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Abstract

We provide a new simple characterization of the multivariate generalized Laplace distri-
bution. In particular, our characterization implies that the product of a Gaussian matrix
with independent and identically distributed columns and an independent isotropic Gaus-
sian vector follows a symmetric multivariate generalized Laplace distribution.

1. Introduction

Wishart and Bartlett (1932) proved that the inner product of two independent bidimensional
standard gaussian vectors follows a Laplace distribution. This result is deeply linked to the
fact that the Laplace distribution can be represented as an infinite scale mixture of Gaussians
with gamma mixing distribution. Specifically, if o2 follows a Gamma(1,1/2) distribution
and x|o ~ N(0,0?), then x follows a standard Laplace distribution!. This representation —
which was recently named the Gauss-Laplace transmutation by Ding and Blitzstein (2015)
following a blog post by Christian P. Robert? — is particularly useful if one wants to simulate
a Laplace random variable: its use constitutes for example the cornerstone of the Gibbs
sampling scheme for the Bayesian lasso of Park and Casella (2008).

In this short paper, we are interested in studying links between multivariate counterparts
of these two characterizations. More specifically, we give a new simple characterization of the
multivariate generalized Laplace distribution of Kotz, Kozubowski, and Podgorski (2001). As
a corollary, we show that the product of a zero-mean Gaussian matrix with i.i.d. columns
and a zero-mean isotropic Gaussian vector follows a symmetric multivariate generalized
Laplace distribution, a result that has useful applications for Bayesian principal component
analysis (Bouveyron, Latouche, and Mattei, 2016).

In the remainder of this paper, p and d are two positive integers.

2. The multivariate generalized Laplace distribution

While the definition of the univariate Laplace distribution is widely undisputed, there exist
several different generalizations of this distribution to higher dimensions — a comprehensive
review of such generalizations can be found in the monograph of Kotz, Kozubowski, and
Podgorski (2001). In particular, Anderson (1992) introduced a zero-mean elliptically con-
toured p-dimensional Laplace distribution with univariate Laplace marginals by considering

1. The shape-rate parametrization of the gamma distribution is used through this paper. Note also that a
standard Laplace distribution is centered with variance two.
2. https://xianblog.wordpress.com/2015/10,/14 /gauss-to-laplace-transmutation/



characteristic functions of the form

1

VueRP, gu) = —
o(u) 1+%uTEu

where 3 € S;r . This distribution was notably promoted by Eltoft, Kim, and Lee (2006) and
is arguably the most popular multivariate generalization of the Laplace distribution (Kotz,
Kozubowski, and Podgorski, 2001, p. 229). Among its advantages, this distribution can be
slightly generalized to model skewness, by building on characteristic functions of the form

1

Yu € Rp, u) = ;
¢(u) 1+ tu"Su—ipTu

where pu € RP accounts for asymmetry. Similarly to the univariate Laplace distribution,
this asymmetric multivariate generalization is infinitely divisible (Kotz, Kozubowski, and
Podgorski, 2001, p. 256). Therefore, it can be associated with a specific Lévy process
(Kyprianou, 2014, p. 5), whose increments will follow yet another generalization of the
Laplace distribution, the multivariate generalized asymmetric Laplace distribution. This
distribution, introduced by Kotz, Kozubowski, and Podgoérski (2001, p. 257) and further
studied by Kozubowski, Podgorski, and Rychlik (2013), will be the cornerstone of our anal-
ysis of multivariate caracterizations of Laplace and Gaussian distributions.

Definition 1 A random variable z € RP is said to have a multivariate generalized
asymmetric Laplace distribution with parameters s > 0,pu € RP and 3 € S;r if its
characteristic function is

S
1
Yu € RP, u) = )
¢GALp(2,u,s)( ) <1+%uTEU—iMTU>

It is denoted by z ~ GAL, (X, i, s).

General properties of the generalized asymmetric Laplace distribution distribution are dis-
cussed by Kozubowski, Podgorski, and Rychlik (2013). We list here a few useful ones.

Proposition 2 Let s > 0, € RP and 3 € S . If z ~ GAL,(Z, b, 5), we have E(z) = sp
and Cov(z) = s(X + pu’). Moreover, if ¥ is positive definite, the density of z is given by

ek’ B 1x ( Q(x)
(2m)P/2T(s)Vdet = \C(%, p

where Qx(x) = VxIE-1x, C(3,p) = 2+ puTS "y and K,_p,/5 is the modified Bessel
function of the second kind of order s — p/2.

s—p/2
Vx € Rp, fZ(X) = )> stp/Q (Q(X)C(27IJ’)) )

Note that the GAL;(2b%,0,1) case corresponds to a centered univariate Laplace distribution
with scale parameter b > 0. In the symmetric case (i = 0) and when s = 1, we recover the
multivariate generalization of the Laplace distribution of Anderson (1992).

An appealing property of the multivariate generalized Laplace distribution is that it is
also endowed with a multivariate counterpart of the Gauss-Laplace transmutation.



Theorem 3 (Generalized Gauss-Laplace transmutation) Let s > 0,u € RP and X €
S . If u ~ Gammal(s, 1) and x ~ N(0,%) is independent of u, we have

up + Vux ~ GAL,(Z, p, 5). (1)

A proof of this result can be found in Kotz, Kozubowski, and Podgoérski (2001, chap. 6). This
generalized transmutation explains why the multivariate generalized Laplace distribution
can also be seen as a multivariate generalization of the variance-gamma distribution which
is widely used in the field of quantitative finance (Madan, Carr, and Chang, 1998). Infinite
mixtures similar to (1) are called variance-mean miztures (Barndorff-Nielsen, Kent, and
Serensen, 1982) and are discussed for example by Yu (2017).

Another useful property of the multivariate generalized Laplace distribution is that,
under some conditions, it is closed under convolution.

Proposition 4 Let s1,s9 > 0,0 € RP and X € S;. If 21 ~ GAL,(Z, pu,s1) and zy ~
GAL, (X, i, s2) are independant random variables, then

Z) + Z2 ~ GALp(E’u/, 51+ 82)- (2)

Proof Since z; and zy are independent, we have for all u € RP,

S1+82
1
¢z1+z2 (11) = ¢GALP(E,[L,31)(u)¢GALp(E,H782)(u) = <1 i %uTZu — iuTu>

which is the characteristic function of the GAL, (X, u, s1 + s2) distribution. |

3. A new characterization involving a product between a Gaussian
matrix and a Gaussian vector

We now state our main theorem, which gives a new characterization of multivariate gener-
alized Laplace distributions with half-integer shape parameters.

Theorem 5 Let W be a p x d random matriz with i.i.d. columns following a N(0,3X)
distribution, y ~ N(0,1y) be a Gaussian vector independent from W and let p € RP. We
have

Wy + |lyll3n ~ GAL,(2%, 2p, d/2). 3)

Proof Foreach k € {1,...,d} let wy be the k-th column of W, uj, = y2 and &}, = yp Wi +yip.
To prove the theorem, we will prove that &, ..., &, follow a GAL distribution and use the

decomposition
d

Wy + Iyl =>_&.
k=1

Let k € {1,..,d}. Since y is standard Gaussian, uy = y; follows a x?(1) distribu-
tion, or equivalently a Gamma(1/2,1/2) distribution. Therefore, uy/2 ~ Gamma(1/2,1).



Moreover, note that /upwi = |yk|Wr = yrsign(yr)wi 4 Yy Wi since |yi| and sign(yy) are

independent and sign(yx)wy 4 wp. Therefore, according to the generalized Gauss-Laplace
transmutation, we have

= [ VoWt g~ GAL,(23,21/2)

Since &;,...,&; are i.i.d. and following a GAL,(23,2u,1/2) distribution, we can use
Proposition 4 to conclude that

d

Wy + [yl = > &, ~ GAL,(2%,2p,d/2).
k=1

In the symmetric case (p = 0), this result gives the distribution of the product between
a Gaussian matrix with i.i.d. columns and a isotropic Gaussian vector.

Corollary 6 Let W be a p x d random matriz with i.i.d. columns following a N(0,3)
distribution and let y ~ N(0,aly) be a Gaussian vector independent from W. Then

Wy ~ GAL,(205,0,d/2). (4)

Moreover, if u is a standard Gamma variable with shape parameter d/2 and if x ~ N(0,2aX)
is a Gaussian vector independent of u, then

Wy £ Vux. (5)

Less general versions of Theorem 5 have been proved in the past, dating back to the
derivation of the inner product of two i.i.d. standard Gaussian vectors by Wishart and
Bartlett (1932). In particular, the unidimensional case (p = 1) was recently proven by
Gaunt (2014) in order to obtain bounds for the convergence rate of random sums involving
Gaussian products. The multivariate symmetric isotropic case (u = 0 and X proportional to
I,) was proven by Bouveyron, Latouche, and Mattei (2016) in order to derive the marginal
likelihood of the noiseless probabilistic PCA model of Roweis (1998). While the proof of
Bouveyron, Latouche, and Mattei (2016) relied on characteristic functions and the properties
of Bessel functions, the proof that we presented here is closer in spirit to the one of Gaunt
(2014), based on representations of distributions.

Acknowledgements

I thank Charles Bouveyron, Pierre Latouche and Christian P. Robert for fruitful advices
and discussions. Part of this work was made during a visit to University College Dublin,
funded by the Fondation Sciences Mathématiques de Paris (FSMP).



References

D. N. Anderson. A multivariate Linnik distribution. Statistics & Probability Letters, 14(4):
333-336, 1992.

O. Barndorff-Nielsen, J. Kent, and M. Sgrensen. Normal variance-mean mixtures and z
distributions. International Statistical Review/Revue Internationale de Statistique, pages
145-159, 1982.

C. Bouveyron, P. Latouche, and P.-A. Mattei. Bayesian variable selection for globally sparse
probabilistic PCA. Technical report, HAL-01310409, 2016.

P. Ding and J. K. Blitzstein. Representation for the Gauss-Laplace transmutation. arXiv
preprint arXiw:1510.08765, 2015.

T. Eltoft, T. Kim, and T.-W. Lee. On the multivariate Laplace distribution. IEEE Signal
Processing Letters, 13(5):300-303, 2006.

R. E. Gaunt. Variance-gamma approximation via Stein’s method. FElectronic Journal of
Probability, 19(38):1-33, 2014.

S. Kotz, T. Kozubowski, and K. Podgorski. The Laplace distribution and generalizations: a
revisit with applications to communications, exonomics, engineering, and finance. Number
183. Springer Science & Business Media, 2001.

T. Kozubowski, K. Podgorski, and I. Rychlik. Multivariate generalized Laplace distribution
and related random fields. Journal of Multivariate Analysis, 113:59-72, 2013.

A. Kyprianou. Fluctuations of Lévy processes with applications: Introductory Lectures.
Springer Science & Business Media, 2014.

D. B. Madan, P. P. Carr, and E. C. Chang. The variance gamma process and option pricing.
European finance review, 2(1):79-105, 1998.

T. Park and G. Casella. The Bayesian lasso. Journal of the American Statistical Association,
103(482):681-686, 2008.

S. Roweis. EM algorithms for PCA and SPCA. Advances in neural information processing
systems, pages 626-632, 1998.

J. Wishart and M. S. Bartlett. The distribution of second order moment statistics in a
normal system. Mathematical Proceedings of the Cambridge Philosophical Society, 28, 10
1932.

Y. Yu. On normal variance-mean mixtures. Statistics € Probability Letters, 121:45-50,
2017.



