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Abstract

In the Spy game, a spy is placed first at some vertex of a graph G. Then, k > 0 guards are
also occupying some vertices of G. At each turn, the spy moves at speed s ≥ 2, i.e., along at
most s edges and then, each guard moves at speed 1. The spy and any number of guards may
occupy the same vertex. The goal of the guards is to control the spy at distance d ≥ 0, i.e., to
ensure that, at every turn (after the guards’ moves), at least one guard is at distance at most d
from the spy, whatever be the strategy of the spy. We aim at determining a winning strategy
for the guards using the smallest number of guards, denoted by gns,d(G) and called the guard
number of G (for fixed s and d).

In this paper, we study the Spy game through the framework of fractional games, where
each vertex can have a fractional amount of guards and the moves of the guards are modeled
by flows. This framework allows us to prove that gns,d(T ) and a corresponding strategy for the
guards can be computed in polynomial-time in the class of trees T . This algorithm is mainly
based on a Linear Program. Using this framework, we also prove that there exists 1 > β > 0,
such that gns,d(G) = Ω(n1+β) in any n×n grid (or torus) G. This extends some known results
on the Eternal Dominating Set in grids. Finally, we prove that there exists 0 < α < log(3/2)
such that there exists a fractional winning strategy using O(n2−α) fractional guards in any n×n
grid (or torus), for any s ≥ 2 and d ≥ 0. Note that, it is only known that gns,d(G) = O(n2) in
any n× n grid (or torus).

Besides our results, we believe that the methods using fractional relaxation and Linear
Programming are a promising way to better understand other combinatorial games in graphs.

Keywords: Cops and Robber games, Graphs, Linear Programming

1 Introduction

Many turn-by-turn 2-player games involve mobile agents moving in a graph to achieve some
goals. A famous one is the Cops and Robber game in which a team of cops aims at capturing
a robber in a graph [14, 13, 4]. In this game, k ∈ N cops are first placed at the vertices of a
graph G = (V,E), then one robber is placed at one vertex. Turn-by-turn, each cop may move
along one edge, and then, the robber may move along one edge. The main question is, given a

∗This work has been partially supported by ANR project Stint under reference ANR-13-BS02-0007, ANR program
“Investments for the Future” under reference ANR-11- LABX-0031-01, the associated Inria team AlDyNet. Part of
the results of this paper (Section 5.1) have been presented in [7].
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graph G, what is the minimum number k of cops, denoted by cn(G) (for cop-number), required
to capture the robber in G, i.e., to ensure that one cop eventually reaches the same vertex as
the robber. In 1985, Meyniel conjectured that cn(G) = O(

√
n) for any graph with n vertices [4].

In 2001, Schröder conjectured that cn(G) ≤ g + 3 for every graph with genus at most g [15].
Both conjectures are still open.

Meyniel’s conjecture has been proved in many graph classes [4]. In particular, it has been
proved that cn(G) ≤ b 3

2gc+ 3 for any graph with genus at most g [15]. Moreover, it is easy to
check that cn(Gn×m) ≤ 2 for any n×m grid Gn×m. It has also been proved that cn(G) ≤ 3 for
any planar graph G (i.e., of genus 0) [1]. Note, however, that it is not known whether cn(G) ≤ 3
for any graph G of genus 1.

To try to prove these conjectures, new variants of Cops and Robber games have been studied.
In [9, 6], the Robber is faster, i.e., it can move along more than one edge at each turn. This
variant seems to be very different from the original one (when the Robber has speed 1): the
number of cops required to capture a robber with speed 2 in a grid Gn×n is eΩ(logn/ log logn) but
is still not known [2]. Another variant is the Cops and Robber with radius of capture. In this
variant, all cops and the robber have speed one, and the goal of the cops is to reach a vertex at
distance at most r ≥ 0 from the robber (r is the radius of capture) [3]. It is interesting to note
that Meyniel’s conjecture extends to both the variants with speed or with radius.

1.1 Spy game

Recently, [7] defined and studied a new game, called Spy game, related to Cops and robber
games. In this game, the spy is first placed at some vertex of a graph G = (V,E). Then, k ∈ N
guards are placed at the vertices of G. Turn-by-turn, the spy may move along at most s ≥ 1
edges, and then each cop may move along one edge. The goal of the game is to minimize the
number of guards, called guard-number and denoted by gns,d(G), ensuring that, at every step
after the guards’ turn, the spy is at distance at most d ≥ 0 from at least one guard (we say that
the spy is controlled at distance d). It has been shown that, for every d ≥ 0 and s ≥ 2, computing
gns,d(G) is NP-hard in a subclass of chordal graphs (precisely, graphs obtained from a clique
and some paths, where one end of each path is connected to some vertices of the clique) [7].
The guard-number of paths is also characterized and almost tight lower and upper bounds are
given in the case of cycles [7].

In this paper, we are considering the Spy game in trees and grids. All our results are based
on a fractional relaxation of the game, which seems to be interesting by itself.

1.2 Eternal Dominating Set

The Spy game generalizes the Eternal dominating set Problem [11]. In the latter game, a team
of mobile agents is occupying some vertices of a graph. At every turn, each of the agents is
allowed to move to one of its neighbors or may stay idle (note that, in the original variant, only
one agent was allowed to move at each turn [5]). The objective of the game is that, for any
infinite sequence (v1, v2, · · · ) of vertices, at the end of turn i, the vertex vi is occupied. In other
words, the agents must always occupy a dominating set D, such that, for any vertex v /∈ D,
the agents can move to another dominating set containing v. The minimum number of agents
ensuring to win the game in a graph G is denoted by γm(G). It is easy to see that the Eternal
dominating set problem is equivalent to the Spy game when the spy is arbitrarily fast and for
d = 0, i.e., γm(G) = gns,0(G) for any s which is at least the diameter of the graph.

Eternal dominating set has been investigated in many graph classes. In grids, only few cases
are known: for instance, 1 + d4n/5e ≤ γm(G) ≤ 2 + d4n/5e in 3 ∗ n grids [8]. Our results
provide new lower bounds for γm(G) in any n×n grid G. In the class of trees T , γm(T ) can be
computed in polynomial-time [12]. The key property in their algorithm is that, for maintaining
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an Eternal dominating set in trees, it is sufficient to assign some area to each guard (roughly,
two guards are responsible of a set of leaves adjacent to a common vertex). This property also
holds for the Spy game (for any s ≥ 2 and d ≥ 0) in the class of paths where it has been proved
that there is always an optimal solution where the guards are assigned disjoint subpaths. This
property does not hold anymore for the Spy game (for any s ≥ 2 and d > 0) in the class of
trees as illustrated in the following example1. Roughly, this example illustrates the fact that,
in trees, an optimal strategy for the guards cannot be obtained by dividing the tree into small
subgraphs and assigning a constant number of guards to each part.

We present an example in the case s = 2 and d = 1 but it can be generalized to any s ≥ 2
and d > 0. Let S be the tree obtained from a star with three leaves by subdividing each edge
exactly twice (i.e., S has 10 vertices). Let (Si)i≤k be k disjoint copies of S and let ci be the
unique vertex of degree 3 of Si. Finally, let T be the tree obtained by adding one vertex c and
making it adjacent to every ci, i ≤ k. It can be shown that gn2,1(T ) = k+ 1 and that, when the
spy is in c, the guards have to occupy the vertices c, c1, · · · , ck. For any i ≤ k and any non-leaf
vertex v ∈ V (T ), there is a strategy of the spy that brings the guard initially at ci to v. For
this purpose, let j 6= i be such that v ∈ V (Sj). The spy first goes (at full speed) to a leaf of
Si, then to another leaf of Si, then it goes to a leaf of Sj that is not adjacent to v and finally
the spy goes to the leaf of Sj that is adjacent to v. It can be checked that the guard that was
initially at ci must occupy v.

Part of this work is devoted to prove that, in trees, there always exists an optimal strategy
with some other useful property (called spy-positional) that will allow us to derive a polynomial-
time algorithm for computing gns,d and designing optimal strategies, hence extending previous
work with d = 0 to any d ≥ 0.

1.3 Our results

In this paper, we consider the Spy game in the class of trees and grids. We prove that the guard
number of any tree can be computed in polynomial-time and give non-trivial bounds on the
guard number of grids. For this purpose, we develop a new method to analyze two-player games
in graphs based on Linear Programming.

In the framework of fractional games, introduced in [10], the mobile agents are not integral
entities anymore. Roughly, each vertex v ∈ V of a graph G = (V,E) can be occupied by
an amount gv ∈ R+ of agents. Then, the total amount of mobile agents is

∑
v∈V gv ∈ R+.

Then, the moves of the agents are represented by some flow along the arcs. That is, at every
turn, every vertex v sends some flow fvu ∈ R+ to each of its neighbors u ∈ N(v), given that∑
u∈N(v) fvu ≤ gv, i.e., a vertex cannot send more than what it had.
Here, we adapt the Spy game to this framework. Roughly, the spy remains an integral entity

(i.e., the rules do not change for the spy) while the guards are relaxed into fractional ones. The
winning condition for the guards becomes that, at every turn, there must be a total amount of at
least 1 guard in the ball of radius d around the position of the spy. The fractional guard number
fgns,d(G) is the minimum total amount of fractional guards needed to control a spy with speed
s at distance d. Since the fractional Spy game is a relaxation of the Spy game (roughly, the
guards are more powerful), for any graph G, fgns,d(G) ≤ gns,d(G).

Our contribution is twofold: for every s ≥ 2 and d ≥ 0:

• We prove that there exists a Linear Program for computing fgns,d(T ) and a corresponding
strategy in the class of trees T . Moreover, such a Linear Program has size polynomial in
the size of T and thus, runs in polynomial-time. Then, we show that any fractional strategy
(winning for the guards) using k guards in a tree can be turned into a winning (integral)
strategy using bkc guards. Altogether, this shows that, in any tree T , fgns,d(T ) = gns,d(T ),

1Thank you to Rudini Sampaio and Nicolas Martins for pointing out this example.
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and that gns,d(T ) and a corresponding winning strategy can be computed in polynomial-
time.

• Then, we show that there is a constant 0 < β < 1 such that, for any n × n grid Gn×n,
Ω(n1+β) = fgns,d(Gn×n) ≤ gns,d(Gn×n). This gives the first non trivial lower bound for
the guard number (and also for γm) in the class of grids. Finally, we show that there exists
a constant 0 < α ≤ log(3/2) < 1 such that fgns,d(Gn×n) = O(n2−α). Note that, the best
known upper bound for gns,d(Gn×n) is O(n2). The same bounds hold for the n× n torus.

Finally, we believe that the methods using Linear Programming used in this paper are a
promising way to better understand other combinatorial games in graphs.

2 Model and definitions

In this paper, all graphs are simple (without loops nor multi-edges), connected, and undirected.
For any vertex v ∈ V in a graph G = (V,E), let N(v) denote the set of neighbors of v and
N [v] = N(v) ∪ {v}. Moreover, for any integer s ≥ 0 and vertex v ∈ V , let Ns[v] be the set of
vertices at distance at most s from v.

Spy game. Let s ≥ 2, d ≥ 0, and k > 0 be three integers. The Spy game in a graph
G = (V,E) proceeds as follows. First, the spy is placed at a vertex. Then, the k guards are
placed at some vertices. Possibly, one vertex may be occupied by several guards, and the guards
and the spy may occupy the same vertex. Then, turn-by-turn, the spy first moves to any vertex
at distance at most s from its current position (possibly, it may stay idle), and then each guard
may move along one edge. The guards win if they ensure that, at every step, at least one guard
is at distance at most d from the spy (after the guards’ moves). Otherwise, the spy wins.

The parameter s is called the speed of the spy. Moreover, if there is a guard at distance at
most d from the spy, we say that the guards control the spy at distance d. In what follows, let
gns,d(G) denote the minimum number of guards needed to always control at distance d a spy
with speed s in a graph G.

Spy-positional strategies. A strategy for the guards is a function describing the moves
of the guards at every step. A strategy is winning if it allows the guards to perpetually control
the spy. It is easy to show that there is always an optimal winning strategy (using the minimum
number of guards) which is positional, i.e. such that the next move is only determined by the
current position of both the spy and the guards, and not by the history of the game2. In other
words, there is always an optimal winning strategy which is a function that takes the current
positions of the spy and of the guards and returns the new positions of the guards (and so, their
moves).

In this paper, we will also consider more constrained strategies. A winning strategy is said
to be Spy-positional if it depends only on the position of the spy. That is, in a spy-positional
strategy σ, the positions of the guards are only determined by the position of the spy. In
particular, every time the spy occupies some vertex v, the set of vertices occupied by the guards
is defined by some function σv : V (G) → N such that, for every u ∈ V , σv(u) is the number of
guards occupying u when the spy is occupying v. It is important to note that, in a spy-positional
strategy, it is not required that the same guards occupy the same vertices when the spy is at
some vertex. That is, assume that, at some step, the spy occupies some vertex v, some guard A
occupies a vertex a and a guard B occupies a vertex b. It may happen that, after some steps,
the spy goes back to v and now Guard A is at b and Guard B is at a (however, the set of vertices
occupied by the guards is the same). The example presented in Section 1.2 illustrates this fact.

2That can be easily shown by considering the configurations’ graph of the game.
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Fractional Spy game. In this paper, we will repeatedly use a fractional relaxation of the
spy game, in which the guards are no longer integral entities. More formally, the fractional
game proceeds as follows in a graph G = (V,E) and for parameters s ≥ 2, d ≥ 0 (two integers)
and a positive real k ∈ R+∗. First, the spy is placed at a vertex. Then, each vertex v receives
some amount gv ∈ R+ (a non negative real) of guards such that the total amount

∑
v∈V gv = k.

Then, turn-by-turn, the spy may first move at distance at most s from its current position.
Then, the moves of the ”fractional” guards are defined as a flow. That is, for any vertex v ∈ V ,
and for any vertex u ∈ N [v], let f(v, u) ∈ R+ be the amount of guards going from v to u ∈ N [v].
We impose that

∑
u∈N [v] f(v, u) ≤ gv, i.e., the amount of guards leaving v is no more than what

was at v. Finally, for any vertex v ∈ V , the amount of guards occupying v after the move is
g′v =

∑
u∈N [v] f(u, v).

Let fgns,d(G) denote the minimum total amount of (fractional) guards needed to always
control at distance d a spy with speed s in a graph G. Finally, let fgn∗s,d(G) be the minimum
total amount of (fractional) guards needed to always control at distance d a spy with speed s
in a graph G, when the guards are constrained to play spy-positional strategies.

By definition,

Claim 1. For any graph G and any s ≥ 2, d ≥ 0,

fgns,d(G) ≤ min{fgn∗s,d(G), gns,d(G)}.

3 Spy-positional fractional strategies in general graphs

This section is devoted to present a polynomial-time algorithm that computes optimal spy-
positional fractional strategies in general graphs. Here, optimal means using the minimum total
amount of guards with the extra constraint that guards are restricted to play spy-positional
strategies. In other words, we prove that, for any graph G, s ≥ 2, and d ≥ 0, fgn∗s,d(G) and a
corresponding strategy can be computed in polynomial time.

We prove this result by describing a Linear Program with polynomial size that computes
such strategies. In Section 4, we will show that in any tree T , gns,d(T ) = fgn∗s,d(T ). More
precisely, we will show that in trees, the Linear Program below can be used to compute optimal
(integral) strategies in polynomial time. Let us now describe the Linear Program.

Variables. Let G = (V,E) be a connected n-node graph. Recall that a spy-positional strat-
egy is defined by, for each position of the spy, the amount of guards that must occupy each
vertex. Therefore, for any two vertices u, v ∈ V , let gu,v ∈ R+ be the non negative real variable
representing the amount of guards occupying vertex v when the spy is at vertex u.

Moreover, for any x ∈ V , y ∈ Ns[x] and for any u ∈ V and v ∈ N [u], let fx,y,u,v ∈ R+ be the
non negative real variable representing the amount of guards going from vertex u to v ∈ N [u]
when the spy goes from x to y ∈ Ns[x].

Finally, a variable k will represent the total amount of guards.
Overall, there are (|E|+ 1)n2 = O(n4) real variables.
Note that they fully describe a strategy, since g encodes a distribution of cops for every

position of the spy and f describes a feasible transition between two successive distributions.

Objective function. We aim at minimizing the total amount of guards.

Minimize k (1)
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Constraints. The first family of constraints states that, for every position v ∈ V of the spy,
the total amount of guards is at most k.

∀v ∈ V,
∑
w∈V

gv,w ≤ k (2)

The second family of constraints states that, for every position v ∈ V of the spy, the amount
of guards at distance at most d from the spy is at least 1, i.e., the guards always control the spy
at distance d.

∀v ∈ V,
∑

w∈Nd[v]

gv,w ≥ 1 (3)

The third family of constraints states that, for any move of the spy (from x to y ∈ Ns[x]),
the corresponding moves of the guards ensure that the amount of guards leaving a vertex v ∈ V
plus what remains at v equals the amount of guards that was at v before the move.

∀x ∈ V , y ∈ Ns[x], v ∈ V ,
∑

w∈N [v]

fx,y,v,w = gx,v (4)

The fourth family of constraints states that, for any move of the spy (from x to y ∈ Ns[x]),
the corresponding moves of the guards ensure that the amount of guards that are at a vertex
w ∈ V after the moves equals the amount of guards arriving in w plus what remains at w.

∀x ∈ V , y ∈ Ns[x], w ∈ V ,
∑

v∈N [w]

fx,y,v,w = gy,w (5)

Finally, the last family of constraints expresses the definition domain of the variables:

k ≥ 0 (6)

∀u, v ∈ V , gu,v ≥ 0 (7)

∀x ∈ V , y ∈ Ns[x], v ∈ V , w ∈ N [v], fx,y,v,w ≥ 0 (8)

There are O(n4) constraints and the above Linear Program has polynomial size and clearly
computes an optimal spy-positional fractional strategy. Hence:

Theorem 2. For any connected graph G, and any two integers s ≥ 2 and d ≥ 0, the above
Linear Program computes fgn∗s,d(G) and a corresponding (spy-positional) strategy in polynomial
time.

4 Spy game is Polynomial in Trees

This section is devoted to prove that, in any tree T and for any s ≥ 2, d ≥ 0, gns,d(T ) =
fgn∗s,d(T ). Therefore, using the Linear Program of Section 3, we prove that computing gns,d(T )
can be done in polynomial time in trees.

The proof is twofold. First, we prove that gns,d(T ) = fgns,d(T ) for any s ≥ 2 and d ≥ 0
(i.e., the integral gap is null in trees), and then that fgns,d(T ) = fgn∗s,d(T ).
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Representation of strategies. Let G = (V,E) be a graph, s ≥ 2 and d ≥ 0 be two
integers. Let V = {v1, · · · , vn}. A winning strategy σ using k ∈ R+ guards is defined as a set
σ = {Cv}v∈V of sets of configurations. That is, for any v ∈ V (a possible position for the spy),
Cv is a non-empty set of functions, called configurations, that represent the possible positions of
the guards when the spy is at v. More precisely, any ω ∈ Cv is a function ω : V → R+, where
ω(u) ∈ R+ represents the amount of guards at vertex u ∈ V , that must satisfy

∑
u∈V ω(u) = k

and
∑
u∈Nd[v] ω(u) ≥ 1. Finally, for any v ∈ V , any ω ∈ Cv, and any v′ ∈ Ns[v], there must

exist ω′ ∈ Cv′ such that the guards can go from ω to ω′ in one step (i.e., a valid flow from ω to
ω′ must exist).

A strategy is integral if k ∈ N+, every of its configurations is a function V → N, and every
move is an integral flow.

The size of a strategy is the number of different configurations necessary to describe the
strategy. Note that, if the strategy is not spy-positional, a same position for the spy may
correspond to different positions of the guards. Therefore, the size of an integral strategy using
k guards in an n-node graph is O(nk). Moreover, the size of a fractional strategy is a priori
unbounded. However, any (fractional or integral) spy-positional strategy has size O(n) (|Cv| = 1
for every v ∈ V ).

Theorem 3. For any tree T and for any s ≥ 2, d ≥ 0, gns,d(T ) = fgns,d(T ). More precisely,
any fractional winning strategy using a total amount of k ∈ R+ guards can be transformed into
an integral winning strategy using bkc guards. Moreover, such a transformation can be done in
polynomial time in the size of the fractional strategy.

Proof. Let σ = {Cv}v∈V be any fractional winning strategy using a total amount of k ∈ R+

guards to control a spy with speed s ≥ 2, at distance d ≥ 0, and in an n-node tree T = (V,E).
For any configuration ω of σ, we will define an integral configuration ωr (which we call a

rounding of ω) using bkc guards, such that if the spy is controlled in ω then it is also controlled
in ωr. Moreover, for any two configurations ω1 and ω2 such that there is a feasible flow from ω1

to ω2, we show that there is feasible integral flow from ωr1 to ωr2. Altogether, this shows that
the strategy σr obtained by rounding all configurations of σ is a winning integral strategy using
bkc guards, which proves the theorem.

From now on, let us consider T to be rooted at some vertex r ∈ V .
Let us consider any configuration ω : V → R+. We first need some notations. Let ω(T ) =∑
v∈V ω(v) and let cont(T, ω) = {u ∈ V :

∑
v∈Nd[u] ω(v) ≥ 1} (i.e., cont(T, ω) is the set of

vertices u such that the spy on u is controlled at distance d by the guards in the configuration
ω). For any vertex u, let Tu be the subtree of T rooted in u (i.e., the subtree that consists of
u and all its descendants). Let ω+(u) =

∑
v∈V (Tu) ω(v). By definition, ω+(u) ≥ ω(u) for every

u ∈ V and ω+(r) =
∑
u∈V ω(u) = ω(T ).

For x ∈ R, let {x} denote the fractional part of x, i.e. {x} = x− bxc.
Let us define the rounded function ωr : V 7→ N as, for every u ∈ V ,

ωr(u) = bω(u) +
∑

v child of u

{ω+(v)}c

Intuitively, the fractional part of guards that are in each of the subtrees rooted in the children
of u is “pushed” to u. Then u “keeps” only the integral part of the sum of what it had plus
what it received from its children.

Claim 4. For any configuration ω : V (T )→ R+, ωr(T ) = bω(T )c ≤ ω(T )

Proof of the claim. The proof is by induction on |V |. It clearly holds if |V | = 1. Let T1, . . . , Th
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be the subtrees of T\r rooted in the children of r. By definition,

ωr(T ) =ωr(r) +
∑

1≤i≤h

ωr(Ti)

=bω(r) +
∑

1≤i≤h

{ω(Ti)}c+
∑

1≤i≤h

ωr(Ti)

By induction, wr(Ti) = bω(Ti)c for every 1 ≤ i ≤ h, and so:

ωr(T ) =bω(r) +
∑

1≤i≤h

{ω(Ti)}c+
∑

1≤i≤h

bω(Ti)c

=bω(r) +
∑

1≤i≤h

ω(Ti)c

=bω(T )c

�

Therefore, Claim 4 proves that rounding a configuration using k guards provides an integral
configuration using bkc guards.

Claim 5. For any configuration ω : V (T )→ R+, cont(T, ω) ⊆ cont(T, ωr)

Proof of the claim. Let u ∈ cont(T, ω). By definition,
∑
v∈Nd[u] ω(v) ≥ 1. Let r′ be the vertex

in Nd[u] that is closest to the root r, and let T ′ be the subtree of T rooted in r′. Finally, let
T ′1, · · · , T ′h be the subtrees of T ′ \Nd[u]. By Claim 4, ωr(T ′) = bω(T ′)c and ωr(T ′i ) = bω(T ′i )c
for any 1 ≤ i ≤ h. Hence,

ωr(T ′) =
∑

v∈Nd[u]

ωr(v) +
∑

1≤i≤h

ωr(T ′i ) =
∑

v∈Nd[u]

ωr(v) +
∑

1≤i≤h

bω(T ′i )c

and,

ωr(T ′) = bω(T ′)c =

 ∑
v∈Nd[u]

ω(v) +
∑

1≤i≤h

ω(T ′i )


Since

∑
v∈Nd[u] ω(v) ≥ 1, it follows that ∑
v∈Nd[u]

ω(v) +
∑

1≤i≤h

ω(T ′i )

 ≥ 1 +

 ∑
1≤i≤h

ω(T ′i )

 ≥ 1 +
∑

1≤i≤h

bω(T ′i )c

Altogether, 1 +
∑

1≤i≤hbω(T ′i )c ≤ ωr(T ′) =
∑
v∈Nd[u] ω

r(v) +
∑

1≤i≤hbω(T ′i )c. Therefore,∑
v∈Nd[u] ω

r(v) ≥ 1 and u ∈ cont(T, ωr). �

Claim 5 proves that every position of the spy that is controlled by the guards in a configu-
ration ω is also controlled by the guards in the configuration ωr.

Claim 6. Let ω1, ω2 : V (T ) 7→ R+ be two configurations such that the guards can go from ω1

to ω2 in one step (there is feasible flow from ω1 to ω2). Then, the guards can go from ωr1 to ωr2
in one step (there is feasible integral flow from ωr1 to ωr2).
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Proof of the claim. The proof is by induction on ωr1(T ) = ωr2(T ), the result being trivial when
it is null. Let f be the flow representing the move of the guards from ω1 to ω2. Note that we
may assume that, for every u, v ∈ V , at most one of f(u, v) and f(v, u) is non-null.

Among all vertices v ∈ V such that ω1(Tv) ≥ 1 or ω2(Tv) ≥ 1, let x be a lowest one (such
a vertex furthest from the root). By symmetry (there is a feasible flow from ω1 to ω2 if and
only if there is a feasible flow from ω2 to ω1), up to exchanging ω1 and ω2, we may assume
that ω1(Tx) ≥ 1. Note that, by minimality of x, for every descendant u ∈ V (Tx) \ {x} of x,
ω1(Tu) < 1 and ω2(Tu) < 1.

Now, let γ1 be the function defined by γ1(x) = ω1(Tx)− 1, γ1(u) = 0 for every descendant u
of x, and γ1(v) = ω1(v) for every v ∈ V \ V (Tx). Note that γr1(v) = ωr1(v) for every v ∈ V \ {x}
and γr1(x) = ωr1(x)− 1. Now, there are two cases to be considered.

• First, assume that ω2(Tx) ≥ 1. In this case, let γ2 be the function defined by γ2(x) =
ω2(Tx)−1, γ2(u) = 0 for every descendant u of x, and γ2(v) = ω2(v) for every v ∈ V \V (Tx).
Note that there is a feasible flow f ′ from γ1 to γ2: for any u, v ∈ V (Tx), f ′(u, v) = 0 and
for any u ∈ V , v ∈ V \ V (Tx), f ′(u, v) = f(u, v). Note also that γr2(v) = ωr2(v) for every
v ∈ V \ {x} and γr2(x) = ωr2(x)− 1.
By induction (since γr1(T ) = γr2(T ) = ωr1(T ) − 1), there is a feasible integral flow f∗ from
γr1 to γr2 . Since ωr1 (resp., ωr2) is obtained from γr1 (resp., γr2) by adding 1 guard in x, this
flow f∗ is also a feasible integral flow from ωr1 to ωr2.

• Second, ω2(Tx) < 1. Let p be the parent of x (x cannot be the root since ωr2(T ) ≥ 1). Note
that, because there is flow from ω1 to ω2, then ω2(p) + ω2(Tx) ≥ ω1(Tx) ≥ 1.
In this case, let γ2 be the function defined by γ2(u) = 0 for every u ∈ V (Tx), γ2(v) = ω2(v)
for every v ∈ V \ (V (Tx) ∪ {p}) and γ2(p) = ω2(p) + ω2(Tx)− 1 ≥ 0.
Note that there is a feasible flow f ′ from γ1 to γ2: for any u, v ∈ V (Tx), f ′(u, v) = 0, for
any u, v ∈ V \V (Tx), f ′(u, v) = f(u, v), and f ′(x, p) = γ1(x). Note also that γr2(v) = ωr2(v)
for every v ∈ V \ {p} and γr2(p) = ωr2(p)− 1.
By induction (since γr1(T ) = γr2(T ) = ωr1(T ) − 1), there is a feasible integral flow f∗ from
γr1 to γr2 . Since ωr1 (resp., ωr2) is obtained from γr1 (resp., γr2) by adding 1 guard in x (resp.,
in p), there is a feasible integral flow from ωr1 to ωr2 that can be obtained from f∗ by adding
to it one unit of flow from x to p.

�

Claim 6 shows that the moves that were valid in σ still hold in the “rounded” strategy. This
concludes the proof of the theorem.

The second step in this section is to show that there is always an optimal fractional strategy
which is spy-positional. For this purpose, we prove the following theorem.

Theorem 7. For any tree T and for any s ≥ 2, d ≥ 0, fgn∗s,d(T ) = fgns,d(T ). More precisely,

any fractional winning strategy using a total amount of k ∈ R+ guards can be transformed into
a spy-positional winning strategy using k guards.

Proof. Let σ = {Cv}v∈V be any fractional winning strategy using a total amount of k ∈ R+

guards to control a spy with speed s ≥ 2, at distance d ≥ 0, and in an n-node tree T = (V,E).
Recall that, for any vertex v ∈ V , Cv is the set of possible configurations ω : V → R+ for the
guards when the spy is at v.

Intuitively, the proof consists in defining a spy-positional strategy σmin as follows. For any
v ∈ V , we will define the function ωminv : V → R+ to be the (unique) configuration of σmin when
the spy is at v, i.e., σmin = {{ωminv }v∈V }. We first prove that the spy at v ∈ V is controlled at
distance d by the guards in the configuration ωminv . Then, we prove that, for any move of the
spy from v to v′ ∈ V , the guards can move from ωminv to ωminv′ .

From now on, T is rooted in an arbitrary vertex r ∈ V . For every u ∈ V , let Tu be the
subtree of T rooted in u and let Children(u) be the set of children of u.
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Let us first define ωminv : V → R+ for every v ∈ V . For any weight function ω : V → R+,
let ω+ : V → R+ be the cumulative function of ω, defined by, for every u ∈ V , ω+(u) =∑
v∈V (Tu) ω(v).

Let v ∈ V and Cv = {ω1, · · · , ωh} ∈ σ be the set of configurations of the guards, when the
spy is in v. Let αv : V → R+ be such that, for every u ∈ V ,

αv(u) = min
1≤i≤h

ω+
i (u)

Now, ωminv is defined as the (unique) function such that α is its cumulative function. For-
mally, for every u ∈ V :

ωminv (u) = αv(u)−
∑

w∈Children(u)

αv(w)

Claim 8. For every u ∈ V , ωminv (u) ≥ 0.

Proof of the claim. Let 1 ≤ i ≤ h be an integer such that αv(u) = min1≤j≤h ω
+
j (u) = ω+

i (u).

By definition of αv, for every w ∈ Children(u), αv(w) = min1≤j≤h ω
+
j (w) ≥ ω+

i (w). Hence,

ωminv (u) ≥ ω+
i (u)−

∑
w∈Children(u) ω

+
i (w) = ωi(u) ≥ 0. �

Claim 8 proves that, for every v ∈ V , ωminv : V → R+ is a configuration.

Claim 9. For every v ∈ V ,
∑
u∈V ω

min
v (u) = k.

Proof of the claim. For every 1 ≤ i ≤ h, ω+
i (r) = k. Hence, αv(r) = min1≤i≤h ω

+
i (r) = k.∑

u∈V ω
min
v (u) = (ωminv )+(r) = αv(r) = k (since αv is the cumulative function of ωminv ). �

Claim 9 proves that, for every v ∈ V , the configuration ωminv uses k guards.

Claim 10. For every v ∈ V ,
∑
u∈Nd[v] ω

min
v (u) ≥ 1.

Proof of the claim. Let v∗ be the vertex of Nd[v] that is closest to the root r. Let v1, · · · , vp
be the descendants of v∗ that are at distance exactly d + 1 from v. Since αv is the cumulative
function of ωminv , we have that

∑
u∈Nd[v] ω

min
v (u) = αv(v

∗)−
∑

1≤j≤p αv(vj).

Let 1 ≤ i ≤ h be an integer such that αv(v
∗) = min1≤j≤h ω

+
j (v∗) = ω+

i (v∗).
Since the guards in configuration ωi control the spy in v at distance d, we have that∑
u∈Nd[v] ωi(u) = ω+

i (v∗)−
∑

1≤j≤p ω
+
i (vj) ≥ 1. Hence,∑

u∈Nd[v]

ωminv (u) =αv(v
∗)−

∑
1≤j≤p

αv(vj)

=ω+
i (v∗)−

∑
1≤j≤p

min
1≤j′≤h

ω+
j′(vj)

≥ω+
i (v∗)−

∑
1≤j≤p

ω+
i (vj) ≥ 1

�

Claim 10 proves that the guards in the configuration ωminv control a spy located at v.

Claim 11. For every v ∈ V and v′ ∈ Ns(v), there is a feasible flow from ωminv to ωminv′ .

Proof of the claim. Let Cv = {ω1, · · · , ωh} ∈ σ (the configurations of σ when the spy is at v)
and Cv′ = {ω′1, · · · , ω′h′} ∈ σ (the configurations of σ when the spy is at v′). Since σ is a winning
strategy, it means that, for every 1 ≤ i ≤ h, there is 1 ≤ δ(i) ≤ h′, such that there is a feasible
flow from ωi ∈ Cv to ω′δ(i) ∈ Cv′ . That is, there is a function f i : V × V → R+ such that, for
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every u ∈ V , ω′δ(i)(u) = ωi(u) +
∑
w∈N(u)(f

i(w, u) − f i(u,w)) and
∑
w∈N(u) f

i(u,w) ≤ ωi(u).

Note that, such a function f i can be defined as, for every u ∈ V and p ∈ V , the parent of u in T
rooted in r (if u 6= r), f i(u, p) = max{ωi(u)−ω′δ(i)(u), 0} and f i(p, u) = max{ω′δ(i)(u)−ωi(u), 0}.

Let u ∈ V , X ⊆ Children(u) be any subset of the children of u, and 1 ≤ i ≤ h. Because of
the existence of the flow f i,

∑
w∈X(ω′δ(i))

+(w) ≤ ωi(u) +
∑
w∈X ω

+
i (w), hence:

ω+
i (u) = ωi(u)+

∑
w∈X

ω+
i (w)+

∑
w∈Children(u)\X

ω+
i (w) ≥

∑
w∈X

(ω′δ(i))
+(w)+

∑
w∈Children(u)\X

ω+
i (w)

and so, since for every w ∈ V , αv′(w) = min1≤j≤h′ ω
′
j(w) and αv(w) = min1≤j≤h ωj(w):

ω+
i (u) ≥

∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

The above inequality holds for every 1 ≤ i ≤ h. Since αv(u) = min1≤i≤h ω
+
i (u), it follows

that:

αv(u) ≥
∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

By similar arguments (because, by symmetry, there is a flow from ω′j to some ωj′ for every
1 ≤ j ≤ h′), we get

αv′(u) ≥
∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

We need to prove that there exists a function f : V × V → R+ such that, for every u ∈ V ,
ωminv′ (u) = ωminv (u) +

∑
w∈N(u)(f(w, u)− f(u,w)) and

∑
w∈N(u) f(u,w) ≤ ωminv (u).

For every u ∈ V , let p ∈ V be the parent of u in T rooted in r (if u 6= r). Let fmin(u, p) =
max{αv(u)− αv′(u), 0} and let fmin(p, u) = max{αv′(u)− αv(u), 0}.

It is clear that, for every u ∈ V , ωminv′ (u) = ωminv (u) +
∑
w∈N(u)(f

min(w, u) − fmin(u,w)).

Hence, we only need to prove that
∑
w∈N(u) f

min(u,w) ≤ ωminv (u).

Let u ∈ V , p its parent (if u 6= r) and let X ⊆ Children(u) be the set of vertices such that,
for every w ∈ X, fmin(u,w) = αv′(w)− αv(w) > 0. There are two cases to be considered.

• First, let us assume that fmin(u, p) = 0.

ωminv (u) =αv(u)−
∑

w∈Children(u)

αv(w)

=(αv(u)−
∑

w∈Children(u)\X

αv(w))−
∑
w∈X

αv(w)

≥
∑
w∈X

(αv′(w)− αv(w)) =
∑

w∈N(u)

fmin(u,w)
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• Second, assume that fmin(u, p) = δ > 0.

ωminv (u) =αv(u)−
∑

w∈Children(u)

αv(w)

=αv′(u) + δ −
∑

w∈Children(u)

αv(w)

=δ + (αv′(u)−
∑

w∈Children(u)\X

αv(w))−
∑
w∈X

αv(w)

≥δ +
∑
w∈X

(αv′(w)− αv(w)) =
∑

w∈N(u)

fmin(u,w)

�

Claim 11 shows that the moves that were valid in σ still hold for σmin. This concludes the
proof of the theorem.

We can now prove the main theorem of this section.

Theorem 12. Let T be a tree and let s ≥ 2 and d ≥ 0 be two integers. There is a polynomial-
time algorithm that computes an integral winning strategy using gns,d(T ) guards to control a spy
with speed s at distance d.

Proof. By Theorem 7, there exists an optimal (fractional) winning strategy that is spy-positional.
By Theorem 2, such a strategy can be computed in polynomial time. By Theorem 3, an opti-
mal integral winning strategy can be computed in polynomial time from any optimal fractional
winning strategy.

5 Spy game in Grid and Torus

It is clear that, for any n × n grid G, gns,d(G) ≤ |V (G)| = O(n2). However, the exact order
of magnitude of gns,d(G) is not known. In this section, we prove that there exists β > 0, such
that Ω(n1+β) guards are necessary to win against one spy in an n × n-grid. Our lower bound
actually holds for the fractional relaxation of the game. Precisely, we prove that fgns,d(G) is
super-linear and sub-quadratic (in the side n).

Let n,m ≥ 2 be two integers. We consider the n×m toroidal grid TGn×m = (V,E), i.e., the
graph with vertices vi,j = (i, j) and edges {(i, j), (i+1 mod n, j)} and {(i, j), (i, j+1 mod m)},
for all 0 ≤ i < n and 0 ≤ j < m. The n×m grid Gn×m is obtained from TGn×m by removing
the edges {{(m− 1, i), (0, i)}; {(j, n− 1), (j, 0)} | ∀0 ≤ i < n, 0 ≤ j < m}.

First, we show that the number of fractional (resp., integral) guards required in the grid and
in the torus have the same order of magnitude. Precisely:

Lemma 13. For every n,m ≥ 2, s ≥ 2, d ≥ 0, and for every f ∈ {gns,d, fgns,d, fgn∗s,d}:

f(TGn×m)/4 ≤ f(Gn×m) ≤ 4 · f(TGn×m).

Proof. Let us present the proof in the integral case, i.e., when f = gns,d, the other two cases
are similar.

Let σ be a winning strategy using k guards in TGn×m. We define a winning strategy using 4k
guards in Gn×m. For this purpose, let us label the guards used by σ as G1, · · · , Gk. In Gn×m,
the behavior of Guard Gi (1 ≤ i ≤ k) is “simulated” by four guards as follows. The guard
Gi being at (x, y) ∈ V (TGn×m) is simulated by one guard at each of the four vertices: (x, y),
(n−1−x, y), (x,m−1−y) and (n−1−x,m−1−y). Hence, gns,d(Gn×m) ≤ 4 ·gns,d(TGn×m).
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Let σ be a winning strategy using k guards in Gn×m. We define a winning strategy using
4k guards in TGn×m. Our strategy actually allows to control four spies whose moves are
correlated. Precisely, assume that when one spy occupies vertex (x, y), the three other spies
occupy respectively (n− 1− x, y), (x,m− 1− y) and (n− 1− x,m− 1− y). We divide the 4k
guards into four teams, each of which uses the strategy σ (i.e., they all act as if they were in the
grid) to control one of the four spies. When some spies cross an edge of E(TGn×m) \E(Gn×m),
some teams will exchange their target. Hence, gns,d(TGn×m) ≤ 4 · gns,d(Gn×m).

This main result of this section is:

Theorem 14. There exist β > 0 and 0 < α ≤ log(3/2) such that, for every s ≥ 2, d ≥ 0,

Ω(n1+β) = fgns,d(Gn×n) and fgn∗s,d(TGn×n) = O(n2−α).

Corollary 15. There exists β > 0 such that, for every s ≥ 2, d ≥ 0, Ω(n1+β) = gns,d(Gn×n).

Section 5.1 is devoted to prove the first part of Theorem 14, and Section 5.2 is devoted to
its second part.

5.1 Lower bound in Grids

The goal of this section is to prove that there exists β > 0 such that Ω(n1+β) = fgns,d(Gn×n),
i.e., the number of guards required in any n× n-grid is super-linear in the side n of the grid.

For this purpose, let us define (yet) another parameter. For any s ≥ 2, d ≥ 0, t ≥ 0, q ≥ 1,
and any graph G (note that t may be a function of |V (G)|), let gnq,ts,d(G) be the minimum
number k of guards such that there is an integral strategy using k guards that ensures that at
least q guards are at distance at most d from a spy with speed s during at least t steps. Note
that, by definition, supt gn

1,t
s,d(G) ≤ gns,d(G).

The first step of the proof is that gnq,2ns,d (Gn×n) = Ω(q ·n log n) in any n×n-grid and then to
extend this result to the fractional strategies. This result will be used as a “bootstrap” in the
induction proof for the main result. Let H : R+ → R+, H(x) =

∑
1≤i≤x 1/i for every x ∈ R+.

Lemma 16. ∃β ≥ 1/16 such that for any s ≥ 2, d ≥ 0, q > 0, gq,2ns,d (Gn×n) ≥ β · q · ndH(nd ).

Proof. The proof is for s = 2 since gq,2ns,d (Gn×n) ≥ gq,2n2,d (Gn×n).
In order to prove the result, we will consider a family of strategies for the spy. For every

0 ≤ r < n, the spy starts at position (0, 0) and runs at full speed toward (r, 0). Once there, it
continues at full speed toward (r, n − 1). We name Pr the path it follows during this strategy,
which is completed in d 1

2 (r+n− 1)e steps. Note that the guards may be aware of the family of
strategies played by the spy but do not know r in advance.

Let us assume that there exists a strategy using an amount k of guards that maintains at
least q guards at distance at most d from the spy during at least 2n turns. Moreover, the spy
only plays the strategies described above.

Assuming that the guards are labeled with integers in {1, · · · , k}, we can name at any time
of strategy Pr the labels of q guards that are at distance at most d from the spy. In this way,
let c(i, j) denote this set of q guards that are at distance at most d from the spy, when the spy
is at position (i, j).

Claim 17. If |j2 − j1| > 2d, then c(r, 2j1) and c(r, 2j2) are disjoint.

Proof of the claim. Assuming j1 < j2, it takes j2 − j1 steps for the spy in strategy Pr to go
from (r, 2j1) to c(r, 2j2). A guard cannot be at distance at most d from (r, 2j1) and, j2 − j1
steps later, at distance at most d from (r, 2j2). Indeed, to do so its speed must be at least
2(j2 − j1 − d)/(j2 − j1) > 1, a contradiction. �
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Claim 18. If |r2 − r1| > 2d+ 2 min(j1, j2), then c(2r1, 2j1) and c(2r2, 2j2) are disjoint.

Proof of the claim. Assuming r1 < r2, note that strategies P2r1 and P2r2 are identical for the
first r1 steps. By that time, the spy is at position (2r1, 0). If c(2r1, 2j1) intersects c(2r2, 2j2), it
means that at this instant some guard is simultaneously at distance at most d+j1 from (2r1, 2j1)
(strategy P2r1) and at distance at most d + |r2 − r1| + j2 from (2r2, 2j2) (strategy P2r2). As
those two points are at distance 2|r2 − r1|+ 2|j2 − j1| from each other, we have:

2|r2 − r1|+ 2|j2 − j1| ≤ (d+ j1) + (d+ |r2 − r1|+ j2)

|r2 − r1|+ 2|j2 − j1| ≤ 2d+ j1 + j2

|r2 − r1| ≤ 2d+ 2 min(j1, j2) �

We can now proceed to prove that the number of guards is sufficiently large. To do so, we
define a graph H on a subset of V (Gn×n) and relate the distribution of the guards (as described
by c) with the independent sets of H. Intuitively, an independent set I in H will consist of a
set of sets c(i, j) of guards that must be pairwise disjoint. It is defined over V (H) = {(2r, 4dj) :
0 ≤ 2r < n, 0 ≤ 4dj < n}, where:

• (2r, 4dj1) is adjacent with (2r, 4dj2) for j1 6= j2 (see Claim 17).

• (2r1, 4dj1) is adjacent with (2r2, 4dj2) if |r2 − r1| > 4d(1 + min(j1, j2)) (see Claim 18).

By definition, c gives q colors to each vertex of H and any set of vertices of H receiving a
common color is an independent set of H. If we denote by #c−1(x) the number of vertices which
received color x, and by α(2r,4dj)(H) the maximum size of an independent set of H containing
(2r, 4dj), we have:

k ≥
∑

(2r,4dj)∈V (H)

∑
x∈c(2r,4dj)

1

#c−1(x)

≥
∑

(2r,4dj)∈V (H)

q

α((2r,4dj))(H)

It is easy, however, to approximate this lower bound.

Claim 19. α((2r,4dj))(H) ≤ 4d(j + 1) + 1

Proof of the claim. An independent set S ⊆ V (H) containing (2r, 4dj) cannot contain two
vertices with the same first coordinate. Furthermore, (2r, 4dj) is adjacent with any vertex
(2r′, 4dj′) if |r′ − r| > 4d(1 + j). �

We can now finish the proof:

k ≥
∑

(2r,4dj)∈V (H)

q

α((2r,4dj))(H)

≥
∑

(2r,4dj)∈V (H)

q

4d(j + 1) + 1

≥ n

2

∑
j1∈{0,...,n/4d}

q

4d(j + 1) + 1

≥ qn

16d

∑
j∈{1,··· ,n/4d+1}

1

j
≥ qn

16d
H(n/4d)

where H is the harmonic function.
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Next, we aim at transposing Lemma 16 in the case of fractional strategies.

Lemma 20. Let n, a ∈ N∗ such that d = 2n/a ∈ N. There exists γ > 0 such that fgns,d(Gn×n) ≥
γaH(a), where H is the harmonic function. Moreover, against a smaller amount of guards, the
spy wins after at most 2n steps starting from a corner of Gn×n.

Proof. Let us start by the following claim.

Claim 21. Let G be any graph with n vertices and d, s, t, q ∈ N. Then,

gnq,ts,d(G) ≤ q · fgns,d(G) + (t+ 1)n2

Proof of the claim. From a fractional strategy using a total amount c of guards, let us define an
integral strategy keeping at least k guards at distance at most d from the spy during at least t
steps.

Initially, each vertex which has an amount x of guards receives bxqc+ (t+ 1)n guards. That
is, our integral strategy uses at most

∑
v∈V (G)((bxvqc+ (t+ 1)n) ≤ (t+ 1)n2 +

∑
v∈V (G) xvq ≤

(t+ 1)n2 + cq guards.
We then ensure that, at every step t′ ∈ {1, ..., t}, a vertex occupied by an amount of x guards

in the fractional strategy is occupied by at least bxqc+ (t− t′)n guards in the integral strategy.
To this aim, whenever an amount xuv of guards is to be moved from u to v in the fractional
strategy, we move bxuvqc+ 1 in the integral strategy.

Precisely, let xv (resp., x′v) be the amount of guards at v at step t′ (resp., at t′ + 1). Let
A ⊆ N(v) be the set of neighbors of v sending it a positive amount of flow and let B ⊆
N(v) be the set of neighbors of v that receive a positive amount of flow from x. We have
xv +

∑
u∈A xuv −

∑
u∈B xvu = x′v.

In the integral strategy, by induction on t′, we get that, after step t′+1, the number of guards
at v is at least bxvqc+ (t− t′)n+

∑
u∈A(bxuvqc+ 1)−

∑
u∈B(bxvuqc+ 1) ≥ xvq− 1 + (t− t′)n+∑

u∈A(xuvq + 1− 1)−
∑
u∈B(xvuq + 1) ≥ q(xv +

∑
u∈A xuv −

∑
u∈B xvu) + (t− t′)n− 1−B =

qx′v + (t − t′)n − 1 − B. Since B ⊆ N(v), |B| < n and so, the number of guards at v at step
t′ + 1 is at least qx′v + (t− t′ − 1)n.

As our invariant is preserved throughout the t steps, the spy which had an amount of at least
1 guard within distance d in the fractional strategy now has at least q guards around it, which
proves the result. Indeed, the number of guards at distance at most d from the spy (occupying
vertex y at step t′ ≤ t) is

∑
v∈Nd(y)(bxvqc+ (t− t′+ 1)n) ≥

∑
v∈Nd(y)(xvq− 1 + (t− t′+ 1)n) ≥

q
∑
v∈Nd(y) xv ≥ q �

Previous claim holds for every q ∈ N. Therefore, lim supk→∞
gq,ts,d(G)

q ≤ fgns,d(G).

Finally, by Lemma 16, there exists β > 0 such that gq,2ns,d (Gn×n) ≥ β · q · ndH(nd ).
Altogether, for d = 2n/a ∈ N, there exists γ > 0 such that fgns,d(Gn×n) ≥ γaH(a).
Moreover, Lemma 16 shows that against strictly less than β · q · ndH(nd ), the spy will win in

2n steps, starting from the corner. By the claim, this result implies that the spy will win in 2n
steps, starting from the corner, against less than γaH(a) fractional guards.

The next lemma is a key argument for this purpose. While it holds for any graph and its
proof is very simple, we have not been able to prove a similar lemma in the classical (i.e., non-
fractional) case. Note that this is the only part in this section where we really need to consider
the fractional variant of the spy game.

Lemma 22. Let G = (V,E) be any graph and s ≥ 2, d ≥ 0 be two integers with fgns,d(G) >
c ∈ Q∗ where the spy wins in at most t steps against c guards starting from v ∈ V (G).

For any fractional strategy using a total amount k > 0 of guards, there exists a strategy for
the spy (with speed s) starting from v ∈ V (G) such that after at most t steps, the amount of
guards at distance at most d from the spy is less than k/c.
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Proof. For purpose of contradiction, assume that there is a strategy S using k > 0 guards
that contradicts the lemma. Then consider the strategy S ′ obtained from S by multiplying the
number of guards by c/k. That is, if w ∈ V is initially occupied by q > 0 guards in S, then S ′
places qc/k guards at w initially (note that S ′ uses a total amount of kc/k=c guards). Then,
when S moves an amount q of guards along an edge e ∈ E, S ′ moves qc/k guards along e. Since
S contradicts the lemma, at any step ≤ t, at least an amount k/c of guards is at distance at
most d from the spy, whatever be the strategy of the spy. Therefore, S ′ ensures that an amount
of at least 1 cop is at distance at most d from the spy during at least t steps. This contradicts
that the spy wins after at most t steps against a total amount of c guards.

From Lemmas 20 and 22, we get

Corollary 23. Let a ∈ N∗. For any strategy using a total amount of k > 0 guards, there exists
a strategy for the spy (with speed s) starting from a corner of Gn×n such that after at most 2n
steps, the amount of guards at distance at most 2n/a from the spy is less than k · (aH(a))−1.

Theorem 24. ∃β, γ > 0 such that, for any n×n-grid Gn×n and s, d ∈ N (s ≥ 2), the spy (with
speed s) can win (for distance d) in at most 2n steps against < γn1+β fractional guards.

Proof. Let a0 ∈ N be such that H(a0)−1 ≤ 1/2. Since fgns,d(Gn×n) is non-decreasing as a
function of n, it is sufficient to prove the lemma for n = (a0)i for any i ∈ N∗.

We prove the result by induction on i. It is clearly true for i = 1 since a0 is a constant.
Assume by induction that there exist γ, β > 0, such that, for i ≥ 1 with n = (a0)i, the spy (with

speed s) can win (for distance d) in at most 2n steps against γa
i(1+β)
0 guards in any n× n grid.

Let G be an n × n-grid with n = (a0)i+1. Let k ≤ γn1+β . By Corollary 23, there exists a
strategy for the spy (with speed s) starting from a corner of G such that after t ≤ 2n steps,
the amount of guards at distance at most 2n/a0 from the spy is less than k ∗ (a0H(a0))−1 ≤
k/(2a0) ≤ γn1+β/(2a0).

Let v be the vertex reached by the spy at step t of strategy S. Let G′ be any subgrid of
G with side n/a0 and corner v. By the previous paragraph, at most γn1+β/(2a0) guards can
occupy the nodes at distance at most d from any node of G′ during the next 2n/a0 steps of the
strategy. So, by the induction hypothesis, the spy playing an optimal strategy in G′ against at
most γn1+β/(2a0) guards will win.

The above theorem proves the first part of Theorem 14 and the Corollary 15.

5.2 Upper bound in Torus

This section is devoted to present a spy-positional fractional strategy in the n×n-torus, TGn×n,
that uses a sub-quadratic (in n) total amount of guards to control a spy with speed s ≥ 2, at
distance d ≥ 0.

For this purpose, we do several simplifications.

Restricted moves for the spy. First, let us weaken the spy by allowing it to move only
“horizontally” or “vertically” at full speed. Precisely, when the spy occupies the vertex (i, j), it
is only allowed to move to one of the four vertices (i± s mod n, j) or (i, j± s mod n). We say
that such a spy has restricted moves. The next lemma shows that it does not change the order
of magnitude of the number of guards required to control it.

Lemma 25. Let n, s ≥ 2, and d ≥ 0 be integers. Assume that there exists a (fractional or
integral) winning strategy using k guards to control a spy, with speed s and restricted moves, at
distance d in the n×n-torus. Then, there exists a (fractional or integral) winning strategy using
O(s2k) guards to control a spy, with speed s, at distance d in the n× n-torus.

16



Proof. The proof is written in the integral case. The fractional case is similar.
For any strategy of a (non-restricted) spy, we will define a strategy for a restricted spy,

called the spy’s shadow, that ensures that the shadow is always at distance at most 2s from
the non-restricted spy. To control the non-restricted spy, the strategy consists of applying the
strategy σ against its shadow (i.e., using k guards) and replacing each guard γ of σ by O(s2)
guards, one at every vertex at distance at most 2s from the position of γ.

The shadow starts at the same vertex as the spy and “follows” it but only using restricted
moves. The shadow can easily stay at distance < 2s from the spy if the spy moves from a vertex
at distance < 2s from the shadow to a vertex at distance at least 2s (but < 3s since the spy
has speed s) from the shadow. This means, then, that the shadow is at a position such that
one of its coordinates differs by at least s from one of the spy’s coordinates. So it can decrease
its distance to the spy by exactly s using a restricted move. This means that after the shadow
moves, the distance is still < 2s.

Since we are only interested by the order of magnitude of the number of guards, in what
follows, we will only consider a spy with restricted moves.

Linear Program for spy-positional strategy in a torus. Recall that, in a spy-
positional strategy, the positions of the guards (configuration) only depends on the position of
the spy. In the n× n torus, as in any vertex-transitive graph, this implies that there is actually
a unique configuration.

Precisely, we are looking for a function ω : {0, · · · , n− 1} × {0, · · · , n− 1} → R+ such that,
ω(i− x mod n, j − y mod n) is the amount of guards occupying the vertex (i, j) when the spy
is occupying the vertex (x, y). Moreover, ω must satisfy the usual constraints that we recall
together with a Linear Program (LP) that computes such an optimal strategy.

The LP aims at minimizing the total amount of guards.

Minimize
∑

0≤i,j<n

ω(i, j) (9)

The first constraint states that, for every position v ∈ V of the spy (by vertex-transitivity,
it it sufficient to check it when v = (0, 0)), the amount of guards at distance at most d from
the spy is at least 1, i.e., the guards always control the spy at distance d. Let Bd be the set of
vertices at distance at most d from (0, 0).∑

(i,j)∈Bd

ω(i, j) ≥ 1 (10)

The second family of constraints states that, for any move of the spy (from (0, 0) to (x, y) ∈
Ns[(0, 0)]), there is a feasible flow from the configuration (ω(i, j))(i,j)∈V (TGn×n) to (ω(i− x, j −
y))(i,j)∈V (TGn×n).

The above LP, restricted to vertex-transitive graphs, is more efficient than the one presented
in Section 3 since there is only one configuration to be considered (and so, much less variables
and constraints). In particular, it gives interesting experimental results as presented in the
conclusion. However, we were still not able to provide a formal analysis of it and that is why we
provide several simplifications of it below. The first one is done by considering only the spy with
restricted moves which allows to simplify the flow constraints, as shown in the next paragraph.

Flow constraints when the spy has restricted moves. By symmetry of the torus,
when the spy has restricted moves, the flow constraints can be expressed by a unique set of
constraints stating that, when the spy goes from (0, 0) to (s, 0), there must be a feasible flow
from the configuration (ω(i, j))(i,j)∈V (TGn×n) to (ω(i− s, j))(i,j)∈V (TGn×n).
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Equivalently, these constraints can be defined as a flow problem in a transportation bipartite
auxiliary network H defined as follows (i.e., the constraints are satisfied if and only if there is
feasible flow in H) []. Let H = (V1 ∪ V2, E(H)) be the graph such that V1 and V2 are two
copies of V (TGn×n). There is an arc from u ∈ V1 to v ∈ V2 if {u, v} ∈ E(TGn×n). Each vertex
(i, j) ∈ V1 has a supply ω(i, j) and every vertex (i′, j′) ∈ V2 has a demand ω(i− s, j).

By duality [], there is a feasible flow in H if and only if, for every A ⊆ V1, the total supply
in N [A] is at least the demand in A ⊆ V2, i.e., at least

∑
(i,j)∈A ω(i− s, j).

In other words, in the case of a spy with restricted moves, the flow constraints can be stated
as:

∀A ⊆ V (TGn×n),
∑

(i,j)∈N [A]

ω(i, j) ≥
∑

(i,j)∈A

ω(i− s, j). (11)

Overall, any function ω : {0, · · · , n− 1} × {0, · · · , n− 1} → R+ satisfying the constraints 10
and 11 corresponds to a fractional spy-positional strategy against a spy wth restricted moves in
an n × n torus. The goal of the remaining part this section is to exhibit such a function that
uses a total amount of guards that is sub-quadratic in n. For this purpose, we do our second
simplification (considering only particular strategies for the guards) by restricting ourselves to
particular kinds of strategies that are ”distance-invariant”.

Distance-invariant spy-positional strategies. From now on, let us consider some
spy-positional strategies ω : {0, · · · , n − 1} × {0, · · · , n − 1} → R+ (in the torus, against a spy
with restricted moves and speed s) that are distance-invariant. Let d(u, v) denote the distance
between two vertices u and v. Precisely, we consider only spy-positional strategies ωα such that
ωα(i, j) = 1

(d((i,j),(0,0))+1)α for every (i, j) ∈ V (TGn×n), for some 0 < α < 1. This implies that,

for any (i, j), (i′, j′) ∈ V (TGn×n) at the same distance from (0, 0), ωα(i, j) = ωα(i′, j′).
We aim at deciding the range of α such that the function ωα satisfies constraint 11. For this

purpose, we first aim at finding a setHs ⊆ V (TGn×n) such that κα(Hs) =
∑

(i,j)∈N [Hs] ω
α(i, j)−∑

(i,j)∈Hs ω
α(i− s, j) is minimum. For such a set Hs, if κα(Hs) ≥ 0, it implies that ωα satisfies

constraint 11.
Let Hs be the set of vertices (i, j) ∈ V (TGn×n) defined by:

Hs = {(i, j) | s/2 ≤ i ≤ (n+ s)/2 mod n, 0 ≤ j < n}.
Lemma 26. Let α > 0 and s ≤ n/2. For every A ⊆ V (TGn×n), κα(A) ≥ κα(Hs).

Proof. For simplicity of calculations, let us assume that both s and n are even. For any 0 ≤
i < n, the row Li equals {(i, j) | 0 ≤ j < n} and, for any 0 ≤ j < n, the column Cj equals
{(i, j) | 0 ≤ i < n}.

For any integer `, let f` : V → R+ be the function such that, for any vi,j ∈ V ,

f`(i, j) =
1

(d((i, j), (`, 0)) + 1)α

where d(x, y) denotes the distance between x and y in G.
Note that

Claim 27. For any i, j, fs(i, j) = f0(i− s mod n, j).

For any A ⊆ V (TGn×n), let us define the border δ(A) of A as δ(A) = {w /∈ A | ∃v ∈
A, {v, w} ∈ E}, i.e., the set of vertices not in A that have a neighbor in A.

Note that:

κα(A) =
∑

v∈N [A]

f0(v)−
∑
v∈A

fs(v) =
∑
v∈A

(f0(v)− fs(v)) +
∑

v∈δ(A)

f0(v).
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To find a vertex-set minimizing the above function, we actually define another function
lower bounding the previous one. We identify a set Amin minimizing this second function such
that both functions achieve the same value for Amin. Therefore, Amin also minimizes the first
function.

The vertical border µ(A) equals {(i, j) /∈ A | (i+ 1 mod n, j) ∈ A or (i− 1 mod n, j) ∈ A},
i.e., the set of vertices not in A that have a neighbor in A and in the same column. Note that
µ(A) ⊆ δ(A) for any A ⊆ V .

Let us set
γ(A) =

∑
v∈A

(f0(v)− fs(v)) +
∑

v∈µ(A)

f0(v).

Since f0 is positive and µ(A) ⊆ δ(A),

Claim 28. κα(A) ≥ γ(A) for any A ⊆ V .

A useful property of γ is that columns are somehow “independent”.

Claim 29. γ(A) =
∑

0≤j<m γ(A ∩ Cj).

Note that Hs = {vi,j | s/2 ≤ i ≤ (n+ s)/2 mod n, 0 ≤ j < n} is the set of vertices v such
that f0(v)− fs(v) ≤ 0. Moreover, note that µ(Hs) = δ(Hs) and so:

Claim 30. γ(Hs) = κα(Hs).

Another useful property is that, by the first claim (and telescopical sum),

Claim 31. For any 0 ≤ j < n,

γ(Hs ∩ Cj) =
∑

−s/2+1≤i≤s/2+1

f0(n/2 + i mod n, j)−
∑

−s/2≤i≤s/2−2

f0(i, j).

Proof of the claim.

γ(Hs ∩ Cj) =

(n+s)/2 mod n∑
i=s/2

f0(i, j)− fs(i, j)

 + f0(s/2− 1, j) + f0((n+ s)/2 + 1 mod n, j)

=

(n+s)/2 mod n∑
i=s/2

f0(i, j)− f0(i− s, j)

 + f0(s/2− 1, j) + f0((n+ s)/2 + 1 mod n, j)

=

(n+s)/2+1 mod n∑
i=(n−s)/2+1

f0(i, j)−
s/2−2∑
i=−s/2

f0(i, j)

�

The above proof actually extends to the following. Let

H(a, b) ∩ Cj = {(i, j) | a mod n ≤ i ≤ b mod n}

Claim 32. For any |a− b| > 1,

γ(H(a, b) ∩ Cj) =
∑

−s/2+1≤i≤s/2+1

f0(b− s/2 + i, j)−
∑

−s/2≤i≤s/2−2

f0(a− s/2 + i, j).

The remaining part of this section is devoted to prove that Hs minimizes κα. Precisely, let
us prove that γ(Hs) = minA⊆V γ(A). This follows from the two following claims and previous
claims.
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Claim 33. Let X be such that γ(X) = minA⊆V γ(A). Then, for any 0 ≤ j < n, X ∩ Cj is
connected.

Proof of the claim. First, assume that there exists a vertex v ∈ Cj\X such that its two neighbors
in Cj are in X. Then, γ(X ∪ {v}) = γ(X)− fs(v) < γ(X). Therefore, by minimality of γ(X),
there are no such vertices.

If there is (n+ s)/2 < i < n+ s/2 mod n such that u = (i, j) ∈ X, w = (i+ 1, j) /∈ X, and
(i − 1, j) ∈ X. Note that, by the previous paragraph, (i + 2, j) /∈ X. Therefore, γ(X \ u) =
γ(X) − f0(w) + fs(u) < γ(X). The last inequality is because f0(w) > fs(u) because of the
choice of i. This contradicts the minimality of γ(X). If on the other hand, (i− 1, j) /∈ X, then
γ(X \ u) = γ(X)− f0(w)− f0(u) + fs(u) < γ(X) which contradicts the minimality of γ(X).

”Symmetrically”, if there is s/2 ≤ i ≤ (n+ s)/2 such that u = (i, j) /∈ X, w = (i−1, j) ∈ X,
and (i + 2, j) /∈ X. Note that, by the first paragraph, (i + 1, j) /∈ X. Therefore, γ(X ∪ {u}) =
γ(X)− fs(u) + f0(i+ 1, j) < γ(X). The last inequality is because f0(i+ 1, j) < fs(u) because
of the choice of i. This contradicts the minimality of γ(X). If on the other hand, (i+ 2, j) ∈ X,
then γ(X ∪ {u}) = γ(X)− fs(u) < γ(X) which contradicts the minimality of γ(X).

If X ∩ Cj would not be connected, one of the cases of the two previous paragraphs should
occur. Therefore, X ∩ Cj is connected. �

Claim 34. Let 0 ≤ j < m. For any X ⊆ V such that X ∩ Cj is connected, γ(Hs ∩ Cj) ≤
γ(X ∩ Cj).

Proof of the claim. Since X ∩Cj is connected, it has the form H(a, b)∩Cj for some a and b. We
assume that |a − b| > 1 (the other case can be done similarly). Therefore, by previous claims,
it remains to prove that, for any a and b, γ(Hs ∩ Cj) ≤ γ(H(a, b) ∩ Cj).

γ(H(a, b) ∩ Cj)− γ(Hs ∩ Cj) =

∑
−s/2+1≤i≤s/2+1

(f0(b− s/2 + i, j)− f0(n/2 + i, j))−
∑

−s/2≤i≤s/2−2

(f0(a− s/2 + i, j)− f0(i, j)).

Since the function f0 is maximum around i = 0 and minimum around i = n/2, it is easy to
check that, for any a and b:∑

−s/2+1≤i≤s/2+1

(f0(b− s/2 + i, j)− f0(n/2 + i, j)) ≥ 0

and ∑
−s/2≤i≤s/2−2

(f0(a− s/2 + i, j)− f0(i, j)) ≤ 0.

Hence, γ(H(a, b) ∩ Cj)− γ(Hs ∩ Cj) ≥ 0. �

By previous claims, κα(Hs) = γ(Hs) = minA⊆V γ(A) ≤ minA⊆V κ
α(A).

Hence, κα(Hs) = minA⊆V κ
α(A).

Finally, we are ready to present a winning strategy in the n×n torus. Let d(v) (resp., d(i, j))
denote the distance between vertex v (resp., (i, j)) and vertex (0, 0) in TGn×n.

Lemma 35. Let n, s ≥ 2, s ≤ n/2, d ≥ 0 and 0 < α ≤ log(3/2) < 1. There exists a
constant B > 0 (independent of n) such that the function ωα(v) : V (TGn×n) → R+ where
ωα(v) = B

(d(v)+1)α for every v ∈ V (TGn×n) is a spy-positional winning fractional strategy that

uses O(n2−α) guards to control a spy with speed s at distance d in TGn×n.
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Proof. To verify that ωα is a winning strategy, we need to prove that it satisfies constraints 10
and 11. LetBd be the set of vertices at distance at most d from (0, 0) and letB = 1/

∑
v∈Bd

1
(d(v)+1)α .

The total amount of guards used by the strategy is:∑
v∈V (TGn×n)

B

(d(v) + 1)α
=B(

∑
0≤i≤bn/2c

4(i+ 1)

(i+ 1)α
+

∑
bn/2c<i<n

4(n− i)
(i+ 1)α

) = O(n2−α)

Constraint 10 states that
∑
v∈Bd ω

α(v) ≥ 1 which is satisfied by the choice of B.
Constraint 11 states that, ∀A ⊆ V (TGn×n),

∑
(i,j)∈N [A] ω

α(i, j) ≥
∑

(i,j)∈A ω
α(i− s, j).

By Lemma 26, we know that κα(A) =
∑

(i,j)∈N [A] ω
α(i, j)−

∑
(i,j)∈A ω

α(i−s, j) is minimum

for A = Hs, where Hs = {(i, j) | s/2 ≤ i ≤ (n+ s)/2 mod n, 0 ≤ j < n}. Hence, it is sufficient
to show that κα(Hs) ≥ 0.

Again, for ease of presentation, let us assume that s and n are even.

κα(Hs) =
∑

s/2−1≤i≤(n+s)/2+1,0≤j<n

B

(d(i, j) + 1)α
−

∑
s/2≤i≤(n+s)/2,0≤j<n

B

(d(i− s, j) + 1)α

Because s ≤ n/2, this can be simplified as :

κα(Hs) =
∑

(n−s)/2+1≤i≤(n+s)/2+1,0≤j<n

B

(d(i, j) + 1)α
−

∑
−s/2≤i≤s/2−2,0≤j<n

B

(d(i, j) + 1)α

And so (the detailed computation is postponed in the Appendix):

κα(Hs) ≥ 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα
+O(1/nα)

Since 0 < α, then p(x) = 1
xα is decreasing, and

b+1∫
a

p(t) dt ≤
∑b
x=a p(x) ≤

b∫
a−1

p(t) dt. Hence,

κα(Hs)/(2B) ≥(s+ 1)

n/2∫
0

1

(n/2 + t)α
dt− (s− 1)

n/2∫
0

1

tα
dt+O(1/nα)

=
1

1− α
[(s+ 1)((n)1−α − (n/2)1−α)− (s− 1)(n/2)1−α] +O(1/nα)

=
n1−α

1− α
[(s+ 1)(1− (1/2)1−α)− (s− 1)(1/2)1−α] +O(1/nα)

Hence, κα(Hs) ≥ 0 if 0 ≤ (s+1)(1− (1/2)1−α)− (s−1)(1/2)1−α In other words, κα(Hs) ≥ 0
if 2α ≤ s+1

s and 0 < α ≤ log(1 + 1/s) ≤ log(3/2) < 1.

Conclusion

The main open question is to determine the exact value of gns,d(Gn×n) in any n × n grid
Gn×n (or torus). A first step toward such a result would be to prove that gns,d(Gn×n) =
O(gns′,d′(Gn×n)) for any s, s′ ≥ 2 and d, d′ ≥ 0. In trees, it would be interesting to design a
combinatorial algorithm (i.e., not relying on the solution of a Linear Programe) that computes
optimal strategies for controlling a spy with speed s at distance d. Finally, using the fractional
framework to obtain new results in two-player combinatorial games in graphs seems promising.
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Appendix

Proof of the computational part of Lemma 35

κα(Hs) =
∑

(n−s)/2+1≤i≤(n+s)/2+1,0≤j<n

B

(d(i, j) + 1)α
−

∑
−s/2≤i≤s/2−2,0≤j<n

B

(d(i, j) + 1)α

≥(s+ 1)
∑

0≤j<n

B

(d(n/2, j) + 1)α
− (s− 1)

∑
0≤j<n

B

(d(0, j) + 1)α

=2(s+ 1)
∑

0≤j≤n/2

B

(d(n/2, j) + 1)α
− (s+ 1) ·B

(d(n/2, 0) + 1)α
− (s+ 1) ·B

(d(n/2, n/2) + 1)α

− 2(s− 1)
∑

0≤j≤n/2

B

(d(0, j) + 1)α
+

(s− 1)B

(d(0, 0) + 1)α
+

(s− 1)B

(d(0, n/2) + 1)α

= 2(s+ 1)
∑

1≤j≤n/2+1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2+1

B

jα

− 2B

(n/2 + 1)α
− (s+ 1) ·B

(n+ 1)α
+ (s− 1)B

= 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα

− 2(s+ 1) ·B
(n/2)α

+
2(s+ 1) ·B

nα
+

2(s+ 1) ·B
(n+ 1)α

− 2(s− 1) ·B
(n/2 + 1)α

− 2B

(n/2 + 1)α
− (s+ 1) ·B

(n+ 1)α
+ (s− 1)B

≥ 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα
+O(1/nα)
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