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ABSTRACT

The paper considers a chain of linearly coupled pendulums. Continues first order system equations
are treated via time and space multiple scale method which lead to nonlinear Schrödinger equation.
Further investigations on the nonlinear Schrödinger equation detects systems responses in the form of
propagated nonlinear waves as functions of their envelope and phases. This provides information
about localization of nonlinear waves and their directions in space and time.

Keywords coupled pendulums · nonlinear Schrödinger equation · nonlinear waves · localization

1 Introduction

There are different ways of passively controlling and/or localizations of vibratory energies of main structural systems
via coupled oscillators. The process can be categorized globally into two distinct groups: coupling linear (Frahm, 1911)
and nonlinear (Ibrahim, 2008) systems to principal structures. The localizer systems can be single linear or nonlinear
oscillator (Hoang et al., 2016; Ture Savadkoohi et al., 2016) or a chain of oscillators with different types of coupling
terms (Manevitch, 2001; Peyrard and Dauxois, 2004; Iooss and James, 2005; Manevitch et al., 2006; Gendelman et al.,
2015; Hasan et al., 2015). In this paper, the localizer system is assumed to be a chain of pendulums which are attached
to a rigid support from one end and are coupled to each other via linear springs from another end. We are interested to
find out the possibility of localization of nonlinear waves in the chain as a function of time and space. This paper is
a preliminary study to reach the following goal: controlling main structural systems against vibrations by localizing
their energies into a chain of coupled pendulums. It should be underlined that the nonlinear energy localizations can
be found also in many other nonlinear discrete and continuous oscillator systems, in addition to the chain of coupled
pendulums studied in this paper (Vakakis et al., 1993, 1996; Manevitch and Smirnov , 2010; Smirnov et al., 2016;
Strozzi et al., 2016). Organization of the paper is as it follows: governing equations of the discrete system are derived in
Sect. 2 and then continuous approximated model is introduced. A multiple scale technique is implemented in Sect.
3 for tracing system behaviors at different scales of time and space. This method permits to treat nonlinear system
equations (derived for continuous model) and to trace response of the system as function of velocities of its envelope
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and phase. A numerical example is provided in Sect. 4 showing the localization process in a continuous chain and its
direction in the space and time. Finally, the paper is concluded in Sect. 5.

2 The system under consideration

Let us consider a chain of coupled pendulums in the orthogonal coordinates (o,~e1, ~e2, ~e3) as is illustrated in Fig. 1. All
pendulums are situated on a rigid base with the distance of d from each other and they possess the same mass as m.
All masses are coupled to each other by springs with equal rigidity as k. All imposed forces to each mass mn can be
summarized as: 

~P = −mg~e2
~Fn−1 = k (‖(~un−1,n‖ − d)

~un−1,n

‖~un−1,n‖
~Fn+1 = −k (‖(~un,n+1‖ − d)

~un,n+1

‖~un,n+1‖

(1)

where
~un−1,n = (l (sin (θn)− sin (θn−1)) + d)~e1 + l (cos (θn)− cos (θn−1))~e2 (2)

The lever arm of forces in Eq. 1 is defined as:

~r = l sin(θn)~e1 + l cos(θn)~e2 (3)

Moments of given forces in Eq. 1 are summarized as:

~MP = ~r ∧ ~P = −mgl sin(θn)~e3 (4)

~MFn−1 = ~r ∧ ~Fn−1 (5)

~MFn+1
= ~r ∧ ~Fn+1 (6)

where ∧ stands for the wedge product of two vectors. Let us define J as the moment of inertia; we can write:

θnθn−1 θn+1

d d

l

l

l

k
k

mn−1

mn

mn+1

~e1

~e2

~e3

o

Figure 1: Schematic of the considered chain of coupled pendulums: All pendulums are equally spaced on a rigid base
with the distance of d; they posses the same mass as m (· · · = mn−1 = mn = mn+1 = · · · = m) and they are coupled
to each other by linear springs with equal rigidity as k.

θ̈nJ = −mgl sin(θn) +MFn−1 +MFn+1
(7)

Let us study ~MFn−1 in detail (see Eq. 5). It reads:

MFn−1 = k(1− 1√
1− 2 ld (sin(θn)− sin(θn−1))− 2 l

2

d2 (1− cos(θn − θn−1))
)

×
(
−ld cos(θn)− l2 sin(θn − θn−1)

) (8)
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Equation 8 can be re-written as:

MFn−1
= k

(
1−

(
1 +

l

d
(sin(θn)− sin(θn−1))

+
l2

d2

(
1− cos(θn − θn−1)−

3

2
(sin(θn)− sin(θn−1))

2

)
+O( l

3

d3
)

))
×
(
−ld cos(θn)− l2 sin(θn − θn−1)

)
(9)

We assume that θ � 2π. Equation 9 reads:

MFn−1
= k

(
− l
d
(θn − θn−1)−

l2

d2

(
(θn − θn−1)

2 − 3

2
(θn − θn−1)

2

))
×
(
−ld− l2 (θn − θn−1)

) (10)

For further developments we will introduce following new variables: l = Ld and k = K
d

l
. First order terms of Eq. 10

yield to
MFn−1 = −KLd2(θn − θn−1) (11)

and with the same manner it can be demonstrated that

MFn+1
= KLd2(θn+1 − θn) (12)

Equation 7 reads
θ̈nJ = −mgLd sin(θn) +KLd2(θn−1 − 2θn + θn+1) (13)

The Taylor expansion of Eq. 13 with respect to θn yields to

θttJ = −mgLd sin(θ) +KLd2θxx (14)

It should be mentioned that we did not expand the term of Eq. 4 intentionally for having similar equations of Klein-
Gordon as is given in Eq. 14. If one keeps higher order terms of the Eq. 10, then following continuous system can will
be obtained:

θttJ = −mgLd(θ − θ3

3
) +KLd4θxx − 2KL2d4θ2xθ −KLd4θ2θxx

−1

6
KLd5θ3x + 6KL2d5θxθxx −

5

36
KLd5θxxx −

16

3
KL2d5θ3xθ −KLd5θθxθxx

(15)

It should be underlined that Rosenau (1986, 1987), studied the dynamics of mass-spring chains with arbitrary
interparticle and substrate potentials by describing an approach for deriving governing system equations near continuum
limits. His explained method captures all terms to given order in discreteness and allows to express well-posed nonlinear
partial differential equations for such systems. However, comparison between obtained higher order differential equation
in this paper which is described in Eq. 14 with the explained methodology of Rosenau (1986, 1987) is beyond the
scope of the current paper.
In the current paper we will investigate on the Eq. 14. Apart from the system under study of this paper, Eq. 14 governs
several physical and mechanical systems such as Josephson junction transmission line, a series of pendulums connected
by a spring at base, motion of a Bloch wall between ferromagnetic domain, motion of a slide dislocation in a crystalline
structure, Lorentz contraction, etc. (Scott, 1969). Localized solutions of the Sine-Gordon equation have been studied
by Kochendörfer and Seeger (1950, 1951). Scott (1969) looked for the solution of the Eq. 14 as waves of permanent
profile while properties of Sine-Gordon equation have been described by Ablowitz et al. (1973) and Zakharov et al.
(1984).

3 Tracing system behaviors at different scales of time and space

To detect system behavior, we are interested to endow a multi-scale method (Nayfeh and Mook, 1979; Dodd et al.,
1982; Peyrard and Dauxois, 2004; Ostrovsky, 2015). We introduce a very small parameter 0 < ε� 1 which connects
different scales of time and space as Tα = εαt, Xα = εαx, α ∈ N, respectively. We set

θ(x, t) = ε

n∑
α=0

εαφα(X0, X1, . . . , T0, T1, . . . ) (16)

3
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In this case derivatives with respective to time t and the space x yield to

d

dt
=
dT0
dt

∂

∂T0
+
dT1
dt

∂

∂T1
= D0 + εD1 + . . . (17)

d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + . . . (18)

d

dx
= DX0 + εDX1 + . . . (19)

d2

dx2
= D2

X0 + 2εDX0DX1 + ε2(D2
X1 + 2DX0DX2) + . . . (20)

Since we are interested to detect the behavior of the system described in Eq. 14, we will study this equation at different
orders of ε in following sections.

3.1 System behavior at the order of ε1

Equation 14 at ε1 order reads
JD2

0φ0 = −mgLdφ0 +KLd2D2
X0φ0 (21)

We introduce an operator L̂. Equation 21 yields to:

(JD2
0 +mgLd−KLd2D2

X0)φ0 = L̂φ0 = 0 (22)
This equation illustrates that φ0 is a wave with following definitions:

φ0(x, t) = A(X1, X2, ..., T1, T2, ...)e
i(qX0−ωT0) + c.c. (23)

where c20 =
KLd2

J
, ω2

0 =
mgLd

J
and ω2 = ω2

o + c20q
2.

3.2 System behavior at the order of ε2

Equation 14 at the ε2 order reads:

L̂φ1 = (−2D0D1 + 2c20DX0DX1)φ0 (24)

or
L̂φ1 = (2iωAT1 + 2iqc20AX1)e

i(qX0−ωT0) (25)

If ei(qX0−ωT0) ⊂ Ker(L̂), then
∂A

∂T1
+
qc20
ω

∂A

∂X1
= 0 (26)

The characteristic curve of Eq. 26 reads as:

X1 −
qc20
ω
T1 = C ∈ R (27)

So, the amplitude A in Eq. 26 can be represented as

A(X1, T1, X2, T2, . . . ) = A(X1 −
qc20
ω
T1, X2, T2, ...) (28)

3.3 System behavior at the order of ε3 and detection of the response

ε3 order of Eq. 14 yields to

L̂φ2 = (−2D0D1 + 2c20DX0DX1)φ1 +
ω2
0

6
φ30

+(−D2
1 − 2D2D0 + c20(D

2
X1 + 2DX0DX2))φ0

(29)

After removing secular terms of Eq. 29 we will have:

−∂
2A

∂T 2
1

+ 2iω
∂A

∂T2
+ c20(

∂2A

∂X2
1

+ 2iq
∂A

∂X2
) +

ω2
0

2
|A|2A = 0 (30)

4
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We introduce new variables as ξα = Xα − vTα and τα = Tα. so

∂

∂Tα
=

∂

∂τα
− v ∂

∂ξα
(31)

∂2

∂T 2
α

= −v
(

∂2

∂ξα∂τα
− v ∂

2

∂ξ2α

)
+

∂2

∂τ2α
− v ∂2

∂ξα∂τα
(32)

∂

∂Xα
=

∂

∂ξα
(33)

∂2

∂X2
α

=
∂2

∂ξ2α
(34)

Equation 30 reads:

(c2o − v2)Aξ1ξ1 −Aτ1τ1 + 2vAξ1τ1 +
(
2ic2oq − 2iωv

)
Aξ2 + 2iωAτ2+

ω2
0

2
|A|2A = 0

(35)

Considering new variables in Eq. 26 one can see that Aτ1 = 0 and v =
c20q

w
. Then, Eq. 35 reads

(c2o − v2)
2ω

Aξ1ξ1 + iAτ2 +
ω2
0

2ω
|A|2A = 0 (36)

which is a nonlinear Schrödinger equation.
The solutions of this equation have been described in many references such as in (Dodd et al., 1982; Peyrard and
Dauxois, 2004; Scott , 2005).

We introduce variables P =
c2o − v2

2ω
=

c2oω
2
0

2ω3
and Q =

ω2
0

2ω
which are strictly positive. Let as inject A =

B(ξ1, τ2)e
iδ(ξ1,τ2) in Eq. 36; we reach to

i
(
Bτ2e

iδ + iBθτ2e
iδ
)
+ P

(
Bξ1ξ1e

iδ + 2iBξ1δξ1e
iδ −B(δξ1)

2eiδ + iBδξ1ξ1e
iδ
)

+Q|B|2Beiδ = 0
(37)

Separation of real and imaginary parts of Eq. 37 provides:

Bτ2 + 2PBξ1δξ1 + PB(δξ1ξ1) = 0 (38)

−Bδτ2 + PBξ1ξ1 − PB(δξ1)
2 +Q|B|2B = 0 (39)

We are interested in a solution where the phase δ propagates with the velocity of up and the envelope B propagates with
the velocity of ue by keeping their own form. This means that we are searching for a solution in the following form:{

B(ξ1, τ2) = B(ξ1 − ueτ2)
δ(ξ1, τ2) = δ(ξ1 − upτ2) (40)

Here, there is a difference of order of ε between ξ1 and τ2 (see Eq. 40). So, velocities of propagation should be O(ε−1).
Equations 38 and 39 take following forms:

−ueBx + 2PBxδx + PBδxx = 0 (41)

upBδx + PBxx − PB(δx)
2 +QB3 = 0 (42)

We search for localized solitons of nonlinear Schrödinger system in space. This can be reached if |x| → ∞, then
B → 0 and Bx → 0. In this case, Eq. 41 provides

δx =
ue
2P

(43)

or
δ(ξ1, τ2) =

ue
2P

(ξ1 − upτ2) (44)

5
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Considering the solution of Eq. 44 in Eq. 42, we have
ueup
2P

B + PBxx −
u2e
4P

B +QB3 = 0 (45)

Multiplying Eq. 45 by PBx and taking its integral, we reach to

−u
2
e − 2ueup

8
B2 +

P 2

2
B2
x +

PQ

4
B4 = 0 (46)

If we assume that ue > up, the solution of the Eq. 46 reads

B =

√
u2e − 2ueup

2PQ
sech

(√
Q

2P

√
u2e − 2ueup

2PQ
(ξ1 − ueτ2)

)
(47)

or

B =

√
u2e − 2ueup

2PQ
sech

(√
Q

2P

√
u2e − 2ueup

2PQ
(εx− (ueε+ v)εt)

)
(48)

and considering Eq. 44, θ(x, t) can be formulated as:

θ(x, t) = 2εBcos
( ue
2P

(εx− (v + εup)tε) + (qx− ωt)
)

(49)

The direction of propagation can be traced via Eq. 47. It reads
ξ0 − εuet = 0 (50)

or
x− (v + εuet) = 0 (51)

and considering Eq. 49 the frequency of the propagation, ωp, on the propagation line can be defined as:

ωp =
ε2ue
2P

(ue − up) + q

(
v + εue −

ω

q

)
(52)

3.4 A supplementary note in tracing the response of the system without ε

We can also trace the system behavior without having information about ε parameter. The Schrödinger equation (see Eq.
36) can be re-written as:

PAξ0ξ0 + iAτ0 + ε2Q|A|2A = 0 (53)
Let us assume that A = εA. Equation 53 yields to

PAξ0ξ0 + iAτ0 +Q|A|2A = 0 (54)

As previous steps, we can assume that A = B(ξ1, τ2)e
iδ̂(ξ1,τ2) and then we search for a solution where the phase and

the amplitude propagate with the velocities as ûp and ûe in the following form{
B(ξ1, τ2) = B(ξ0 − ûeτ0)
δ̂(ξ1, τ2) = δ̂(ξ0 − ûpτ0)

(55)

where ûe and ûp are at O(1). We obtain

θ(x, t) = 2

√
û2e − ûeûp

2PQ
sech

(√
Q

2P

√
û2e − ûeûp

2PQ
(x− (ûe + v)t)

)
×

cos

(
ûe
2P

(x− (v + ûp)t) + (qx− ωt)
) (56)

4 An example

For demonstrating the results in a given numerical example, we assume system parameters which are provided in Table
1. Variations of the amplitude B with respect to space and time, obtained from Eq. 48, are illustrated in Fig. 2. It is seen
that the amplitude of the system propagates in space and time in a specific direction. The two-dimensional view of this
propagation which is presented in Fig. 3 shows that the amplitude propagates in the propagation direction which has
been already predicted in Eq. 50. The three-dimensional view of propagation of θ obtained from Eq. 49, is provided in
Fig. 4 which is zoomed in Fig. 5 for small intervals of time and space. Variation of θ on the propagation direction (see
Eq. 50) is illustrated in Fig. 6 showing that the system propagates with the frequency of ωp = 22.2150Hz which can
be evaluated via Eq. 52.

6
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Figure 2: Obtained numerical results, B versus x and t, for given system parameters which are defined Table 1. Results
are obtained via Eq. 48 for x ∈ [0, 100] and t ∈ [0, 20].

Figure 3: Two-dimensional view of Fig. 2, which presents the propagation direction. This direction can also be traced
by Eq. 51.
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Figure 4: Obtained numerical results, θ versus x and t, for given system parameters which are defined Table 1. Results
are obtained via Eq. 49 for x ∈ [0, 100] and t ∈ [0, 20].

Figure 5: Obtained numerical results, θ versus x and t, for given system parameters which are defined Table 1. Results
are obtained via Eq. 49 for x ∈ [0, 2] and t ∈ [0, 1].
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k d l g m q ε εue εup
0.5 0.01 0.0177 9.81 0.01 1 10−3 0.3 0.1

Table 1: Numerical values for system parameters.

0 5 10 15 20
−0.1

0

0.1

t

θ

(a)

10 10.5 11 11.5 12
−0.1

0

0.1

t

θ

(b)

Figure 6: Variation of θ on the propagation direction which is defined in Eq. 51 during two time intervals: a) t ∈ [0, 20]
; b) t ∈ [10, 12]. The frequency of the propagation can be obtained via Eq. 52. It provides ωp = 22.2150Hz which is
in agreements with the frequency of propagation in this figure.

5 Conclusions

Dynamics and nonlinear wave propagation in a chain of pendulums is studied: pendulums are equally spaced on a
rigid base and are connected to each other from other side via linear springs. To trace behaviors of the continuous
system, a multiple scale technique is implemented which results on the emerge of nonlinear Schrödinger equations.
Searching for localized solitons of nonlinear Schrödinger system in space, leads to detection of phase and envelope of
the propagation as functions of their velocities which provide also detection of propagation direction and frequency.
Obtained information furnishes design tools for tuning system parameters for having appropriate propagation in terms of
amplitude, phase, direction and frequency. As a perspective of current work, direct numerical integration can be carried
out for a discrete chain of oscillators which contains a large number of pendulums. Then, parameters of localized waves
of corresponding continuous system can be identified from numerical results for having comparison between two types
of results. The studied chain can be used as the passive controller system for protection of principal structures and/or as
the energy harvester.
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