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Abstract—The multiplication of Very High Resolution (spatial
or spectral) remote sensing images appears to be an opportunity
to identify objects in urban and periurban areas. The classi-
fication methods applied in the object-oriented image analysis
approach could be based on the use of domain knowledge. A ma-
jor issue in these approaches is domain knowledge formalization
and exploitation. In this paper, we propose a recognition method
based on an ontology which has been developed by experts of
the domain. In order to give objects a semantic meaning, we
have developed a matching process between an object and the
concepts of the ontology. Experiments are made on a Quickbird
image. The quality of the results shows the effectiveness of the
proposed method.

I. INTRODUCTION

Image interpretation is a difficult problem which can be
defined as the automatic extraction of semantic data from
an image. However, these semantic data are not always ex-
plicitly in the image and depend on domain knowledge and
the context. In the document indexation and analysis field,
the use of ontologies is usual. Nevertheless, in the image
interpretation domain, a problem arises because the perceptual
response (pixels or voxels) is not at the same level than the
semantic interpretation. This problem is called semantic gap
and is defined as the lack of concordance between low-level
information which can be automatically extracted from images
and the interpretation by a user in a given situation [1]. Thus,
a lot of approaches use ontologies to introduce a semantic
point of view and some knowledge in order to reduce the
semantic gap. An ontology [2] is a specification of an abstract,
simplified view of the world represented for some purpose.
Ontology defines a set of concepts, their characteristics and
their relations to each other. These definitions allow to describe
and to use reasoning on the studied domain.

Since the appearance of VHR-images (Very High Reso-
lution), the current tendency is the development of object-
oriented methods for image analysis [3] [4]. These approaches
involve segmenting images into homogeneous regions which
are then characterized by a set of features related to spectral
signatures, geographical features such as shape and length,
and topological properties such as adjacency, inclusion, etc.

These features are used in the recognition and the classification
process. While there are some studies comparing object-
oriented and pixel-based classification techniques [5] [6], few
works focus on the development and the use of the domain
knowledge for identifying and classifying urban areas. The
main difficulties for this task are to define, for instance,
ontologies taking into account the expert knowledge, and how
to use them.

In this paper, we propose an object recognition method
based on an ontology built by experts (see Figure 1). This work
is a part of the FoDoMuSt project!. The input of the method is
a segmented image. The regions are characterized by features
related to the spectral, spatial and contextual properties. These
features are used in the recognition procedure. In order to
allocate to each region a semantic meaning, we have developed
a matching process between an object and the concepts of
the ontology. An original matching measure and a traversing
procedure of the ontology are presented.

The paper is organized as follows. Section II gives an
overview of existing approaches. The object features are
presented in Section III. The ontology and the proposed object-
recognition method are detailed respectively in Section IV and
V. Section VI presents the image segmentation algorithm used
in this work and some experiments on a VHR-image of a
district of Strasbourg (France). We finally conclude in Section
VIL

II. RELATED WORK

Knowledge based vision systems have proved to be effective
for complex object recognition [7] and for scene understanding
[8]. For instance SIGMA [8] or Schema [9] perform image
understanding tasks on aerial images, based on several de-
scriptions of objects which are bound to appear. These systems
give access to a high semantic level. Nevertheless, as pointed
by [10] such systems are strongly domain-dependent as they
integrate prior knowledge about the scene in the algorithms
of image understanding. In fact, the domain knowledge is not
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Fig. 1. Treatment steps.

clearly separated from the procedure. Moreover, they rely on
knowledge bases which are difficult to produce.

Recent works use ontologies to describe clearly knowledge
of the studied domain. In [11], spatial relations between con-
cepts (inclusion, adjacency, neighborhood, left, above, ...) are
used to merge regions and to recognize objects in thessalian
graves images. The exclusive use of spatial relations seems to
be not relevant to analyse remote sensing images. Moreover,
the definition of these relations is very difficult. Nevertheless,
this work separates well domain knowledge from procedures.
We claim that it is a very important point.

Maillot [12] proposes an ontology-based object learning and
recognition system for image retrieval. An interesting point is
the separation of the local matching to the global matching.
The global score combines the probabilities computed during
the local matching. The descriptors use for the matching
correspond to “visual concepts” which are learnt during the
learning phase. The matching function is dependent of these
visual concepts. We think that the global matching should take
into account the hierarchy of the ontology.

Dasiopoulou [13] proposes an ontology-based object detec-
tion in videos. This work only corresponds to a segmentation
process. Breen [14] uses a neural network to classify objects
in pre-defined output categories. Then, the proposed system
determines if the image may be associated to a concept from
an ontology. In [15], Panagi proposes a genetic algorithm
to ontology-driven semantic image analysis. Some low-level
descriptors are extracted from the image and are used in a
matching process between regions of the image and concepts
of an ontology. A set of hypothesis (region; list of possible
concepts with their degrees of confidence) are then passed in
a genetic algorithm to determine the optimal image interpre-
tation. But only spatial relations (8 directional relations) are
used by the system.

III. FEATURES EXTRACTION

In our approach, after an image segmentation, each region
is characterized by means of a set of features. These features
were selected by the experts in order to allow object recogni-
tion. The spectral reflectance of pixels composing the objects
is the first criterion we used. Several features were retained:
the mean spectral value of the objects in the four bands
of the image (red, green, blue and near infrared), the mean
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Fig. 2. Excerpt of the ontology.

value of the NDVI index (Normalized Difference Vegetation
Index), and the mean value of the SBI index (Soil Brightness
Index) [16]. However, spectral signatures are not sufficient
to determine, for example, the functional character of the
buildings in urban environment. The corresponding classes
have the same spectral values and therefore overlap in the
feature space. Spatial and contextual information are more
relevant to separate residential buildings, collective buildings,
industrial and commercial buildings, and continuous built-
up areas. Thus, we also compute this kind of features to
recognize the building objects. Several shape properties were
selected: area, elongation, diameter (length of the major axis),
compactness (Miller index), solidity (ratio of the area to the
convex hull area), etc. The spatial features computation is
based on Geoxygene > developed by the French National
Geographic Institute (IGN).

IV. GEOGRAPHICAL ONTOLOGY AND KNOWLEDGE
FORMALIZATION

An ontology [2] models a domain in a formal way. It defines
a set of concepts (buildings, water, etc), their characteristics
and their relations to each other.

In our case, each concept has a label (e.g. Orange_House)
and is defined by some attributes (corresponding to low-level
descriptors) associated to an interval of accepted values. Each
attribute of a concept is weighted according to its importance
to recognize the geographic object represented by the concept.
Let us note that we use “features” instead of “attributes” when
we talk about regions.

In general, it is rather difficult to draw knowledge from
domain experts. The experts are rarely able to directly supply
an explicit description of the knowledge they use for objects
identification. In addition, acquiring knowledge in this way
takes usually a long time. This is a well-known problem
within the artificial intelligence community. So, in order to
facilitate the creation of the ontology, we used machine
learning techniques to extract knowledge automatically from
the raster data (raw images). To learn interpretable rules and
build a reusable knowledge base, we used symbolic supervised
machine learning tools [17] [18]. This step is very important
for the discussion with the experts, and have made easier the
work of the experts to improve and to finalize the geographical
ontology.

Zhttp://oxygene-project.sourceforge.net


http://oxygene-project.sourceforge.net

Standard_ Attribute

is_a is_a

‘ Spectral ‘ ‘ Spatial ‘ ‘Contextual ‘

Fig. 3. Hierarchy of the attribute classes.

TABLE 1
CONCEPT “ORANGE_HOUSE”.
Class Attribute name Values
spectral_signature_Blue [21.7-62.3]
spectral_signature_Green [19.4-80.1]
spectral_signature_Red [29.7-135.1]
spectral -
spectral_signature_NearInfaRed [34.8-139]
spectral_signature_SBI [14.6-60.1]
spectral_signature_NDVI [50.2-108]
diameter(m) [13-61]
area (m?) [10-600]
. perimeter (m) [28-116]
spatial
elongation (m) [1-3.1]
Miller index [0.5-0.8]
Solidity index [0.85-1]

The ontology (see Figure 2) is composed of 91 concepts,
20 attributes (in total) and 66 leaf concepts. The depth of the
ontological tree is 6. The development of the ontology have
been realized with Protégé 2000 [19]. Let us note that the
contextual attributes are not defined yet in the current ontology.

In the rest of the paper, we use the following knowledge
formalization.

Definition I (concept, sub-concept, depth): Let ® be the set
of concepts, <g is a partial order between concepts. V(C;, C;) €
@, C; <o C; means that C; is a sub-concept of C;. p(C) is
the depth of the concept C in the hierarchy.

For example, C; = Orange_House is a sub-concept of C;
= Orange_Building. p(C;) = 5 (see Figure 2).

Definition 2 (classes of attributes): Let ® be the set
of attribute classes. A is the set of all attributes. A =
{spectral_signature_Blue, ..., area, ..., Miller index, ...}.
For a set of attribute classes @ C ®, A, C A is the set of
attributes of each class in a.

For instance, ® = {spectral, spatial, contextual}
(see Figure 3).

If @ = {spectral}l, A, =
{spectral_signature_Blue,
spectral_signature_Green,
spectral_signature_Red,
spectral_signature_NearInfraRed,
spectral_signature_SRI,
spectral_signature_NDVI}.

If @ =0, A, = A (all the attributes).

Definition 3 (specific attributes of a concept): Let F,(C) be
the set of attributes of the classes in @, specifically associated
with the concept C € ©.

For instance, for the concept C = Orange_House, if the
spectral attributes (spectral_signature_Blue,...)and

their values are inherited by the Orange_Building, they
are not present in %, (C). But an attribute overrided in C is
present in 7, (C).

Definition 4 (values and weight of an attribute): Let a € A,
be an attribute of a class in @ € ®. We define V¢ : A, —
[R;R] so that Vc(a) is the range of values for ’a’ in the
concept C € O. Let w(a, C) be the weight associated to the
attribute “a’ for the concept C.

Definition 5 (set of regions): Let I be the set of regions.

Definition 6 (feature value of a region): Let a € A be a
feature of a (segmented) region R € I'. We define VIQ T AL o
R so that Vy(a) is the value of *a’ for the region R.

Conception phase of the ontology consists of defining ®,
<0, Fo(C), w(a,C), ® and Vc(a). This allows to reduce the
semantic gap between expert knowledge and image level.

V. ONTOLOGY-BASED OBJECT RECOGNITION

The regions and their features are the input the ontology-
based object recognition. Our method consists of matching
each region with the concepts of the ontology. We have defined
a matching measure and a traversing method of the ontology.

A. Matching score

The proposed matching method is a “feature-oriented” ap-
proach. It corresponds to verify the validity of feature values
of the region according to the properties and the constraints
defined in the concepts. Nevertheless, a region does not have
a semantic structure and thus we cannot directly use the
measures like MDSM [20] or the measures presented in [21]
and [22]. A region can be matched a priori with any concepts.
The features of a region allowing the matching could not
be identical according to the studied concept. For instance,
the concept Orange_House is defined by a lot of indexes
(elongation, Miller, ...) and some spectral attributes, while
the concept Shadow is only defined with spectral attributes.
Without a priori knowledge, this dissymmetry involves to
compute all the features for each region, even if the majority
of these features will be unused for the matching process with
a concept. In order to take into account all these specificities,
we propose a matching measure based on a distance between
the extracted features of a region and the values of the
attributes of the concepts of the ontology. Being inspired by the
literature, our measure computes the relevance of a matching
and is composed of a local component (dealing with the inner
properties of the concept) and a global component (evaluating
the pertinence in the hierarchy of concepts).

1) Local similarity: The local similarity measure compares
the features of a region with the specific attributes of a concept
of the ontology.

Definition 7 (degree of validity): Let Valid(a,C, R) be the
validity degree of an attribute ’a’ between a region R and a
concept C.



Valid(a, C, R) is equal to:

1 if Vg(a) € [min(Ve(a)); max(Ve(a))l
ks i Vi@ < min(Ve(@)
G if Vi(a) > max(Ve(a)

Definition 8 (local similarity):
Let Simq (R, C) be the local similarity between a region R
and a concept C using the attributes of each class in a.

w(a, C)Valid(a,C, R)
w(a,C)

a€fq(C)

Simg(R,C) = z
2o (C)

2) Global score: The matching score (global score) eval-
uates the pertinence of the matching between a region and a
concept in the hierarchy of concepts.

Definition 9 (matching score): Let Score,(R,C) be the
matching score between a region R and a concept C, and P(C)
be the path starting from the root of the ontology and ending
at the concept C. P(C) = {C; | C <¢ ... 20 C2 <o C1}.

p(Cj)Simy(R, C;)
p(C;)

The matching score is a linear combination of local simi-
larity measures obtained with the concepts of the path starting
from the root of the ontology and ending at the studied
concept. The local similarities are propagated by inheritance
to more specific concepts. In this computation, we integrate a
specialization coefficient p equals to the depth of the concepts.
In this way, the measure favours the specialization of the
concepts, considering all additional information give a new
semantic meaning.

From another point of view, the measure evaluates the
pertinence of a region to be an instance of a concept.

Let us take an example (concept in Table I), for a region
R={spectral_signature_Blue =40.2 ;
spectral_signature_Green =323 ;
spectral_signature_Red = 50.1 ;
spectral_signature_NearInfraRed = 66 ;
spectral_signature_SBI = 58.6 ;
spectral_signature_NDVI =799 ;
area = 120 ; ...; elongation = 35 ; ...}
and  a@={spectral}, the matching score is
Scoreq(R,Orange_House)=1. So Orange_House is a
possible label for the region R.

2.C;eP(C)

Scoreqa(R,C) = 5
C;eP(C)

B. Traversing the ontology

The matching score between a region and a concept has
been defined. It remains to traverse the ontology to find the
best concept(s) according to the score for a region. We have
developed an level-wise algorithm to traverse the ontology
using heuristics to reduce the search space. The parameters
can be accorded to a specific matching context.

The general sketch of the exploration is: if the region
matches the current concept, the algorithm will go deeper in
the hierarchy defined by the partial order <g in the next level.
If matching fails, the current concept is dropped and its sub-
concepts will not be explored.

The main heuristic corresponds to the selection of the
best concepts at each level in order to prune some branches
which the starting concept would not be relevant (with a poor
matching score value). This strategy is based on the property
that an internal concept is more general than its children.

We have also defined two thresholds. Let maxDepth be
the exploration maximal depth (i.e. the degree of detail) and
minScore be the minimal value of the matching score between
a region and a concept to allocate the corresponding label to
the region. For example, in Figure 2, if the maximal depth
is equal to 3, only the classical categories will be explored
(mineral, vegetation, etc.).

Definition 10 (labels identified for a region): We define L, :
I' - O so that L,(R) is the set of concepts (seen as labels)
identified for the region R according to the attributes of A,
and the minScore value.

Lo(R) = {C; | p(C;) < maxDepth and Scorey(R,C;) =
minScore and AC; (# C;) Scoreqa(R,Cj) > Scoreq(R, C;)}

The traversing procedure when the heuristic (selection of
the best concepts at each level) is activated, is presented in
Algorithm 1. This process can be repeated for each region of
the segmented image in order to provide an interpretation of
the complete image.

Algorithm 1 Traversing algorithm of the ontology.

Input: a region R, an ontology (®, ®, V(a), ...), a set of attribute
classes (@), maxDepth and minScore.
Output: the best label(s) and the matching score value.

depth = 1; scoreMax = minScore;
L(Y(R) =0;
RC = {root}; scoreDepth =0; bestsDepth = 0;
while (RC # 0 and depth < maxDepth) do
scoreDepth = 0; Best = 0;
for all C € RC do
s = Scoreq(R, C);
if (s == scoreMax) then
Lo(R)+={C};
end if
if (s > scoreMax) then
Lo(R) = {C}; scoreMax =s;
end if
if (s == scoreDepth) then
bestsDepth+ = {C};
end if
if (s > scoreDepth) then
bestsDepth = {C}; scoreDepth = s;
end if
end for
RC = 0;
for all C; € bestsDepth do
RC =RC U{GIC; =0 Cj};
end for
depth + +;
end while
return {L,(R), score};




Fig. 5. Excerpt of the segmented image.

VI. EXPERIMENTS

The proposed method have been evaluated using a Quick-
bird image of a urban district of Strasbourg, France. The
sensors of the Quickbird satellite return one panchromatic
channel (resolution of 0.70 meter) and three spectral channels
(resolution 2.8 meters). The panchromatic channel has been
merged with the other channels using a UWT-M2 method
studied in [23]. Finally, we have obtained an image with a
spatial resolution of 0.70 meter and four channels (blue, green,
red and near infra-red). The size of the image is of 900x900
pixels. Figure 4 corresponds to the channels red, green and
blue of the image.

In order to make easy the evaluations, we have used an

Fig. 6. Excerpt of the recognized objects set (unknown objects in bright).

excerpt of the ontology. The number of concepts (labels) has
been limited. In this way, the work of the expert has been
less laborious to labeled manually the reference image. We
have only tried to recognize Vegetation, Water, Road
and Orange_House (personal houses with orange roofing
tiles). Let us note that if no label is found for a region, the
system uses the label Unknown. The evaluation has consisted
in comparing the results of the method with the manually
labeled regions.

A. Image segmentation

For these experiments, the segmentation has been built using
a supervised segmentation algorithm [24]. This algorithm
consists of two steps. In the first step, pixel samples are used to
compute a fuzzy classification (k-Nearest Neighbor) [25]. We
have used three classes: road, building and vegetation. The
second step corresponds to apply a segmentation algorithm,
namely the watershed transform [26], on the fuzzy classifica-
tion result. An example of the segmentation result is shown
in Figure 5.

Currently, no perfect segmentation methods exist. Let us
remark that the used segmentation suffers from two problems.
First, a lot of small regions are generated. The second problem
is that very close buildings are grouped into one region.
These regions have some geometrical indexes “not in line”
with characteristics in the ontology for the building concept.
Let us note that the proposed method is not associated to a
segmentation algorithm. Other segmentation algorithms could
be used.

B. Object recognition results

Table II presents the average values of precision, recall
and F-measure (in overall), according to the minScore value
(see section V). The best F-measure value is obtained with
minScore=0.98. This is due to the decrease of the recall value
which is more important than the increase of the precision
value for minScore=1. Nevertheless, in our case, we consider



TABLE II
RESULTS.
minScore Precision Recall F-Measure

0.85 0.878 0.861 0.870
0.9 0.893 0.854 0.873
0.98 0.954 0.823 0.884
1 0.967 0.771 0.858

TABLE III

COMPARED RESULTS BETWEEN MINSCORE=1 AND MINSCORE=0.98.

classes Precision Recall
1 0.98 1 0.98
Orange_House 0.895 0.875 0.435 0.585
Vegetation 0.995 | 0.994 | 0.950 | 0.953
Road 0.980 | 0.947 | 0.712 | 0.762
Water 0.999 | 0.999 | 0.988 | 0.995

that a very good precision value is more important than a good
recall value.

Table III presents the detailed results for minScore = 1
and minScore=0.98. Vegetation and Water are very well
identified. Road has good precision values and the recall
values are correct. The precision values for Orange_House
are relatively good but the recall values are too low. This
can be explained. Let us recall that the results strongly
depend on the quality of the segmentation. As said in section
VI-A some houses are not correctly segmented and they are
merged with other houses. Thus, these houses could present
features which do not correspond to the values defined in
the ontology, especially for the elongation indexes. We face a
similar problem with the road which is over-segmented.

Contrary to what we could expect, a large part of the
image has been recognized. Figure 7 presents the percentage
of recognized objects according to the minScore value, and
the percentage of the corresponding image (pixels of the
recognized objects) according to the minScore value. For the
maximal value (minScore = 1), 14.8% of the objects are
recognized but they correspond to 62.5% of the image. With
minScore = 0.98, 26.7% of the objects are identified (72.5%

100 . . - ‘ ‘
% identified objects
.. %dentified image -------

Fig. 7. Percentage of labeled objects and pixels according to the minScore
value.

of the image). These are very sufficient values. Let us note
that many small objects have not been identified.

VII. CONCLUSION

In this paper, we have proposed a new knowledge represen-
tation and reasoning method applied on remote sensing image
interpretation. The approach is based on an ontology devel-
oped by experts helped by machine learning tools. A similarity
measure and an exploration procedure of the ontology have
been presented in order to associate a semantic meaning to
regions of a segmented image. The experimental results have
shown the effectiveness of the proposed method. Moreover,
we believe that the results could be improved using a better
segmentation results.

In future work, we will perform other experiments with dif-
ferent images and using several segmentation algorithms. We
will incorporate the method in a multi-strategy classification
approach in order to guide the process, to label the clusters,
and to improve the final classification results.
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