973) 

Context (or 
relationships) 

Adjacency, inclusion, composition, neighbourhood 

3.3 Phase of formalization 

The next step consists in formalizing the concepts and in storing the knowledge. 
Among the works presented in [33] to model knowledge, frame-based approaches 
seemed to be the most relevant for image classification problems [34]. In these 
systems [35], knowledge is grouped into “frames”. A frame is a prototype (e.g. a 
representative object of a family) composed of a set of slots describing the properties 
of the prototypes. Thus, domain knowledge is modelled in the ontology which 
consists in both a set of classes organized in a hierarchy and a set of slots (attributes) 
associated to concepts. 

The ontology has been developed with Protégé-2000 [26] which is a free open-
source platform that provides a suite of tools to construct domain models and 
knowledge-based applications. Protégé is specifically frame-oriented. It is based on 
Java and can be extended by way of a plug-in architecture and a Java-based 
Application Programming Interface (API) for building knowledge-based tools and 
applications. Protégé-2000 facilitates conformance to the Open Knowledge Base 
Connectivity (OKBC) protocol for accessing knowledge bases stored in knowledge 
representation systems. For all these points, Protégé-2000 is widely used to model 
domain knowledge, for instance in images indexation [36, 37]. 

 

Fig. 2. Extract of the ontology. 

The ontology (Figure 2) is composed of 91 concepts and 20 attributes. The depth 
of the ontological tree is 6. Each concept has a label (e.g. Orange_House for 
individual houses with orange roof tiles) and is defined by attributes corresponding to 
the low-level descriptors. Each attribute of a concept is weighted according to its 
importance to recognize the urban object represented by the concept (IO). At this 
stage of development, the term the spatial relationships are not yet defined in the 
ontology. The following knowledge formalization is then used: 
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Definition 1 (concept, sub-concept, depth): 

Let Θ  be the set of concepts, 
Θ

≤  is a partial order between concepts. ( ) ², Θ∈∀ ji CC , 

ji CC Θ≤  means that iC  is a sub-concept of  jC . ρ(C) is the depth of the concept C in the 

hierarchy.  

For example, Ci = Orange_House is a sub-concept of Cj = Orange_Building. 

)( iCρ = 5 (Figure 2). 
 
Definition 2 (classes of attributes): 
Let Φ be the set of attribute classes. A  is the set of all attributes. A  = 
{spectral_signature_Blue, …, area, …, Miller index, …}. For a set of attribute classes 

Φ⊆α , αA  ⊆  A  is the set of attributes of each class in α.  

For instance, Φ = {spectral, spatial, contextual} (Figure 3).  
If α = {spectral}, αA  = {spectral_signature_Blue, 
spectral_signature_Green,  spectral_signature_Red, 
spectral_signature_NearInfraRed,  spectral_signature_SBI,  
spectral_signature_NDVI}.  
If α=Φ, AA =α  (all the attributes). 
 
 

 
Fig. 3. Hierarchy of the attribute classes. 

 
Definition 3 (specific attributes of a concept): 
Let )(CFα  be the set of attributes of the classes in α, specifically associated with the concept 

C∈Θ.  

For instance, for the concept C = Orange_House, if the spectral attributes 
(spectral_signature_Blue, …) and their values are inherited by the 
Orange_Building, they are not present in )(CFα . But an attribute overrided in C, is 

present in )(CFα . 
 
Definition 4 (values and weight of an attribute): 
Let αAa ∈  be an attribute of a class in α ∈ Φ. We define ],[: ℜℜ→αAVC  so that 

)(aVC  is the range of values for ’a’ in the concept C∈Θ. Let ω(a,C) be the weight associated 
to the attribute ’a’ for the concept C.  
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Definition 5 (set of regions): 
Let Γ be the set of regions.  
 
Definition 6 (feature value of a region): 
Let a∈ A  be a feature of a region R∈Γ. We define ℜ→αAV R :'  so that )(' aV R  is the 
value of ’a’ for the region R.  

This phase of knowledge modelling in the ontology consists of defining Θ, Θ≤ , )(CFα , 

ω(a,C), Φ and )(aVC . This allows reducing the semantic gap between expert knowledge and 
image level. 
 
 
4. Use of the ontology in the object-recognition process 
 

In the data mining process, after image segmentation, each region (e.g. group of 
homogeneous pixels) is characterized by a set of features (e.g. the low-level 
descriptors described in Section 3.2). The regions and their features are the inputs to 
the ontology-based object recognition. In this phase, the objective is to match each 
region with the concepts of the ontology. This is realized by (1) proposing a matching 
measure, and (2) defining a method to navigate in the ontology.  
 
4.1 Step 1: Matching score 
 

The proposed matching method is a “feature-oriented” approach. The matching 
method verifies the validity of the feature values defined for a region according to the 
properties and the constraints defined for the concepts. Nevertheless, as a region does 
not have a semantic structure, measures like MDSM [38] or the measures presented in 
[39] and [40] can not be directly used. A region can be matched a priori with any 
concepts, but the features of a region allowing the matching could not be identical 
according to the studied concept. For instance, the concept Orange_House is 
defined by several shape attributes (elongation index, Miller index) and spectral 
attributes, while the concept Shadow is only defined with spectral attributes. Without 
a priori knowledge, this dissymmetry necessitates to compute all the features for each 
region, even if the majority of these features will not be used in the matching process. 
In order to take into account all these specificities, a matching measure based on a 
distance between the extracted features of a region and the observed values of the 
attributes has been proposed. This measure computes the relevance of a matching and 
is composed of a local component (representing the inner properties of the concept) 
and a global component (evaluating the pertinence in the hierarchy of concepts). The 
local similarity measure compares the features of a region with the specific attributes 
of a concept of the ontology. 
 
Definition 7 (degree of validity) 
Let Valid(a,C,R) be the validity degree of an attribute ’a’ between a region R and a concept C. 
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Definition 8 (local similarity)   
Let be Simα(R,C) the local similarity between a region R and a concept C using the attributes of 
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The global matching score thus evaluates the pertinence of the matching between a region and a 
concept in the hierarchy of concepts. 

Definition 9 (matching score) 
Let Scoreα(R,C) be the matching score between a region R and a concept C, and )(CP  be the 
path starting from the root of the ontology and ending at the concept C. 
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The matching score is a linear combination of local similarity measures obtained 
with the concepts of the path starting from the root of the ontology and ending at the 
studied concept. The local similarities are propagated by inheritance to more specific 
concepts. In this computation, a specialization coefficient ρ equal to the depth of the 
concepts is integrated. In this way, the measure favours the specialization of the 
concepts, considering all additional information giving a new semantic.  

4.2 Step 2: Navigation in the ontology 

The second step consists to navigate in the ontology to find the best concept(s) 
according to the score for a region. A level-wise algorithm has been developed to 
navigate in the ontology using heuristics to reduce the search space. The parameters 
can be accorded to a specific matching context. The general scheme of the exploration 
algorithm is defined as follows. If the region matches the current concept, the 
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algorithm will go deeper in the hierarchy defined by the partial order Θ≤  in the next 
level; if the matching fails, the current concept is dropped and its sub-concepts are not 
explored. The main heuristic corresponds to the selection of the best concepts at each 
level in order to eliminate some branches for which the starting concept would not be 
relevant (e.g. with a low matching score value). This strategy supposes that a root 
concept has more generic properties than its children, and if a few of these properties 
(or none) are valid, its child will not be relevant. 

Two thresholds are also defined: maxDepth is the exploration maximal depth (e.g. 
the degree of detail) and minScore is the minimal value of the matching score 
between a region and a concept to allocate the corresponding label to the region. For 
instance in Figure 2, if the maximal depth is equal to 3, only the classical categories 
will be explored (mineral, vegetation, etc.). 
Definition 10 (labels identified for a region): 
We define Θ→Γ:αL  so that )(RLα  is the set of concepts (seen as labels) identified for 

the region R according to the attributes of αA  and the minScore value. 

andScoreCRScoreandDepthCCRL iii min),(max)(|{)( ≥≤= αα ρ  

)},(),()( ijij CRScoreCRScoreCC αα >≠  

The procedure of navigation when the heuristic procedure is activated (selection 
of the best concepts at each level) is presented in Algorithm 1. This can be repeated 
for each region of the segmented image in order to provide an interpretation of the 
complete image. 

 
 

5 Experiments on VHR images 
 

The methodology has been applied to a set of VHR images of the city of 
Strasbourg (North-East France). In this paper, an experiment on subset of a Quickbird 
image (©DigitalGlobe2002) representing a typical urban fabric of individual houses 
is detailed (Figure 4a). The tested image size is 900 x 900 pixels. It has a 0.7m spatial 
resolution (pan-sharpened process detailed in [41]) and four spectral bands (blue – 
green – red and near-infrared).  

In order to facilitate the phase of assessment, an extract of the ontology is also 
used. The number of concepts (labels) is thus limited. Only the classes 
Vegetation, Water, Road and Orange_House are being recognized. In the 
case no label is found for a region, the system uses the label Unknown. The 
evaluation consists in comparing the results of the method with a manually labelled 
region (by domain expert). 
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Fig. 4. a. Extract of the Quickbird image of the city of Strasbourg illustrating a typical 
individual house urban fabric. b. Segmented image. c. Recognized objects set (the unknown 
objects are highlighted in white). 

The segmentation step is not described here but it is important to note that the 
global result is extremely dependent of the segmentation. Some researches are being 
in development to apply a segmentation algorithm adapted to the object recognition 
[42]. We can however note that the proposed method is not dependent of the 
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segmentation algorithm. Figure 4b presents the segmented image obtained by a 
supervised segmentation algorithm. 

Table 3 presents the average values of Precision, Recall and F-measure (on/in 
overall, all classes) for several minScore values. The best overall results are obtained 
with minScore=0.98 and not with the maximal value of minScore. This is due to the 
decrease of the Recall measure more important than the increase of the precision 
measure for minScore=1. Nevertheless, in our case, a very good precision value is 
more important than a very good recall value. 

Tab. 3. Assessment of the results. 

 

Tab. 4. Compared results between minScore = 1 and minScore = 0.98. 

  
 

Table 4 presents the detailed results for minScore=1 and minScore=0.98. 
Vegetation and Water are very well identified. Road has good precision values 
and the recall values is correct. The precision values for Orange_House are 
relatively good but the recall values are too low. An explanation of this result can be 
found in the quality of the segmentation (Figure 4b). Indeed, some houses are not 
correctly segmented and they are merged with other houses. Thus, these houses can 
not have the features corresponding to the attributes defined in the ontology, 
especially the elongation indexes. A similar problem is encountered with the road 
which is over-segmented.  

The percentage of recognized objects according to the minScore value, and the 
percentage of the corresponding image (pixels of the recognized objects) according to 
the minScore value are illustrated in Figure 5. They show that a major part of the 
image is recognized, and thus labelled. For the maximal value (minScore=1), 14.8% 
of the objects are recognized but it corresponds to 62.5% of the image. With 
minScore=0.98, 26.7% of the objects are identified (72.5% of the image). These 
results are promising even if many small objects can not yet be identified (Figure 4c). 
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Fig. 5. Percentage of labelled objects and pixels according to the minScore value. 

6 Conclusion and perspectives 

In this paper, the steps to build an urban ontology applied to VHR image analysis 
have been presented. A new knowledge representation and reasoning method has 
been detailed. The approach is based on a domain-dependent ontology developed by 
experts of the domain. A similarity measure and an exploration procedure of the 
ontology have been presented in order to allocate a semantic to regions of a 
segmented image. The experiment results have shown effectiveness of the method, 
despite the fact that the results could be improved using more appropriate 
segmentation algorithms. 

In order to improve and to enrich the urban ontology, machine learning techniques 
will be used to extract knowledge automatically from the VHR images [7]. 
Topological relations based on the RCC-8 (Region Connection Calculus) theory will 
also be integrated in the methodology. Moreover, several experiments on different 
types of urban images are planned using several segmentation algorithms. Finally, the 
method will be incorporated in a multi-strategy classification approach in order to 
guide the process, to label the clusters, and to improve the final classification results. 
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