Forging of a Connecting Rod : 3D Finite Element Calculation - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Engineering Computations Année : 1992

Forging of a Connecting Rod : 3D Finite Element Calculation

Résumé

This paper presents the results of the simulation of the forging of a connecting rod. The calculation has been carried out by the code FORGE3 developed at the CEMEF laboratory. FORGE3 is a three‐dimensional finite element computer program that can simulate hot forging of industrial parts. The flow problem is solved using a thermomechanical analysis. The mechanical resolution and the thermal one are coupled by the way of the consistency K which is thermodependent, the plastic deformation in the volume of the material and the friction heat flux on the surface. The material behaviour is assumed to be incompressible and viscoplastic (Norton—Hoff law) with the associated friction law. The thermal resolution includes the case of non‐linear physical properties and boundary conditions. An explicit Euler scheme is used for the mechanical resolution and two‐step schemes for the thermal one. For the computation of other parameters, it is necessary to have a good approximation for the strain rate tensor. The Orkisz method has been used to determine the deviatoric stress tensor and p is calculated by an original smoothing method. The results show that it is possible to get good information on the flow and on the physical properties during forging of automotive parts. Comparisons have been made with experimental measurements with a reasonably good agreement.

Dates et versions

hal-01462964 , version 1 (09-02-2017)

Identifiants

Citer

Nathalie Soyris, Lionel Fourment, Thierry Coupez, Jean-Pierre Cescutti, Gilles Brachotte, et al.. Forging of a Connecting Rod : 3D Finite Element Calculation. Engineering Computations, 1992, 9 (1), pp.63-80. ⟨10.1108/eb023849⟩. ⟨hal-01462964⟩
181 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More