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Abstract

We provide a new and simple characterization of the multivariate generalized Laplace

distribution. In particular, this result implies that the product of a Gaussian matrix with

independent and identically distributed columns by an independent isotropic Gaussian

vector follows a symmetric multivariate generalized Laplace distribution.
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1. Introduction

Wishart and Bartlett (1932) proved that the inner product of two independent bidimensional
standard gaussian vectors follows a Laplace distribution. This result is deeply linked to the
fact that the Laplace distribution can be represented as an infinite scale mixture of Gaussians
with gamma mixing distribution. Specifically, if σ2 follows a Gamma(1, 1/2) distribution
and x|σ ∼ N (0, σ2), then x follows a standard Laplace distribution1. This representation –
which was recently named the Gauss-Laplace representation by Ding and Blitzstein (2017)
following a blog post by Christian P. Robert2 – is particularly useful if one wants to simulate
a Laplace random variable: its use constitutes for example the cornerstone of the Gibbs
sampling scheme for the Bayesian lasso of Park and Casella (2008).

In this short paper, we are interested in studying links between multivariate counterparts
of these two characterizations. More specifically, we give a new simple characterization of the
multivariate generalized Laplace distribution of Kotz, Kozubowski, and Podgórski (2001). As
a corollary, we show that the product of a zero-mean Gaussian matrix with in dependent and
identically distributed (i.i.d.) columns and a zero-mean isotropic Gaussian vector follows a
symmetric multivariate generalized Laplace distribution, a result that has useful applications
for Bayesian principal component analysis (Bouveyron, Latouche, and Mattei, 2016, 2017).

In the remainder of this paper, p and d are two positive integers and S+
p denotes the

cone of positive semidefinite matrices of size p× p.

2. The multivariate generalized Laplace distribution

While the definition of the univariate Laplace distribution is widely undisputed, there exist
several different generalizations of this distribution to higher dimensions – a comprehensive
review of such generalizations can be found in the monograph of Kotz, Kozubowski, and
Podgórski (2001). In particular, McGraw and Wagner (1968) introduced a zero-mean el-

1. The shape-rate parametrization of the gamma distribution is used through this paper. Note also that a
standard Laplace distribution is centered with variance two.

2. https://xianblog.wordpress.com/2015/10/14/gauss-to-laplace-transmutation/
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liptically contoured bidimensional Laplace distribution with univariate Laplace marginals.
This distribution was later generalized to the p-dimensional setting by Anderson (1992),
considering characteristic functions of the form

∀u ∈ R
p, φ(u) =

1

1 + 1
2u

TΣu
,

where Σ ∈ S+
p . This distribution was notably promoted by Eltoft, Kim, and Lee (2006) and

is arguably the most popular multivariate generalization of the Laplace distribution (Kotz,
Kozubowski, and Podgórski, 2001, p. 229). Among its advantages, this distribution can be
slightly generalized to model skewness, by building on characteristic functions of the form

∀u ∈ R
p, φ(u) =

1

1 + 1
2u

TΣu− iµTu
,

where µ ∈ R
p accounts for asymmetry. Similarly to the univariate Laplace distribution,

this asymmetric multivariate generalization is infinitely divisible (Kotz, Kozubowski, and
Podgórski, 2001, p. 256). Therefore, it can be associated with a specific Lévy process
(Kyprianou, 2014, p. 5), whose increments will follow yet another generalization of the
Laplace distribution, the multivariate generalized asymmetric Laplace distribution. This
distribution, introduced by Kotz, Kozubowski, and Podgórski (2001, p. 257) and further
studied by Kozubowski, Podgórski, and Rychlik (2013), will be the cornerstone of our anal-
ysis of multivariate caracterizations of Laplace and Gaussian distributions.

Definition 1 A random variable z ∈ R
p is said to have a multivariate generalized

asymmetric Laplace distribution with parameters s > 0,µ ∈ R
p and Σ ∈ S+

p if its
characteristic function is

∀u ∈ R
p, φGALp(Σ,µ,s)(u) =

(

1

1 + 1
2u

TΣu− iµTu

)s

.

It is denoted by z ∼ GALp(Σ,µ, s).

General properties of the generalized asymmetric Laplace distribution distribution are dis-
cussed by Kozubowski, Podgórski, and Rychlik (2013). We list here a few useful ones.

Proposition 2 Let s > 0,µ ∈ R
p and Σ ∈ S+

p . If z ∼ GALp(Σ,µ, s), we have E(z) = sµ

and Cov(z) = s(Σ+ µµT ). Moreover, if Σ is positive definite, the density of z is given by

∀x ∈ R
p, fz(x) =

2eµ
T
Σ

−1
x

(2π)p/2Γ(s)
√
detΣ

(

QΣ(x)

C(Σ,µ)

)s−p/2

Ks−p/2 (QΣ(x)C(Σ,µ)) ,

where QΣ(x) =
√
xTΣ−1x, C(Σ,µ) =

√

2 + µTΣ−1µ and Ks−p/2 is the modified Bessel
function of the second kind of order s− p/2.

Note that the GAL1(2b
2, 0, 1) case corresponds to a centered univariate Laplace distribution

with scale parameter b > 0. In the symmetric case (µ = 0) and when s = 1, we recover the
multivariate generalization of the Laplace distribution of Anderson (1992).

An appealing property of the multivariate generalized Laplace distribution is that it is
also endowed with a multivariate counterpart of the Gauss-Laplace representation.
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Theorem 3 (Generalized Gauss-Laplace representation) Let s > 0,µ ∈ R
p and Σ ∈

S+
p . If u ∼ Gamma(s, 1) and x ∼ N (0,Σ) is independent of u, we have

uµ+
√
ux ∼ GALp(Σ,µ, s). (1)

A proof of this result can be found in Kotz, Kozubowski, and Podgórski (2001, chap. 6).
This representation explains why the multivariate generalized Laplace distribution can also
be seen as a multivariate generalization of the variance-gamma distribution which is widely
used in the field of quantitative finance (Madan, Carr, and Chang, 1998). Infinite mixtures
similar to (1) are called variance-mean mixtures (Barndorff-Nielsen, Kent, and Sørensen,
1982) and are discussed for example by Yu (2017).

Another useful property of the multivariate generalized Laplace distribution is that,
under some conditions, it is closed under convolution.

Proposition 4 Let s1, s2 > 0,µ ∈ R
p and Σ ∈ S+

p . If z1 ∼ GALp(Σ,µ, s1) and z2 ∼
GALp(Σ,µ, s2) are independant random variables, then

z1 + z2 ∼ GALp(Σ,µ, s1 + s2). (2)

Proof Since z1 and z2 are independent, we have for all u ∈ R
p,

φz1+z2
(u) = φGALp(Σ,µ,s1)(u)φGALp(Σ,µ,s2)(u) =

(

1

1 + 1
2u

TΣu− iµTu

)s1+s2

which is the characteristic function of the GALp(Σ,µ, s1 + s2) distribution.

3. A new characterization involving a product between a Gaussian

matrix and a Gaussian vector

We now state our main theorem, which gives a new characterization of multivariate gener-
alized Laplace distributions with half-integer shape parameters.

Theorem 5 Let W be a p × d random matrix with i.i.d. columns following a N (0,Σ)
distribution, y ∼ N (0, Id) be a Gaussian vector independent from W and let µ ∈ R

p. We
have

Wy + ||y||22µ ∼ GALp(2Σ, 2µ, d/2). (3)

Proof For each k ∈ {1, ..., d} let wk be the k-th column of W, uk = y2k and ξk = ykwk+y2kµ.
To prove the theorem, we will prove that ξ1, ..., ξd follow a GAL distribution and use the
decomposition

Wy + ||y||22µ =

d
∑

k=1

ξk.

Let k ∈ {1, ..., d}. Since y is standard Gaussian, uk = y2k follows a χ2(1) distribu-
tion, or equivalently a Gamma(1/2, 1/2) distribution. Therefore, uk/2 ∼ Gamma(1/2, 1).
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Moreover, note that
√
ukwk = |yk|wk = yksign(yk)wk

d
= ykwk since |yk| and sign(yk) are

independent and sign(yk)wk
d
= wk. Therefore, according to the generalized Gauss-Laplace

representation, we have

ξk
d
=

√

uk
2

√
2wk +

uk
2
2µ ∼ GALp(2Σ, 2µ, 1/2).

Since ξ1, ..., ξd are i.i.d. and following a GALp(2Σ, 2µ, 1/2) distribution, we can use
Proposition 4 to conclude that

Wy + ||y||22µ =
d
∑

k=1

ξk ∼ GALp(2Σ, 2µ, d/2).

In the symmetric case (µ = 0), this result gives the distribution of the product between
a Gaussian matrix with i.i.d. columns and a isotropic Gaussian vector.

Corollary 6 Let W be a p × d random matrix with i.i.d. columns following a N (0,Σ)
distribution and let y ∼ N (0, αId) be a Gaussian vector independent from W. Then

Wy ∼ GALp(2αΣ, 0, d/2). (4)

Moreover, if u is a standard Gamma variable with shape parameter d/2 and if x ∼ N (0, 2αΣ)
is a Gaussian vector independent of u, then

Wy
d
=

√
ux. (5)

Less general versions of Theorem 5 have been proven in the past, dating back to the
derivation of the inner product of two i.i.d. standard Gaussian vectors by Wishart and
Bartlett (1932). In particular, the unidimensional case (p = 1) was recently proven by
Gaunt (2014) in order to obtain bounds for the convergence rate of random sums involving
Gaussian products. The multivariate symmetric isotropic case (µ = 0 and Σ proportional to
Ip) was proven by Bouveyron, Latouche, and Mattei (2016) in order to derive the marginal
likelihood of the noiseless probabilistic principal component analysis model of Roweis (1998).
While the proof of Bouveyron, Latouche, and Mattei (2016) relied on characteristic functions
and the properties of Bessel functions, the proof that we presented here is closer in spirit to
the one of Gaunt (2014), based on representations of distributions.

4. Perspectives

The new characterization presented in this paper may notably prove useful in two contexts.

First, it indicates a new way of handling situations involving the product of a Gaus-
sian matrix and a Gaussian vector. An important instance is the Bayesian factor analysis
model (Lopes and West, 2004), of which principal component analysis is a particular case.
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In this framework, the marginal distribution of the data, which is essential for model se-
lection purposes, can be derived using representation (5) together with the Gauss-Laplace
representation (Bouveyron, Latouche, and Mattei, 2016, 2017).

Moreover, our characterization offers a means to get around problems encountered when
dealing with distributions related to the GAL distribution. For example, representation (3)
might lead to alternative estimation strategies for some problems related to portfolio alloca-
tion (Mencía and Sentana, 2009; Breymann and Lüthi, 2013) or cluster analysis (McNicholas,
McNicholas, and Browne, 2013; Franczak, Browne, and McNicholas, 2014).
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