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On the nonlinear interactions and existence of breathers in a chain of coupled pendulums
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The paper considers a chain of linearly coupled pendulums. Continues first order system equations are treated via time and space multiple scale method which lead to nonlinear Schrödinger equation. Further investigations on the nonlinear Schrödinger equation detects systems responses in the form of propagated nonlinear waves as functions of their envelope and phases. This provides information about localization of nonlinear waves and their directions in space and time.

Introduction

There are different ways of passively controlling and/or localizations of vibratory energies of main structural systems via coupled oscillators. The process can be categorized globally into two distinct groups: coupling linear [START_REF] Frahm | Device for damping vibrations of bodies[END_REF] and nonlinear [START_REF] Ibrahim | Recent advances in nonlinear passive vibration isolators[END_REF] systems to principal structures. The localizer systems can be single linear or nonlinear oscillator [START_REF] Hoang | Structural impact mitigation of bridge piers using tuned mass damper[END_REF][START_REF] Savadkoohi | Trapping vibratory energy of main linear structures by coupling light systems with geometrical and material non-linearities[END_REF] or a chain of oscillators with different types of coupling terms [START_REF] Manevitch | The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[END_REF][START_REF] Peyrard | Physique des solitons[END_REF][START_REF] Iooss | Localized waves in nonlinear oscillator chains[END_REF][START_REF] Manevitch | Analytical study and computer simulation of discrete optical breathers in a zigzag chain[END_REF][START_REF] Gendelman | Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects[END_REF][START_REF] Hasan | Effects of uncertainties on pulse attenuation in dimer granular chains with and without pre-compression[END_REF]. In this paper, the localizer system is assumed to be a chain of pendulums which are attached to a rigid support from one end and are coupled to each other via linear springs from another end. We are interested to find out the possibility of localization of nonlinear waves in the chain as a function of time and space. This paper is a preliminary study to reach the following goal: controlling main structural systems against vibrations by localizing their energies into a chain of coupled pendulums. It should be underlined that the nonlinear energy localizations can be found also in many other nonlinear discrete and continuous oscillator systems, in addition to the chain of coupled pendulums studied in this paper [START_REF] Vakakis | Forced localization in a periodic chain of nonlinear oscillators[END_REF][START_REF] Vakakis | Normal Modes and Localization in Nonlinear Systems[END_REF][START_REF] Manevitch | Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains[END_REF][START_REF] Smirnov | Nonlinear optical vibrations of single-walled carbon nanotubes. 1. Energy exchange and localization of low-frequency oscillations[END_REF][START_REF] Strozzi | Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Circumferential flexural modes[END_REF]. Organization of the paper is as it follows: governing equations of the discrete system are derived in Sect. 2 and then continuous approximated model is introduced. A multiple scale technique is implemented in Sect. 3 for tracing system behaviors at different scales of time and space. This method permits to treat nonlinear system equations (derived for continuous model) and to trace response of the system as function of velocities of its envelope and phase. A numerical example is provided in Sect. 4 showing the localization process in a continuous chain and its direction in the space and time. Finally, the paper is concluded in Sect. 5.

The system under consideration

Let us consider a chain of coupled pendulums in the orthogonal coordinates (o, e 1 , e 2 , e 3 ) as is illustrated in Fig. 1. All pendulums are situated on a rigid base with the distance of d from each other and they possess the same mass as m. All masses are coupled to each other by springs with equal rigidity as k. All imposed forces to each mass m n can be summarized as:

           P = -mg e 2 F n-1 = k ( ( u n-1,n -d) u n-1,n u n-1,n F n+1 = -k ( ( u n,n+1 -d) u n,n+1 u n,n+1 (1) 
where

u n-1,n = (l (sin (θ n ) -sin (θ n-1 )) + d) e 1 + l (cos (θ n ) -cos (θ n-1 )) e 2
(2) The lever arm of forces in Eq. 1 is defined as:

r = l sin(θ n ) e 1 + l cos(θ n ) e 2 (3) 
Moments of given forces in Eq. 1 are summarized as:

M P = r ∧ P = -mgl sin(θ n ) e 3 (4) M Fn-1 = r ∧ F n-1 (5) 
M Fn+1 = r ∧ F n+1 (6 
) where ∧ stands for the wedge product of two vectors. Let us define J as the moment of inertia; we can write: 

θn J = -mgl sin(θ n ) + M Fn-1 + M Fn+1 (7) 
Let us study M Fn-1 in detail (see Eq. 5). It reads:

M Fn-1 = k(1 - 1 1 -2 l d (sin(θ n ) -sin(θ n-1 )) -2 l 2 d 2 (1 -cos(θ n -θ n-1 )) ) × -ld cos(θ n ) -l 2 sin(θ n -θ n-1 ) (8) 
Equation 8 can be re-written as:

M Fn-1 = k 1 -1 + l d (sin(θ n ) -sin(θ n-1 )) + l 2 d 2 1 -cos(θ n -θ n-1 ) - 3 2 (sin(θ n ) -sin(θ n-1 )) 2 + O( l 3 d 3 ) × -ld cos(θ n ) -l 2 sin(θ n -θ n-1 ) (9)
We assume that θ 2π. Equation 9 reads:

M Fn-1 = k - l d (θ n -θ n-1 ) - l 2 d 2 (θ n -θ n-1 ) 2 - 3 2 (θ n -θ n-1 ) 2 × -ld -l 2 (θ n -θ n-1 ) (10) 
For further developments we will introduce following new variables: l = Ld and k = K d l . First order terms of Eq. 10 yield to

M Fn-1 = -KLd 2 (θ n -θ n-1 ) (11) 
and with the same manner it can be demonstrated that

M Fn+1 = KLd 2 (θ n+1 -θ n ) (12) Equation 7 reads θn J = -mgLd sin(θ n ) + KLd 2 (θ n-1 -2θ n + θ n+1 ) (13) 
The Taylor expansion of Eq. 13 with respect to θ n yields to

θ tt J = -mgLd sin(θ) + KLd 2 θ xx (14) 
It should be mentioned that we did not expand the term of Eq. 4 intentionally for having similar equations of Klein-Gordon as is given in Eq. 14. If one keeps higher order terms of the Eq. 10, then following continuous system can will be obtained:

θ tt J = -mgLd(θ - θ 3 3 ) + KLd 4 θ xx -2KL 2 d 4 θ 2 x θ -KLd 4 θ 2 θ xx - 1 6 KLd 5 θ 3 x + 6KL 2 d 5 θ x θ xx - 5 36 KLd 5 θ xxx - 16 3 KL 2 d 5 θ 3 x θ -KLd 5 θθ x θ xx (15) 
It should be underlined that [START_REF] Rosenau | Dynamics of nonlinear mass-spring chains near the continuum limit[END_REF][START_REF] Rosenau | Quasi-continuous spatial motion of a mass-spring chain[END_REF], studied the dynamics of mass-spring chains with arbitrary interparticle and substrate potentials by describing an approach for deriving governing system equations near continuum limits. His explained method captures all terms to given order in discreteness and allows to express well-posed nonlinear partial differential equations for such systems. However, comparison between obtained higher order differential equation in this paper which is described in Eq. 14 with the explained methodology of [START_REF] Rosenau | Dynamics of nonlinear mass-spring chains near the continuum limit[END_REF][START_REF] Rosenau | Quasi-continuous spatial motion of a mass-spring chain[END_REF] is beyond the scope of the current paper.

In the current paper we will investigate on the Eq. 14. Apart from the system under study of this paper, Eq. 14 governs several physical and mechanical systems such as Josephson junction transmission line, a series of pendulums connected by a spring at base, motion of a Bloch wall between ferromagnetic domain, motion of a slide dislocation in a crystalline structure, Lorentz contraction, etc. [START_REF] Scott | A Nonlinear Klein-Gordon Equation[END_REF]. Localized solutions of the Sine-Gordon equation have been studied by Kochendörfer andSeeger (1950, 1951). [START_REF] Scott | A Nonlinear Klein-Gordon Equation[END_REF] looked for the solution of the Eq. 14 as waves of permanent profile while properties of Sine-Gordon equation have been described by [START_REF] Ablowitz | Method for Solving the Sine-Gordon Equation[END_REF] and [START_REF] Zakharov | Theory of solitons: The inverse scattering method[END_REF].

Tracing system behaviors at different scales of time and space

To detect system behavior, we are interested to endow a multi-scale method [START_REF] Nayfeh | Nonlinear oscillations[END_REF][START_REF] Dodd | Solitons and nonlinear wave equations[END_REF][START_REF] Peyrard | Physique des solitons[END_REF][START_REF] Ostrovsky | Asymptotic perturbation theory of waves[END_REF]. We introduce a very small parameter 0 < 1 which connects different scales of time and space as T α = α t, X α = α x, α ∈ N, respectively. We set

θ(x, t) = n α=0 α φ α (X 0 , X 1 , . . . , T 0 , T 1 , . . . ) (16) 
d dt = dT 0 dt ∂ ∂T 0 + dT 1 dt ∂ ∂T 1 = D 0 + D 1 + . . . ( 17 
)
d 2 dt 2 = D 2 0 + 2 D 0 D 1 + 2 (D 2 1 + 2D 0 D 2 ) + . . . (18) 
d dx = D X0 + D X1 + . . . ( 19 
)
d 2 dx 2 = D 2 X0 + 2 D X0 D X1 + 2 (D 2 X1 + 2D X0 D X2 ) + . . . (20) 
Since we are interested to detect the behavior of the system described in Eq. 14, we will study this equation at different orders of in following sections.

3.1 System behavior at the order of 1

Equation 14 at 1 order reads

JD 2 0 φ 0 = -mgLdφ 0 + KLd 2 D 2 X0 φ 0 (21) 
We introduce an operator L. Equation 21 yields to:

(JD 2 0 + mgLd -KLd 2 D 2 X0 )φ 0 = Lφ 0 = 0 (22)
This equation illustrates that φ 0 is a wave with following definitions:

φ 0 (x, t) = A(X 1 , X 2 , ..., T 1 , T 2 , ...)e i(qX0-ωT0) + c.c. ( 23 
)
where

c 2 0 = KLd 2 J , ω 2 0 = mgLd J and ω 2 = ω 2 o + c 2 0 q 2 .

System behavior at the order of 2

Equation 14 at the 2 order reads:

Lφ 1 = (-2D 0 D 1 + 2c 2 0 D X0 D X1 )φ 0 (24) 
or

Lφ 1 = (2iωA T 1 + 2iqc 2 0 A X1 )e i(qX0-ωT0) (25) If e i(qX0-ωT0) ⊂ Ker( L), then ∂A ∂T 1 + qc 2 0 ω ∂A ∂X 1 = 0 (26) 
The characteristic curve of Eq. 26 reads as:

X 1 - qc 2 0 ω T 1 = C ∈ R (27)
So, the amplitude A in Eq. 26 can be represented as

A(X 1 , T 1 , X 2 , T 2 , . . . ) = A(X 1 - qc 2 0 ω T 1 , X 2 , T 2 , ...) (28) 
3.3 System behavior at the order of 3 and detection of the response 3 order of Eq. 14 yields to

Lφ 2 = (-2D 0 D 1 + 2c 2 0 D X0 D X1 )φ 1 + ω 2 0 6 φ 3 0 +(-D 2 1 -2D 2 D 0 + c 2 0 (D 2 X1 + 2D X0 D X2 ))φ 0 (29) 
After removing secular terms of Eq. 29 we will have:

- ∂ 2 A ∂T 2 1 + 2iω ∂A ∂T 2 + c 2 0 ( ∂ 2 A ∂X 2 1 + 2iq ∂A ∂X 2 ) + ω 2 0 2 |A| 2 A = 0 (30) 
We introduce new variables as ξ α = X α -vT α and τ α = T α . so

∂ ∂T α = ∂ ∂τ α -v ∂ ∂ξ α (31) ∂ 2 ∂T 2 α = -v ∂ 2 ∂ξ α ∂τ α -v ∂ 2 ∂ξ 2 α + ∂ 2 ∂τ 2 α -v ∂ 2 ∂ξ α ∂τ α (32) ∂ ∂X α = ∂ ∂ξ α (33) ∂ 2 ∂X 2 α = ∂ 2 ∂ξ 2 α ( 34 
)
Equation 30 reads:

(c 2 o -v 2 )A ξ1ξ1 -A τ1τ1 + 2vA ξ1τ1 + 2ic 2 o q -2iωv A ξ2 + 2iωA τ2 + ω 2 0 2 |A| 2 A = 0 (35) 
Considering new variables in Eq. 26 one can see that A τ1 = 0 and v = c 2 0 q w . Then, Eq. 35 reads

(c 2 o -v 2 ) 2ω A ξ1ξ1 + iA τ2 + ω 2 0 2ω |A| 2 A = 0 (36)
which is a nonlinear Schrödinger equation. The solutions of this equation have been described in many references such as in [START_REF] Dodd | Solitons and nonlinear wave equations[END_REF][START_REF] Peyrard | Physique des solitons[END_REF][START_REF] Scott | Nonlinear Science[END_REF].

We introduce variables

P = c 2 o -v 2 2ω = c 2 o ω 2 0 2ω 3 and Q = ω 2 0 2ω
which are strictly positive. Let as inject A = B(ξ 1 , τ 2 )e iδ(ξ1,τ2) in Eq. 36; we reach to i B τ2 e iδ + iBθ τ2 e iδ + P B ξ1ξ1 e iδ + 2iB ξ1 δ ξ1 e iδ -B(δ ξ1 ) 2 e iδ + iBδ ξ1ξ1 e iδ +Q|B| 2 Be iδ = 0 (37)

Separation of real and imaginary parts of Eq. 37 provides:

B τ2 + 2P B ξ1 δ ξ1 + P B(δ ξ1ξ1 ) = 0 (38) 
-Bδ τ2 + P B ξ1ξ1 -P B(δ ξ1 ) 2 + Q|B| 2 B = 0 (39) We are interested in a solution where the phase δ propagates with the velocity of u p and the envelope B propagates with the velocity of u e by keeping their own form. This means that we are searching for a solution in the following form:

B(ξ 1 , τ 2 ) = B(ξ 1 -u e τ 2 ) δ(ξ 1 , τ 2 ) = δ(ξ 1 -u p τ 2 ) (40)
Here, there is a difference of order of between ξ 1 and τ 2 (see Eq. 40). So, velocities of propagation should be O( -1 ).

Equations 38 and 39 take following forms:

-u e B x + 2P B x δ x + P Bδ xx = 0 (41)

u p Bδ x + P B xx -P B(δ x ) 2 + QB 3 = 0 (42)
We search for localized solitons of nonlinear Schrödinger system in space. This can be reached if |x| → ∞, then B → 0 and B x → 0. In this case, Eq. 41 provides

δ x = u e 2P ( 43 
) or δ(ξ 1 , τ 2 ) = u e 2P (ξ 1 -u p τ 2 ) (44) 
Considering the solution of Eq. 44 in Eq. 42, we have

u e u p 2P B + P B xx - u 2 e 4P B + QB 3 = 0 (45) 
Multiplying Eq. 45 by P B x and taking its integral, we reach to

- u 2 e -2u e u p 8 B 2 + P 2 2 B 2 x + P Q 4 B 4 = 0 (46) 
If we assume that u e > u p , the solution of the Eq. 46 reads

B = u 2 e -2u e u p 2P Q sech Q 2P u 2 e -2u e u p 2P Q (ξ 1 -u e τ 2 ) (47) 
or

B = u 2 e -2u e u p 2P Q sech Q 2P u 2 e -2u e u p 2P Q ( x -(u e + v) t) (48) 
and considering Eq. 44, θ(x, t) can be formulated as:

θ(x, t) = 2 Bcos u e 2P ( x -(v + u p )t ) + (qx -ωt) (49) 
The direction of propagation can be traced via Eq. 47. It reads ξ 0 -u e t = 0 (50) or

x -(v + u e t) = 0 (51) and considering Eq. 49 the frequency of the propagation, ω p , on the propagation line can be defined as:

ω p = 2 u e 2P (u e -u p ) + q v + u e - ω q (52) 
3.4 A supplementary note in tracing the response of the system without

We can also trace the system behavior without having information about parameter. The Schrödinger equation (see Eq. 36) can be re-written as: P A ξ0ξ0 + iA τ0 + 2 Q|A| 2 A = 0 (53) Let us assume that A = A. Equation 53 yields to P A ξ0ξ0 + iA τ0 + Q|A| 2 A = 0 (54)

As previous steps, we can assume that A = B(ξ 1 , τ 2 )e i δ(ξ1,τ2) and then we search for a solution where the phase and the amplitude propagate with the velocities as ûp and ûe in the following form

B(ξ 1 , τ 2 ) = B(ξ 0 -ûe τ 0 ) δ(ξ 1 , τ 2 ) = δ(ξ 0 -ûp τ 0 ) (55) 
where ûe and ûp are at O(1). We obtain

θ(x, t) = 2 û2 e -ûe ûp 2P Q sech Q 2P û2 e -ûe ûp 2P Q (x -(û e + v)t) × cos ûe 2P (x -(v + ûp )t) + (qx -ωt) (56) 
4 An example

For demonstrating the results in a given numerical example, we assume system parameters which are provided in Table 1. Variations of the amplitude B with respect to space and time, obtained from Eq. 48, are illustrated in Fig. 2. It is seen that the amplitude of the system propagates in space and time in a specific direction. The two-dimensional view of this propagation which is presented in Fig. 3 shows that the amplitude propagates in the propagation direction which has been already predicted in Eq. 50. The three-dimensional view of propagation of θ obtained from Eq. 49, is provided in Fig. 4 which is zoomed in Fig. 5 for small intervals of time and space. Variation of θ on the propagation direction (see Eq. 50) is illustrated in Fig. 6 showing that the system propagates with the frequency of ω p = 22.2150Hz which can be evaluated via Eq. 52. 

Conclusions

Dynamics and nonlinear wave propagation in a chain of pendulums is studied: pendulums are equally spaced on a rigid base and are connected to each other from other side via linear springs. To trace behaviors of the continuous system, a multiple scale technique is implemented which results on the emerge of nonlinear Schrödinger equations. Searching for localized solitons of nonlinear Schrödinger system in space, leads to detection of phase and envelope of the propagation as functions of their velocities which provide also detection of propagation direction and frequency. Obtained information furnishes design tools for tuning system parameters for having appropriate propagation in terms of amplitude, phase, direction and frequency. As a perspective of current work, direct numerical integration can be carried out for a discrete chain of oscillators which contains a large number of pendulums. Then, parameters of localized waves of corresponding continuous system can be identified from numerical results for having comparison between two types of results. The studied chain can be used as the passive controller system for protection of principal structures and/or as the energy harvester.

Figure 1 :

 1 Figure 1: Schematic of the considered chain of coupled pendulums: All pendulums are equally spaced on a rigid base with the distance of d; they posses the same mass as m (• • • = m n-1 = m n = m n+1 = • • • = m) and they are coupled to each other by linear springs with equal rigidity as k.

Figure 2 :

 2 Figure 2: Obtained numerical results, B versus x and t, for given system parameters which are defined Table 1. Results are obtained via Eq. 48 for x ∈ [0, 100] and t ∈ [0, 20].

Figure 3 :

 3 Figure 3: Two-dimensional view of Fig. 2, which presents the propagation direction. This direction can also be traced by Eq. 51.

Figure 4 :

 4 Figure 4: Obtained numerical results, θ versus x and t, for given system parameters which are defined Table 1. Results are obtained via Eq. 49 for x ∈ [0, 100] and t ∈ [0, 20].

Figure 5 :

 5 Figure 5: Obtained numerical results, θ versus x and t, for given system parameters which are defined Table 1. Results are obtained via Eq. 49 for x ∈ [0, 2] and t ∈ [0, 1].

Figure 6 :

 6 Figure 6: Variation of θ on the propagation direction which is defined in Eq. 51 during two time intervals: a) t ∈ [0, 20] ; b) t ∈ [10, 12]. The frequency of the propagation can be obtained via Eq. 52. It provides ω p = 22.2150Hz which is in agreements with the frequency of propagation in this figure.

Table 1

 1 

	k	d	l	g	m	q	u e	u p
	0.5 0.01 0.0177 9.81 0.01 1 10 -3 0.3 0.1

. Results are obtained via Eq. 49 for x ∈ [0, 2] and t ∈ [0, 1].

Table 1 :

 1 Numerical values for system parameters.
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