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Université de Caen, Esplanade de la paix
14032 Caen, France

anne.puissant@unicaen.fr

Abstract

The multiplication of Very High Resolution (spatial or
spectral) remote sensing images appears to be an opportu-
nity to identify objects in urban and periurban areas. The
classification methods applied in the object-oriented image
analysis approach could be based on the use of domain
knowledge. A major issue in these approaches is domain
knowledge formalization and exploitation. In this paper, we
propose a recognition method based on an ontology which
has been developed by experts of the domain. In order
to give objects a semantic meaning, we have developed a
matching process between an object and the concepts of the
ontology. Experiments are made on a Quickbird image. The
quality of the results shows the effectiveness of the proposed
method.

1. Introduction

Image interpretation is a difficult problem which can be
defined as the automatic extraction of semantic data from
an image. However, these semantic data are not always ex-
plicitly in the image and depend on domain knowledge and
the context. In the document indexation and analysis field,
the use of ontologies is usual. Nevertheless, in the image
interpretation domain, a problem arises because the percep-
tual response (pixels or voxels) is not at the same level than
the semantic interpretation. This problem is called seman-
tic gap and is defined as the lack of concordance between
low-level information which can be automatically extracted
from images and the interpretation by a user in a given situa-

tion [22]. Thus, a lot of approaches use ontologies to intro-
duce a semantic point of view and some knowledge in order
to reduce the semantic gap. An ontology [8] is a specifica-
tion of an abstract, simplified view of the world represented
for some purpose. Ontology defines a set of concepts, their
characteristics and their relations to each other. These defi-
nitions allow to describe and to use reasoning on the studied
domain.

Since the appearance of VHR-images (Very High Reso-
lution), the current tendency is the development of object-
oriented methods for image analysis [2] [9]. These ap-
proaches involve segmenting images into homogeneous re-
gions which are then characterized by a set of features re-
lated to spectral signatures, geographical features such as
shape and length, and topological properties such as adja-
cency, inclusion, etc. These features are used in the recog-
nition and the classification process. While there are some
studies comparing object-oriented and pixel-based classifi-
cation techniques [17] [25], few works focus on the devel-
opment and the use of the domain knowledge for identify-
ing and classifying urban areas. The main difficulties for
this task are to define, for instance, ontologies taking into
account the expert knowledge, and how to use them.

In this paper, we propose an object recognition method
based on an ontology built by experts (see Figure 1). This
work is a part of the FoDoMuSt project1. The input of the
method is a segmented image. The regions are characte-
rized by features related to the spectral, spatial and contex-
tual properties. These features are used in the recognition
procedure. In order to allocate to each region a semantic
meaning, we have developed a matching process between

1http://lsiit.u-strasbg.fr/afd/sites/fodomust/



Figure 1. Treatment steps.

an object and the concepts of the ontology. An original
matching measure and a traversing procedure of the onto-
logy are presented.

The paper is organized as follows. Section 2 gives an
overview of existing approaches. The object features are
presented in Section 3. The ontology and the proposed
object-recognition method are detailed respectively in Sec-
tion 4 and 5. Section 6 presents the image segmentation al-
gorithm used in this work and some experiments on a VHR-
image of a district of Strasbourg (France). We finally con-
clude in Section 7.

2. Related work

Knowledge based vision systems have proved to be ef-
fective for complex object recognition [11] and for scene
understanding [13]. For instance SIGMA [13] or Schema
[7] perform image understanding tasks on aerial images,
based on several descriptions of objects which are bound to
appear. These systems give access to a high semantic level.
Nevertheless, as pointed by [4] such systems are strongly
domain-dependent as they integrate prior knowledge about
the scene in the algorithms of image understanding. In fact,
the domain knowledge is not clearly separated from the pro-
cedure. Moreover, they rely on knowledge bases which are
difficult to produce.

Recent works use ontologies to describe clearly know-
ledge of the studied domain. In [26], spatial relations be-
tween concepts (inclusion, adjacency, neighborhood, left,
above, . . . ) are used to merge regions and to recognize
objects in thessalian graves images. The exclusive use of
spatial relations seems to be not relevant to analyse remote
sensing images. Moreover, the definition of these relations
is very difficult. Nevertheless, this work separates well do-
main knowledge from procedures. We claim that it is a very
important point.

Maillot [12] proposes an ontology-based object learning
and recognition system for image retrieval. An interesting
point is the separation of the local matching to the global
matching. The global score combines the probabilities com-

puted during the local matching. The descriptors use for the
matching correspond to “visual concepts” which are learnt
during the learning phase. The matching function is de-
pendent of these visual concepts. We think that the global
matching should take into account the hierarchy of the onto-
logy.

Dasiopoulou [5] proposes an ontology-based object de-
tection in videos. This work only corresponds to a segmen-
tation process. Breen [3] uses a neural network to classify
objects in pre-defined output categories. Then, the proposed
system determines if the image may be associated to a con-
cept from an ontology. In [15], Panagi proposes a genetic al-
gorithm to ontology-driven semantic image analysis. Some
low-level descriptors are extracted from the image and are
used in a matching process between regions of the image
and concepts of an ontology. A set of hypothesis (region;
list of possible concepts with their degrees of confidence)
are then passed in a genetic algorithm to determine the op-
timal image interpretation. But only spatial relations (8 di-
rectional relations) are used by the system.

3. Features extraction

In our approach, after an image segmentation, each re-
gion is characterized by means of a set of features. These
features were selected by the experts in order to allow ob-
ject recognition. The spectral reflectance of pixels compos-
ing the objects is the first criterion we used. Several features
were retained: the mean spectral value of the objects in the
four bands of the image (red, green, blue and near infrared),
the mean value of the NDVI index (Normalized Difference
Vegetation Index), and the mean value of the SBI index
(Soil Brightness Index) [10]. However, spectral signatures
are not sufficient to determine, for example, the functional
character of the buildings in urban environment. The cor-
responding classes have the same spectral values and there-
fore overlap in the feature space. Spatial and contextual
information are more relevant to separate residential build-
ings, collective buildings, industrial and commercial build-
ings, and continuous built-up areas. Thus, we also compute
this kind of features to recognize the building objects. Seve-
ral shape properties were selected: area, elongation, diam-
eter (length of the major axis), compactness (Miller index),
solidity (ratio of the area to the convex hull area), etc. The
spatial features computation is based on Geoxygene 2 devel-
oped by the French National Geographic Institute (IGN).

2http://oxygene-project.sourceforge.net
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4. Geographical ontology and knowledge for-
malization

An ontology [8] models a domain in a formal way. It
defines a set of concepts (buildings, water, etc), their cha-
racteristics and their relations to each other.

In our case, each concept has a label (e.g.
Orange House) and is defined by some attributes
(corresponding to low-level descriptors) associated to an
interval of accepted values. Each attribute of a concept
is weighted according to its importance to recognize the
geographic object represented by the concept. Let us note
that we use “features” instead of “attributes” when we talk
about regions.

In general, it is rather difficult to draw knowledge from
domain experts. The experts are rarely able to directly sup-
ply an explicit description of the knowledge they use for
objects identification. In addition, acquiring knowledge in
this way takes usually a long time. This is a well-known
problem within the artificial intelligence community. So,
in order to facilitate the creation of the ontology, we used
machine learning techniques to extract knowledge automa-
tically from the raster data (raw images). To learn inter-
pretable rules and build a reusable knowledge base, we used
symbolic supervised machine learning tools [20] [21]. This
step is very important for the discussion with the experts,
and have made easier the work of the experts to improve
and to finalize the geographical ontology.

The ontology (see Figure 2) is composed of 91 concepts,
20 attributes (in total) and 66 leaf concepts. The depth of
the ontological tree is 6. The development of the ontology
have been realized with Protégé 2000 [14]. Let us note that
the contextual attributes are not defined yet in the current
ontology.

In the rest of the paper, we use the following knowledge
formalization.

Table 1. Concept “Orange House”.
Class Attribute name Values

spectral

spectral signature Blue [21.7-62.3]
spectral signature Green [19.4-80.1]
spectral signature Red [29.7-135.1]

spectral signature NearInfaRed [34.8-139]
spectral signature SBI [14.6-60.1]

spectral signature NDVI [50.2-108]

spatial

diameter(m) [13-61]
area (m2) [10-600]

perimeter (m) [28-116]
elongation (m) [1-3.1]
Miller index [0.5-0.8]

Solidity index [0.85-1]

Definition 1 (concept, sub-concept, depth) Let Θ be the
set of concepts, �Θ is a partial order between concepts.
∀(Ci, Cj) ∈ Θ2, Ci �Θ Cj means that Ci is a sub-concept
of Cj . ρ(C) is the depth of the concept C in the hierarchy.

For example, Ci = Orange House is a sub-concept of
Cj = Orange Building. ρ(Ci) = 5 (see Figure 2).

Definition 2 (classes of attributes) Let Φ be the set of at-
tribute classes. A is the set of all attributes. A =
{spectral signature Blue, . . . , area, . . . , Miller index, . . .}.
For a set of attribute classes α ⊆ Φ,Aα ⊆ A is the set of
attributes of each class in α.

For instance, Φ = {spectral, spatial,
contextual} (see Figure 3).
If α = {spectral}, Aα =
{spectral signature Blue,
spectral signature Green,
spectral signature Red,
spectral signature NearInfraRed,
spectral signature SBI,
spectral signature NDVI}.
If α = Φ, Aα = A (all the attributes).

Definition 3 (specific attributes of a concept) Let Fα(C)
be the set of attributes of the classes in α, specifically asso-
ciated with the concept C ∈ Θ.

For instance, for the concept C = Orange House, if
the spectral attributes (spectral signature Blue,
. . . ) and their values are inherited by the
Orange Building, they are not present in Fα(C).
But an attribute overrided in C is present in Fα(C).

Definition 4 (values and weight of an attribute) Let a ∈
Aα be an attribute of a class in α ∈ Φ. We define VC :
Aα → [<;<] so that VC(a) is the range of values for ’a’ in
the concept C ∈ Θ. Let ω(a, C) be the weight associated
to the attribute ’a’ for the concept C.
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Definition 5 (set of regions) Let Γ be the set of regions.

Definition 6 (feature value of a region) Let a ∈ A be a
feature of a (segmented) region R ∈ Γ. We define V ′

R :
Aα → < so that V ′

R(a) is the value of ’a’ for the region R.

Conception phase of the ontology consists of defining
Θ, �Θ, Fα(C), ω(a, C), Φ and VC(a). This allows to re-
duce the semantic gap between expert knowledge and image
level.

5. Ontology-based object recognition

The regions and their features are the input the ontology-
based object recognition. Our method consists of matching
each region with the concepts of the ontology. We have
defined a matching measure and a traversing method of the
ontology.

5.1 Matching score

The proposed matching method is a “feature-oriented”
approach. It corresponds to verify the validity of feature va-
lues of the region according to the properties and the cons-
traints defined in the concepts. Nevertheless, a region does
not have a semantic structure and thus we cannot directly
use the measures like MDSM [18] or the measures pre-
sented in [24] and [19]. A region can be matched a priori
with any concepts. The features of a region allowing the
matching could not be identical according to the studied
concept. For instance, the concept Orange House is de-
fined by a lot of indexes (elongation, Miller, . . . ) and some
spectral attributes, while the concept Shadow is only de-
fined with spectral attributes. Without a priori knowledge,
this dissymmetry involves to compute all the features for
each region, even if the majority of these features will be
unused for the matching process with a concept. In order to
take into account all these specificities, we propose a match-
ing measure based on a distance between the extracted fea-
tures of a region and the values of the attributes of the con-
cepts of the ontology. Being inspired by the literature, our
measure computes the relevance of a matching and is com-
posed of a local component (dealing with the inner proper-
ties of the concept) and a global component (evaluating the
pertinence in the hierarchy of concepts).

5.1.1 Local similarity

The local similarity measure compares the features of a re-
gion with the specific attributes of a concept of the ontology.

Definition 7 (degree of validity) Let V alid(a, C, R) be
the validity degree of an attribute ’a’ between a region R

and a concept C.

V alid(a, C, R) is equal to:


























1 if V ′
R(a) ∈ [min(VC(a)); max(VC(a))]

V
′

R(a)
min(VC(a)) if V ′

R(a) < min(VC(a))

max(VC(a))
V′

R
(a) if V ′

R(a) > max(VC(a))

Definition 8 (local similarity) Let Simα(R, C) be the lo-
cal similarity between a region R and a concept C using
the attributes of each class in α.

Simα(R, C) =

∑

a∈Fα(C) ω(a, C)V alid(a, C, R)
∑

a∈Fα(C) ω(a, C)

5.1.2 Global score

The matching score (global score) evaluates the pertinence
of the matching between a region and a concept in the hie-
rarchy of concepts.

Definition 9 (matching score) Let Scoreα(R, C) be the
matching score between a region R and a concept C, and
P(C) be the path starting from the root of the ontology and
ending at the concept C. P(C) = {Cj | C �Θ ... �Θ

C2 �Θ C1}.

Scoreα(R, C) =

∑

Cj∈P(C) ρ(Cj)Simα(R, Cj)
∑

Cj∈P(C) ρ(Cj)

The matching score is a linear combination of local sim-
ilarity measures obtained with the concepts of the path star-
ting from the root of the ontology and ending at the studied
concept. The local similarities are propagated by inheri-
tance to more specific concepts. In this computation, we in-
tegrate a specialization coefficient ρ equals to the depth of
the concepts. In this way, the measure favours the specia-
lization of the concepts, considering all additional informa-
tion give a new semantic meaning.

From another point of view, the measure evaluates the
pertinence of a region to be an instance of a concept.

Let us take an example (concept in Table 1), for a region
R={spectral signature Blue = 40.2 ;
spectral signature Green = 32.3 ;
spectral signature Red = 50.1 ;
spectral signature NearInfraRed = 66 ;
spectral signature SBI = 58.6 ;
spectral signature NDVI = 79.9 ;
area = 120 ; . . . ; elongation = 3.5 ; . . .}
and α={spectral}, the matching score is
Scoreα(R, Orange House)=1. So Orange House
is a possible label for the region R.
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5.2 Traversing the ontology

The matching score between a region and a concept has
been defined. It remains to traverse the ontology to find the
best concept(s) according to the score for a region. We have
developed an level-wise algorithm to traverse the ontology
using heuristics to reduce the search space. The parameters
can be accorded to a specific matching context.

The general sketch of the exploration is: if the region
matches the current concept, the algorithm will go deeper
in the hierarchy defined by the partial order �Θ in the next
level. If matching fails, the current concept is dropped and
its sub-concepts will not be explored.

The main heuristic corresponds to the selection of the
best concepts at each level in order to prune some branches
which the starting concept would not be relevant (with a
poor matching score value). This strategy is based on the
property that an internal concept is more general than its
children.

We have also defined two thresholds. Let maxDepth be
the exploration maximal depth (i.e. the degree of detail) and
minScore be the minimal value of the matching score be-
tween a region and a concept to allocate the corresponding
label to the region. For example, in Figure 2, if the maxi-
mal depth is equal to 3, only the classical categories will be
explored (mineral, vegetation, etc.).

Definition 10 (labels identified for a region) We define
Lα : Γ → Θ so that Lα(R) is the set of concepts (seen
as labels) identified for the region R according to the
attributes of Aα and the minScore value.

Lα(R) = {Ci | ρ(Ci) ≤ maxDepth

and Scoreα(R, Ci) ≥ minScore and

6 ∃Cj (6= Ci) Scoreα(R, Cj) > Scoreα(R, Ci)}

The traversing procedure when the heuristic (selection of
the best concepts at each level) is activated, is presented in
Algorithm 1. This process can be repeated for each region
of the segmented image in order to provide an interpretation
of the complete image.

6. Experiments

The proposed method have been evaluated using a
Quickbird image of a urban district of Strasbourg, France.
The sensors of the Quickbird satellite return one panchro-
matic channel (resolution of 0.70 meter) and three spectral
channels (resolution 2.8 meters). The panchromatic channel
has been merged with the other channels using a UWT-M2
method studied in [16]. Finally, we have obtained an image
with a spatial resolution of 0.70 meter and four channels
(blue, green, red and near infra-red). The size of the image

Algorithm 1 Traversing algorithm of the ontology.
Input: a region R, an ontology (Θ, Φ, VC(a), . . . ), a set of
attribute classes (α), maxDepth and minScore.
Output: the best label(s) and the matching score value.

depth = 1; scoreMax = minScore;
Lα(R) = ∅;
RC = {root}; scoreDepth = 0; bestsDepth = ∅;
while (RC 6= ∅ and depth ≤ maxDepth) do

scoreDepth = 0; Best = ∅;
for all C ∈ RC do

s = Scoreα(R, C);
if (s == scoreMax) then

Lα(R)+ = {C};
end if
if (s > scoreMax) then

Lα(R) = {C}; scoreMax = s;
end if
if (s == scoreDepth) then

bestsDepth+ = {C};
end if
if (s > scoreDepth) then

bestsDepth = {C}; scoreDepth = s;
end if

end for
RC = ∅;
for all Cj ∈ bestsDepth do

RC = RC ∪ {Ci|Ci �Θ Cj};
end for
depth + +;

end while
return {Lα(R), score};

Figure 4. A district of Strasbourg (France).
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Figure 5. Excerpt of the segmented image.

is of 900x900 pixels. Figure 43 corresponds to the channels
red, green and blue of the image.

In order to make easy the evaluations, we have used an
excerpt of the ontology. The number of concepts (labels)
has been limited. In this way, the work of the expert has
been less laborious to labeled manually the reference image.
We have only tried to recognize Vegetation, Water,
Road and Orange House (personal houses with orange
roofing tiles). Let us note that if no label is found for a
region, the system uses the label Unknown. The evaluation
has consisted in comparing the results of the method with
the manually labeled regions.

6.1. Image segmentation

For these experiments, the segmentation has been built
using a supervised segmentation algorithm [6]. This algo-
rithm consists of two steps. In the first step, pixel samples
are used to compute a fuzzy classification (k-Nearest Neigh-
bor) [1]. We have used three classes: road, building and
vegetation. The second step corresponds to apply a seg-
mentation algorithm, namely the watershed transform [23],
on the fuzzy classification result. An example of the seg-
mentation result is shown in Figure 5.

Currently, no perfect segmentation methods exist. Let us
remark that the used segmentation suffers from two prob-
lems. First, a lot of small regions are generated. The second
problem is that very close buildings are grouped into one
region. These regions have some geometrical indexes “not
in line” with characteristics in the ontology for the building
concept. Let us note that the proposed method is not as-

3All the images of the paper are available in color at:
http://dpt-info.u-strasbg.fr/∼durand/obor/.

Figure 6. Excerpt of the recognized objects
set (unknown objects in bright).

Table 2. Results.
minScore Precision Recall F-Measure

0.85 0.878 0.861 0.870

0.9 0.893 0.854 0.873

0.98 0.954 0.823 0.884
1 0.967 0.771 0.858

sociated to a segmentation algorithm. Other segmentation
algorithms could be used.

6.2. Object recognition results

Table 2 presents the average values of precision, recall
and F-measure (in overall), according to the minScore

value (see Section 5). The best F-measure value is obtained
with minScore=0.98. This is due to the decrease of the
recall value which is more important than the increase of
the precision value for minScore=1. Nevertheless, in our
case, we consider that a very good precision value is more
important than a good recall value.

Table 3 presents the detailed results for minScore =
1 and minScore=0.98. Vegetation and Water are
very well identified. Road has good precision values and
the recall values are correct. The precision values for
Orange House are relatively good but the recall values
are too low. This can be explained. Let us recall that the re-
sults strongly depend on the quality of the segmentation. As
said in Section 6.1 some houses are not correctly segmented
and they are merged with other houses. Thus, these houses
could present features which do not correspond to the va-
lues defined in the ontology, especially for the elongation

6



Table 3. Compared results between min-
Score=1 and minScore=0.98.

classes Precision Recall
1 0.98 1 0.98

Orange House 0.895 0.875 0.435 0.585

Vegetation 0.995 0.994 0.950 0.953

Road 0.980 0.947 0.712 0.762

Water 0.999 0.999 0.988 0.995
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Figure 7. Percentage of labeled objects and
pixels according to the minScore value.

indexes. We face a similar problem with the road which is
over-segmented.

Contrary to what we could expect, a large part of the
image has been recognized. Figure 7 presents the percent-
age of recognized objects according to the minScore value,
and the percentage of the corresponding image (pixels of the
recognized objects) according to the minScore value. For
the maximal value (minScore = 1), 14.8% of the objects
are recognized but they correspond to 62.5% of the image.
With minScore = 0.98, 26.7% of the objects are identified
(72.5% of the image). These are very sufficient values. Let
us note that many small objects have not been identified.

7. Conclusion

In this paper, we have proposed a new knowledge repre-
sentation and reasoning method applied on remote sensing
image interpretation. The approach is based on an ontology
developed by experts helped by machine learning tools.
A similarity measure and an exploration procedure of the
ontology have been presented in order to associate a seman-
tic meaning to regions of a segmented image. The experi-
mental results have shown the effectiveness of the proposed
method. Moreover, we believe that the results could be im-
proved using a better segmentation results.

In future work, we will perform other experiments with
different images and using several segmentation algorithms.
We will incorporate the method in a multi-strategy classifi-
cation approach in order to guide the process, to label the
clusters, and to improve the final classification results.
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