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Abstract

In the Spy Game played on a graph G, a single spy travels the vertices of G at speed s,
while multiple slow guards strive to have, at all times, one of them within distance d of that
spy. In order to determine the smallest number of guards necessary for this task, we analyze
the game through a Linear Programming formulation and the fractional strategies it yields for
the guards. We then show the equivalence of fractional and integral strategies in trees. This
allows us to design a polynomial-time algorithm for computing an optimal strategy in this class
of graphs. Using duality in Linear Programming, we also provide non-trivial bounds on the
fractional guard-number of grids and torus which gives a lower bound for the integral guard-
number in these graphs. We believe that the approach using fractional relaxation and Linear
Programming is promising to obtain new results in the field of combinatorial games.

Keywords: Cops and Robber games, Graphs, Linear Programming

1 Introduction

Turn-by-turn combinatorial games in graphs involve two players placing their pawns on vertices
of a graph and moving them along its edges in order to achieve some task. For instance, in Cops
and Robber games, Player 1 has a team of cops that must collaborate to capture a robber moved
by the second player [5, 22, 23]. In the surveillance game, Player 1 has no pawn but is allowed to
cover vertices at each of its turns, while the goal of Player 2 is to move its surfer to an uncovered
vertex [11]. Another example is the Eternal Domination Problem in which Player 2 has no pawn
but is allowed to attack any vertex at each of its turns, while the goal of Player 1 is to always be
able to move at least one of its cops to the attacked vertex [15]. Most of these games have been
studied because they model natural problems involving mobile agents cooperating to perform
some task (e.g., network security, robot motion planning). Surprisingly, these games can also
be used to provide a novel understanding of problems arising in telecommunication networks:
for instance, the surveillance game was introduced for modelling resources prefetching [11].

∗This work has been partially supported by ANR project Stint under reference ANR-13-BS02-0007, ANR program
“Investments for the Future” under reference ANR-11- LABX-0031-01, the associated Inria team AlDyNet. Part of
the results of this paper (Section 5.1) have been presented in [8].
†Email address: nicolas.nisse@inria.fr
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In all these games, the goal is to minimize the amount of resources (e.g., the number of
cops) ensuring the victory of one of the players. These combinatorial problems are generally
“hard”: Cops and Robber games are EXPTIME-complete [18] and W[2]-hard [12] and the
Surveillance game is NP-hard and even PSPACE-complete in directed graphs [11]. Moreover,
many longstanding (probably difficult) open questions have not been solved yet for these games.
For instance, the celebrated Meyniel’s conjecture states that O(

√
n) cops are sufficient to capture

a robber in any n-node graph [25], Schröder asks whether g+ 3 cops are sufficient in any graph
with genus at most g [24], the status of the complexity of Eternal Domination is still unknown,
etc. A classical approach to tackle these open problems has been to study variants of these
games in which one of the players often has some restrictions. For instance, the robber may
be faster than the cops [2, 12], the cops may capture at some distance [4], the surveyed area
may be forced to be connected [13], etc. Another approach may be to restrict the games to
particular graph classes such as trees [19], grids [16, 21], planar graphs [1], bounded treewidth
graphs [17, 20], etc.

Recently, some of the authors of the present paper proposed a new framework that considers
a fractional variant of these games (roughly where pawns may be split into arbitrarily small
entities) and uses Linear Programming to obtain new bounds and algorithms [8, 14]. While
this approach seems not to be successful to handle Cops and Robber games, it has been fruitful
in designing approximation algorithms for other combinatorial games. Precisely, it allowed to
design polynomial-time approximation algorithms for various (NP-hard) variants of the surveil-
lance game [14]. In this paper, we present a new successful application of this approach. In
particular, we consider the Spy-game [8, 9] and show that it can be solved in polynomial-time in
trees using this approach. We emphasize that, as far as we know, it is the first exact algorithm
for such combinatorial games using a Linear Programming approach and that we were not able
to solve it without this technique. We hope that our results will encourage people to use this
framework to study combinatorial games and we believe it will enable progress toward solutions
of the difficult open problems.
Spy-game. The Spy-game has been defined as it is closely related to the Cops and fast robber
game and it generalizes the Eternal Domination Problem [8, 9]. The Spy-game is a turn-by-turn
2-Player game with perfect information. The first player has a spy which is first placed at some
vertex of a graph G. The second player has k ∈ N guards that are then placed at some vertices
of G. Turn-by-turn, the spy may move along at most s ≥ 1 edges (s ∈ N∗ is the speed of the
spy), and then each guard may move along one edge. Any number of guards and the spy may
occupy the same vertex. The goal of the game is to minimize the number of guards, called
guard-number and denoted by gns,d(G), ensuring that, at every step after the guards’ turn, the
spy is at distance at most d ∈ N from at least one guard (we say that the spy is controlled at
distance d). Note that, when d = 0 and s is large (at least the diameter of G), the Spy-game
is equivalent to the Eternal Domination Problem. The guard-numbers of paths and cycles, and
corresponding optimal guards’ strategies, have been characterized in [8]. To tackle the more
difficult case of trees, we consider the fractional variant of the Spy-game, in which the rules are
unchanged for the spy but the guards can be split into arbitrarily small entities.
Fractional Spy-game. Formally, the fractional Spy-game proceeds as follows in a graph
G = (V,E). Let s ≥ 2, d ≥ 0 be two integers and let k ∈ R such that k > 0. First, the spy is
placed at a vertex. Then, each vertex v receives some amount gv ∈ R+ (a non negative real)
of guards such that the total amount of guards is

∑
v∈V gv = k. Then, turn-by-turn, the spy

may first move at distance at most s from its current position. Then, the “fractional” guards
move following a flow constrained as follows. For any v ∈ V , and for any u ∈ N [v]1, there is
a flow f(v, u) ∈ R+ of guards going from v to u ∈ N [v], such that

∑
u∈N [v] f(v, u) = gv, i.e.,

the amount of guards leaving v and staying at v is exactly what was at v. Finally, for any

1For any graph G, any integer ` and v ∈ V (G), let N`[v] be the set of vertices at distance at most ` from v in G
and let N [v] = N1[v].
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vertex v ∈ V , the amount of guards occupying v at the end of the turn is g′v =
∑
u∈N [v] f(u, v).

We now need to rephrase the fact that the guards control the spy at distance d at every turn.
This is the case if, after every guards’ turn,

∑
w∈Nd[x] g

′
w ≥ 1, where x is the vertex occupied

by the spy. Let fgns,d(G) denote the minimum total amount of fractional guards needed to
always control at distance d a spy with speed s in a graph G. Note that, by definition, since
the fractional game is a relaxation of the “integral” Spy-game: for any graph G and any s ≥ 2,
d ≥ 0, fgns,d(G) ≤ gns,d(G). The fractional variant of the Spy-game has been used to show the
first non-trivial lower bound on the guard-number of grids [8]. In this paper, we will give the
first exact algorithm using the framework of fractional combinatorial games.

1.1 Our results

We study the Spy-game in the classes of trees and grids. We prove that the guard-number of
any tree can be computed in polynomial-time and give non-trivial lower and upper bounds on
the fractional guard-number of grids. More precisely, for every s ≥ 2 and d ≥ 0:

• We design a Linear Program that computes fgns,d(T ) and a corresponding strategy in
polynomial-time for any tree T . Then, we show that any fractional strategy (winning for
the guards) using k guards in a tree can be turned into a winning (integral) strategy using
bkc guards. The key argument is that we can restrict the study to what we call Spy-
positional strategies. Altogether, this shows that, in any tree T , fgns,d(T ) = gns,d(T ), and
that gns,d(T ) and a corresponding winning strategy can be computed in polynomial-time.

• Then, we show that there is a constant 0 < β < 1 such that, for any n × n grid Gn×n,
Ω(n1+β) = fgns,d(Gn×n) ≤ gns,d(Gn×n). This gives the first non trivial lower bound for
the guard number (and also for γm) in the class of grids. Finally, we show that there exists
a constant 0 < α ≤ log(3/2) such that fgns,d(Gn×n) = O(n2−α). Note that the best known
upper bound for gns,d(Gn×n) is O(n2). A similar bound holds for the n× n torus.

We believe that the methods using Linear Programming used in this paper are a promising way
to better understand other combinatorial games in graphs.

1.2 Related Work

Spy-game. The Spy-game has been defined in [8, 9]. It has been shown that, for every d ≥ 0
and s ≥ 2, computing gns,d(G) is NP-hard in a subclass of chordal graphs (precisely, graphs
obtained from a clique and some paths, where one end of each path is connected to some vertices
of the clique) [8, 9]. The guard-number of paths is also characterized and almost tight lower and

upper bounds are given in the case of cycles. More precisely, gns,d(P ) =
⌈

n

2d+2+
⌊

2d
s−1

⌋⌉ for any

n-node path P . Moreover, the strategy consists of partitioning the path into gns,d(P ) subpaths
with one guard assigned to each one [8, 9]. We show that such a strategy (assigning disjoint
subtrees to each guard) is not necessarily optimal in trees (see Section 4).
Eternal Domination. The Spy game generalizes the Eternal Domination Problem [15]. In
the latter game, a team of mobile agents (cops) occupy some vertices of a graph. At every turn,
the second player attacks some vertex v and then each of the cops is allowed to move to one of
its neighbors or may stay idle such that at least one cop occupies v (note that in the original
variant, only one agent was allowed to move at each turn [7]). In other words, the agents must
always occupy a dominating set D, such that for any vertex v /∈ D, the agents can move to
another dominating set containing v. The minimum number of agents ensuring to win the game
in a graph G is denoted by γm(G). It is easy to see that the Eternal Domination Problem is
equivalent to the Spy game when the spy is arbitrarily fast and d = 0, i.e., γm(G) = gns,0(G)
for any s which is at least the diameter of the graph. Therefore, our results apply to the Eternal
Domination Problem.

3



Eternal Domination has been investigated in several graph classes. In grids, only a few cases
are known: for instance, tight bounds are known inm×n grids for n ≤ 4 [3, 10] and the case n = 5

is considered in [26]. The best known general upper bound in grids is
⌈
nm
5

⌉
+O(n+m) [21]. Note

that the minimum size of a dominating set in any grid has only been characterized recently [16].
In the class of trees T , γm(T ) can be computed in polynomial-time [19]. The key property in
this simple recursive algorithm is that an optimal strategy consists of partitioning a tree into
vertex-disjoint stars, each star being assigned to at most 2 cops. As already mentioned, such a
method does not extend for the Spy-game.

2 Representation of winning strategies and Spy-positional
strategies

In this paper, all graphs are simple (without loops nor multi-edges), connected, and undirected.
For any vertex v ∈ V in a graph G = (V,E), let N(v) denote the set of neighbors of v and
N [v] = N(v) ∪ {v}. Moreover, for any integer s ≥ 0 and vertex v ∈ V , let Ns[v] be the set of
vertices at distance at most s from v.

A strategy for the guards is a function describing the moves of the guards at every step. A
strategy is winning if it allows the guards to perpetually control the spy. It is easy to show that
there is always an optimal winning strategy (using the minimum number of guards) which is
positional, i.e. such that the next move is only determined by the current position of both the
spy and the guards, and not by the history of the game2. In other words, there is always an
optimal winning strategy which is a function that takes the current positions of the spy and of
the guards and returns the new positions of the guards (and so, their moves).

Representation of (fractional) guards’ strategies. Let G = (V,E) be an n-node graph,
s ≥ 2 and d ≥ 0 be two integers. Let V = {v1, · · · , vn}. A winning strategy σ using k ∈ R+

guards is defined as a set σ = {Cv}v∈V of sets of configurations. That is, for any v ∈ V (a
possible position for the spy), Cv is a non-empty set of functions, called configurations, that
represent the possible positions of the guards when the spy is at v. More precisely, any ω ∈ Cv
is a function ω : V → R+, where ω(u) ∈ R+ represents the amount of guards at vertex u ∈ V
when the spy occupies v, that must satisfy

∑
u∈V ω(u) = k and

∑
u∈Nd[v] ω(u) ≥ 1. Finally, for

any v ∈ V , any ω ∈ Cv, and any v′ ∈ Ns[v], there must exist ω′ ∈ Cv′ such that the guards can
go from ω to ω′ in one step. That is, for any possible move of the spy (from v to v′), there must
exist a valid flow from ω to ω′ (the guards must be able to reach a configuration controlling the
spy in v′). A strategy is integral if k ∈ N+, every of its configurations is a function V → N, and
every move is an integral flow. The size of a strategy is the number of different configurations
necessary to describe the strategy, i.e., the size of σ is

∑
v∈V |Cv|. Note that, a same position for

the spy may correspond to different positions of the guards. Therefore, the size of an integral
strategy using k guards in an n-node graph is nO(k). Moreover, the size of a fractional strategy
is a priori unbounded.

Spy-positional strategies. In this paper, we will also consider more constrained strategies. A
winning strategy is said to be Spy-positional if it depends only on the position of the spy. That
is, in a spy-positional strategy σ = {Cv}v∈V , the positions of the guards are only determined
by the position of the spy. In particular, every time the spy occupies some vertex v, the set of
vertices occupied by the guards is defined by a unique function σv : V (G) → N such that, for
every u ∈ V , σv(u) is the number of guards occupying u when the spy is occupying v. That is,
Cv = {σv} and |Cv| = 1 for every v ∈ V . An important consequence for our purpose is that any
(fractional or integral) spy-positional strategy has size O(n).

2That can be easily shown by considering the configurations’ graph of the game.
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Let us remark that, in a spy-positional strategy, it is not required that the same guards
occupy the same vertices when the spy is at some vertex. That is, assume that, at some step,
the spy occupies some vertex v, some Guard A occupies a vertex a and a guard B occupies a
vertex b. It may happen that, after some steps, the spy goes back to v and now Guard A is at
b and Guard B is at a (however, the set of vertices occupied by the guards is the same).

Second, there does not always exist an optimal strategy (using the minimum number of
guards) that is spy-positional. As an example, consider the cycle C5 with 5 vertices {a, b, c, d, e}.
It is easy to show that gn2,1(C5) = 1 but that every spy-positional strategy needs 2 guards.
Indeed, it is easy to see that we may assume that, initially, the guard occupies a neighbor of the
spy. W.l.o.g., the spy starts at b while the guard is at a. Then, the spy goes to c and the guard
has to go to b. The spy goes to d and the guard has to go to c. Finally, the spy goes back to a
and the guard either stays at c or goes to b. One of our main results is to show that, in trees,
there always exists an optimal strategy which is spy-positional.

Let fgn∗s,d(G) be the minimum total amount of fractional guards needed to always control
at distance d a spy with speed s in a graph G, when the guards are constrained to play spy-
positional strategies. By definition, for any graph G and any s ≥ 2, d ≥ 0,

fgns,d(G) ≤ min{fgn∗s,d(G), gns,d(G)}.

3 Spy-positional fractional strategies in general graphs

This section is devoted to present a polynomial-time algorithm that computes optimal spy-
positional fractional strategies in general graphs. Here, optimal means using the minimum total
amount of guards with the extra constraint that guards are restricted to play spy-positional
strategies. In other words, we prove that, for any graph G, s ≥ 2, and d ≥ 0, fgn∗s,d(G) and a
corresponding strategy can be computed in polynomial time.

We prove this result by describing a Linear Program with polynomial size that computes
such strategies. In Section 4, we will show that in any tree T , gns,d(T ) = fgn∗s,d(T ). More
precisely, we will show that in trees, the Linear Program below can be used to compute optimal
(integral) strategies in polynomial time.

We describe a Linear Program for computing an optimal fractional spy-positional strategy.

Variables. Let G = (V,E) be a connected n-node graph. Recall that a spy-positional strategy
is defined by, for each position of the spy, the amount of guards that must occupy each vertex.
Therefore, for any two vertices u, v ∈ V , let σv(u) ∈ R+ be the non negative real variable
representing the amount of guards occupying vertex u when the spy is at v.

Moreover, for any x ∈ V , y ∈ Ns[x] and for any u ∈ V and v ∈ N [u], let fx,y,u,v ∈ R+ be the
non negative real variable representing the amount of guards going from vertex u to v ∈ N [u]
when the spy goes from x to y ∈ Ns[x]. Finally, a variable k will represent the total amount of
guards. Overall, there are O((|E|+ 1)n2) = O(n4) real variables.

These variables fully describe a strategy, since σ encodes a distribution of cops for every
position of the spy and f describes a feasible transition between two successive distributions.

Objective function. We aim at minimizing the total amount of guards.

Minimize k. (1)

Constraints. The first family of constraints states that, for every position v ∈ V of the spy,
the total amount of guards is at most k.

∀v ∈ V,
∑
u∈V

σv(u) ≤ k. (2)

The second family of constraints states that, for every position v ∈ V of the spy, the amount
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of guards at distance at most d from the spy is at least 1, i.e., the guards always control the spy
at distance d. ∀v ∈ V,

∑
u∈Nd[v]

σv(u) ≥ 1. (3)

The third family of constraints states that, for any move of the spy (from x to y ∈ Ns[x]),
the corresponding moves of the guards ensure that the amount of guards leaving a vertex v ∈ V
plus what remains at v equals the amount of guards that was at v before the move.

∀x ∈ V , y ∈ Ns[x], v ∈ V ,
∑

w∈N [v]

fx,y,v,w = σx(v). (4)

The fourth family of constraints states that, for any move of the spy (from x to y ∈ Ns[x]),
the corresponding moves of the guards ensure that the amount of guards that are at a vertex
w ∈ V after the moves equals the amount of guards arriving in w plus what remains at w.

∀x ∈ V , y ∈ Ns[x], w ∈ V ,
∑

v∈N [w]

fx,y,v,w = σy(w). (5)

Finally, the last family of constraints expresses the definition domain of the variables:

k ≥ 0 (6)

∀u, v ∈ V , gu,v ≥ 0 (7)

∀x ∈ V , y ∈ Ns[x], v ∈ V , w ∈ N [v], fx,y,v,w ≥ 0 (8)

There are O(n4) constraints and the above Linear Program has polynomial size and clearly
computes an optimal spy-positional fractional strategy. Hence:

Theorem 1. For any connected graph G, and any two integers s ≥ 2 and d ≥ 0, the above
Linear Program computes fgn∗s,d(G) and a corresponding spy-positional strategy in polynomial
time.

4 Spy game is Polynomial in Trees

This section is devoted to the study of the Spy-game in trees (Theorem 12). Before going into
the details, we would like to emphasize one difficulty when dealing with guards’ strategies.

A natural idea would be to partition the tree into smaller subtrees (with bounded diameter)
with a constant number of guards assigned to each of them. That is, each guard would be
assigned (possibly with other guards) a subtree S and would move only when the spy is in S (in
particular, the guard would only occupy some vertices of S). As already mentioned, there exist
such strategies that are optimal in paths [8, 9] or in trees when d = 0 and s is large (Eternal
Domination) [19]. We show that we cannot expect such strategies for the Spy-game (for any
s ≥ 2 and d > 0) in trees and hence, optimal guards’ strategies seem difficult to be described in
trees. Precisely:

Lemma 2. There exists a family of trees with unbounded guard-number such that, for each of
these trees, there is a strategy of the spy that forces all guards to occupy all non-leaf vertices
infinitely often, whatever be the optimal strategy followed by the guards.

Proof. We present an example in the case s = 2 and d = 1 but it can be generalized to any
s ≥ 2 and d > 0 (by increasing the branches of the star S defined below).

Let S be the tree obtained from a star with three leaves by subdividing each edge exactly
twice (i.e., S has 10 vertices). Let (Si)i≤k be k disjoint copies of S and let ci be the unique
vertex of degree 3 of Si. Finally, let T be the tree obtained by adding one vertex c and making
it adjacent to every ci, i ≤ k. Note that |V (T )| = 10k + 1 = n.
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First, let us show that gn2,1(T ) = k + 1 = Θ(n) and that, when the spy is in c, the guards
have to occupy the vertices c, c1, · · · , ck. We label the vertices as follows where 1 ≤ j ≤ 3k:
let v3j be a leaf, let v3j−1 be the vertex adjacent to the leaf v3j , and let v3j−2 be the vertex
adjacent to v3j−1 and ci for i = d j3e.
• A strategy using k + 1 guards proceeds as follows. At any step, vertices c1, · · · , ck are

occupied (not necessarily by the same guards). Then, if the spy occupies c or one of the
ci’s, one guard occupies c. If the spy occupies v3j−1 or v3j−2 for some j ≤ 3k, then v3j−2
must be occupied by a guard. Finally, if the spy occupies v3j , then v3j−1 must be occupied
by a guard. It is easy to see that, whatever be the strategy of the spy, the guards may
move (at most 2 guards per step) as to ensure the desired positions.

• Now we prove the lower bound. The spy starts at a leaf v3j for some 1 ≤ j ≤ 3k and moves
at full speed to another leaf v3l for some 1 ≤ l ≤ 3k such that l 6= j. Then, there must be
a guard at v3j−1 initially and when the spy reaches v3j−2, there must be at least one other
guard at a vertex in the same subtree Si for i = d j3e as otherwise, the spy could move to
one of {v3(j+1), v3(j+2)} and win. Since there are two guards in the same subtree as the
spy, then the spy moves to c. Neither of the two previous guards can reach any of the other
k − 1 ci on this turn. There must be at least one guard in each of the other k − 1 subtrees
Si as otherwise, the spy moves to a leaf in one of these subtrees and wins since it would
take him two turns but a guard at c could only be at distance at least 2 from the spy after
two turns. It also follows that, when the spy is at c, the guards must occupy the vertices
c, c1, · · · , ck.

Now, we can prove the main statement of the lemma. For any i ≤ k and any vertex v ∈ V (T )
of degree two, there is a strategy of the spy that brings the guard initially at ci to v and thus,
to any non-leaf vertex. For this purpose, let j 6= i be such that v ∈ V (Sj). The spy first goes
(at full speed) to a leaf of Si, then to another leaf of Si, then it goes to a leaf of Sj that is not
the neighbor of v and finally the spy goes to the leaf neighbor of v. It can be verified that the
guard that was initially at ci must occupy v. Repeating infinitely this strategy (for any v and
i) gives the strategy announced in the statement.

To overcome this difficulty, we use the power of Linear Programming. Precisely, we prove
that, in any tree T and for any s ≥ 2, d ≥ 0, gns,d(T ) = fgn∗s,d(T ). Therefore, using the Linear
Program of Section 3, it follows that computing gns,d(T ) can be done in polynomial time in
trees. The proof is twofold. First, we prove that gns,d(T ) = fgns,d(T ) for any s ≥ 2 and d ≥ 0
(i.e., the integrality gap is null in trees), and then that fgns,d(T ) = fgn∗s,d(T ).

Theorem 3. For any tree T and for any s ≥ 2, d ≥ 0, gns,d(T ) = fgns,d(T ). More precisely,
any fractional winning strategy using a total amount of k ∈ R+ guards can be transformed into
an integral winning strategy using bkc guards. Moreover, such a transformation can be done in
polynomial time in the size of the fractional strategy.

Proof. Let σ = {Cv}v∈V be any fractional winning strategy using a total amount of k ∈ R+

guards to control a spy with speed s ≥ 2, at distance d ≥ 0, and in an n-node tree T = (V,E).
We build a winning integral strategy σr using bkc guards by “rounding” all configurations

of σ. For any configuration ω of σ, we will define an integral configuration ωr (which we call a
rounding of ω) using bkc guards (Claim 4), such that if the spy is controlled in ω then it is also
controlled in ωr (Claim 5). Moreover, for any two configurations ω1 and ω2 such that there is a
feasible flow from ω1 to ω2, we show that there is feasible integral flow from ωr1 to ωr2 (Claim 6).
Altogether, this shows that σr is a winning integral strategy using bkc guards, which proves the
theorem.

From now on, let us consider T to be rooted at some vertex r ∈ V .
Notations. For any u ∈ V , let Tu be the subtree of T rooted in u (i.e., the subtree

that consists of u and all its descendants). For any configuration ω : V → R+, let ω(Tu) =
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∑
v∈V (Tu)

ω(v) and let ω(T ) = ω(Tr). By definition, ω(Tu) ≥ ω(u) for every u ∈ V . Finally, let

cont(T, ω) = {u ∈ V :
∑
v∈Nd[u] ω(v) ≥ 1} (i.e., cont(T, ω) is the set of vertices u such that the

spy on u is controlled at distance d by the guards in the configuration ω).
Let us define the rounded configuration ωr : V 7→ N as, for every u ∈ V ,

ωr(u) =
⌊
ω(u) +

∑
v child of u

(ω(Tv)− bω(Tv)c)
⌋

Intuitively, the fractional part of guards that are in each of the subtrees rooted in the children
of u is “pushed” to u. Then u “keeps” only the integral part of the sum of what it had plus
what it received from its children.

We first prove that rounding a configuration using k guards provides an integral configuration
using bkc guards.

Claim 4. For any configuration ω : V (T )→ R+, ωr(T ) = bω(T )c

Proof of the claim. The proof is by induction on |V |. It clearly holds if |V | = 1. Let T1, . . . , Th
be the subtrees of T\r rooted in the children of r. By definition,

ωr(T ) =ωr(r) +
∑

1≤i≤h

ωr(Ti)

=bω(r) +
∑

1≤i≤h

{ω(Ti)}c+
∑

1≤i≤h

ωr(Ti)

By induction, wr(Ti) = bω(Ti)c for every 1 ≤ i ≤ h, and so:

ωr(T ) =bω(r) +
∑

1≤i≤h

{ω(Ti)}c+
∑

1≤i≤h

bω(Ti)c

=bω(r) +
∑

1≤i≤h

ω(Ti)c

=bω(T )c

�

Then, Claim 5 proves that every position of the spy that is controlled by the guards in a
configuration ω is also controlled by the guards in the configuration ωr.

Claim 5. For any configuration ω : V (T )→ R+, cont(T, ω) ⊆ cont(T, ωr)

Proof of the claim. Let u ∈ cont(T, ω). By definition,
∑
v∈Nd[u] ω(v) ≥ 1. Let r′ be the vertex

in Nd[u] that is closest to the root r, and let T ′ be the subtree of T rooted in r′. Finally, let
T ′1, · · · , T ′h be the subtrees of T ′ \Nd[u]. By Claim 4, ωr(T ′) = bω(T ′)c and ωr(T ′i ) = bω(T ′i )c
for any 1 ≤ i ≤ h. Hence,

ωr(T ′) =
∑

v∈Nd[u]

ωr(v) +
∑

1≤i≤h

ωr(T ′i ) =
∑

v∈Nd[u]

ωr(v) +
∑

1≤i≤h

bω(T ′i )c

and,

ωr(T ′) = bω(T ′)c =

 ∑
v∈Nd[u]

ω(v) +
∑

1≤i≤h

ω(T ′i )


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Since
∑
v∈Nd[u] ω(v) ≥ 1, it follows that ∑
v∈Nd[u]

ω(v) +
∑

1≤i≤h

ω(T ′i )

 ≥ 1 +

 ∑
1≤i≤h

ω(T ′i )

 ≥ 1 +
∑

1≤i≤h

bω(T ′i )c

Altogether, 1 +
∑

1≤i≤hbω(T ′i )c ≤ ωr(T ′) =
∑
v∈Nd[u] ω

r(v) +
∑

1≤i≤hbω(T ′i )c. Therefore,∑
v∈Nd[u] ω

r(v) ≥ 1 and u ∈ cont(T, ωr). �

Finally, Claim 6 shows that the moves that were valid in σ still hold in the “rounded”
strategy.

Claim 6. Let ω1, ω2 : V (T ) 7→ R+ be two configurations such that the guards can go from ω1

to ω2 in one step (there is feasible flow from ω1 to ω2). Then, the guards can go from ωr1 to ωr2
in one step (there is feasible integral flow from ωr1 to ωr2).

Proof of the claim. The proof is by induction on k = ωr1(T ) (Note that k = ωr2(T )), the result
being trivial when k = 0. Let f be the flow representing the move of the guards from ω1 to ω2.
Clearly, we may assume that, ∀u, v ∈ V , at most one of f(u, v) and f(v, u) is non-null.

Among all vertices v ∈ V such that ω1(Tv) ≥ 1 or ω2(Tv) ≥ 1, let x be a lowest one (such
a vertex furthest from the root). By symmetry (there is a feasible flow from ω1 to ω2 if and
only if there is a feasible flow from ω2 to ω1), up to exchanging ω1 and ω2, we may assume
that ω1(Tx) ≥ 1. Note that, by minimality of x, for every descendant u ∈ V (Tx) \ {x} of x,
ω1(Tu) < 1 and ω2(Tu) < 1.

Now, let γ1 be the function defined by γ1(x) = ω1(Tx)− 1, γ1(u) = 0 for every descendant u
of x, and γ1(v) = ω1(v) for every v ∈ V \ V (Tx). Note that γr1(v) = ωr1(v) for every v ∈ V \ {x}
and γr1(x) = ωr1(x)− 1. Now, there are two cases to be considered.

• First, assume that ω2(Tx) ≥ 1. In this case, let γ2 be the function defined by γ2(x) =
ω2(Tx)−1, γ2(u) = 0 for every descendant u of x, and γ2(v) = ω2(v) for every v ∈ V \V (Tx).
Note that there is a feasible flow f ′ from γ1 to γ2: for any u, v ∈ V (Tx), f ′(u, v) = 0 and
for any u ∈ V , v ∈ V \ V (Tx), f ′(u, v) = f(u, v). Note also that γr2(v) = ωr2(v) for every
v ∈ V \ {x} and γr2(x) = ωr2(x)− 1.
By induction (since γr1(T ) = γr2(T ) = ωr1(T ) − 1), there is a feasible integral flow f∗ from
γr1 to γr2 . Since ωr1 (resp., ωr2) is obtained from γr1 (resp., γr2) by adding 1 guard in x, this
flow f∗ is also a feasible integral flow from ωr1 to ωr2.

• Second, ω2(Tx) < 1. Let p be the parent of x (x cannot be the root since ωr2(T ) ≥ 1). Note
that, because there is flow from ω1 to ω2, then ω2(p) + ω2(Tx) ≥ ω1(Tx) ≥ 1.
In this case, let γ2 be the function defined by γ2(u) = 0 for every u ∈ V (Tx), γ2(v) = ω2(v)
for every v ∈ V \ (V (Tx) ∪ {p}) and γ2(p) = ω2(p) + ω2(Tx)− 1 ≥ 0.
Note that there is a feasible flow f ′ from γ1 to γ2: for any u, v ∈ V (Tx), f ′(u, v) = 0, for
any u, v ∈ V \V (Tx), f ′(u, v) = f(u, v), and f ′(x, p) = γ1(x). Note also that γr2(v) = ωr2(v)
for every v ∈ V \ {p} and γr2(p) = ωr2(p)− 1.
By induction (since γr1(T ) = γr2(T ) = ωr1(T ) − 1), there is a feasible integral flow f∗ from
γr1 to γr2 . Since ωr1 (resp., ωr2) is obtained from γr1 (resp., γr2) by adding 1 guard in x (resp.,
in p), there is a feasible integral flow from ωr1 to ωr2 that can be obtained from f∗ by adding
to it one unit of flow from x to p.

�

This concludes the proof of Theorem 3.

The second step in this section is to show that there is always an optimal fractional strategy
which is spy-positional. For this purpose, we prove the following theorem.
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Theorem 7. For any tree T and for any s ≥ 2, d ≥ 0, fgn∗s,d(T ) = fgns,d(T ). More precisely,

any fractional winning strategy using a total amount of k ∈ R+ guards can be transformed into
a spy-positional winning strategy using k guards.

Proof. Let σ = {Cv}v∈V be any fractional winning strategy using a total amount of k ∈ R+

guards to control a spy with speed s ≥ 2, at distance d ≥ 0, and in an n-node tree T = (V,E).
Recall that, for any vertex v ∈ V , Cv is the set of possible configurations ω : V → R+ for the
guards when the spy is at v.

The proof consists in defining a spy-positional strategy σmin that is a winning strategy
using k guards. For any v ∈ V , we will define the function ωminv : V → R+ to be the (unique)
configuration of σmin when the spy is at v, i.e., σmin = {ωminv }v∈V . We first prove that σmin

is a strategy using k guards (Claims 8-9), then that the spy at v ∈ V is controlled at distance
d by the guards in the configuration ωminv (Claim 10). Finally, we prove that, for any move of
the spy from v to v′ ∈ V , the guards can move from ωminv to ωminv′ (Claim 11).

From now on, T is rooted in an arbitrary vertex r ∈ V .
Notations. For any weight function ω : V → R+, let ω+ : V → R+ be the cumulative

function of ω, defined by, for every u ∈ V , ω+(u) =
∑
v∈V (Tu)

ω(v) = ω(Tu). Let v ∈ V and

Cv = {ω1, · · · , ωh} ∈ σ be the set of configurations of the guards, when the spy is in v. Let
αv : V → R+ be such that, for every u ∈ V , αv(u) = min1≤i≤h ω

+
i (u). Now, ωminv is defined as

the (unique) function such that αv is its cumulative function, i.e., αv = (ωminv )+. Formally, for
every u ∈ V : ωminv (u) = αv(u)−

∑
x child of u αv(x).

Claim 8 proves that, for every v ∈ V , ωminv : V → R+ is a configuration.

Claim 8. For every u ∈ V , ωminv (u) ≥ 0.

Proof of the claim. Let 1 ≤ i ≤ h be an integer such that αv(u) = min1≤j≤h ω
+
j (u) = ω+

i (u).

By definition of αv, for every x ∈ Children(u), αv(x) = min1≤j≤h ω
+
j (x) ≥ ω+

i (x). Hence,

ωminv (u) ≥ ω+
i (u)−

∑
x∈Children(u) ω

+
i (x) = ωi(u) ≥ 0. �

Claim 9 proves that, for every v ∈ V , the configuration ωminv uses k guards.

Claim 9. For every v ∈ V ,
∑
u∈V ω

min
v (u) = k.

Proof of the claim. For every 1 ≤ i ≤ h, ω+
i (r) = k. Hence, αv(r) = min1≤i≤h ω

+
i (r) = k.∑

u∈V ω
min
v (u) = (ωminv )+(r) = αv(r) = k (since αv is the cumulative function of ωminv ). �

Claim 10 proves that the guards in the configuration ωminv control a spy located at v.

Claim 10. For every v ∈ V ,
∑
u∈Nd[v] ω

min
v (u) ≥ 1.

Proof of the claim. Let v∗ be the vertex of Nd[v] that is closest to the root r. Let v1, · · · , vp
be the descendants of v∗ that are at distance exactly d + 1 from v. Since αv is the cumulative
function of ωminv , we have that

∑
u∈Nd[v] ω

min
v (u) = αv(v

∗)−
∑

1≤j≤p αv(vj). Let 1 ≤ i ≤ h be

an integer such that αv(v
∗) = min1≤j≤h ω

+
j (v∗) = ω+

i (v∗). Since the guards in configuration ωi
control the spy in v at distance d, we have that

∑
u∈Nd[v] ωi(u) = ω+

i (v∗)−
∑

1≤j≤p ω
+
i (vj) ≥ 1.

Hence,
∑
u∈Nd[v] ω

min
v (u) = αv(v

∗) −
∑

1≤j≤p αv(vj) = ω+
i (v∗) −

∑
1≤j≤p min1≤j′≤h ω

+
j′(vj) ≥

ω+
i (v∗)−

∑
1≤j≤p ω

+
i (vj) ≥ 1. �

Finally, Claim 11 shows that the moves that were valid in σ still hold for σmin.

Claim 11. For every v ∈ V and v′ ∈ Ns[v], there is a feasible flow from ωminv to ωminv′ .
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Proof of the claim. Let Cv = {ω1, · · · , ωh} ∈ σ (the configurations of σ when the spy is at v)
and Cv′ = {ω′1, · · · , ω′h′} ∈ σ (the configurations of σ when the spy is at v′). Since σ is a winning
strategy, it means that, for every 1 ≤ i ≤ h, there is 1 ≤ δ(i) ≤ h′, such that there is a feasible
flow from ωi ∈ Cv to ω′δ(i) ∈ Cv′ . That is, there is a function f i : V × V → R+ such that, for

every u ∈ V , ω′δ(i)(u) = ωi(u) +
∑
w∈N(u)(f

i(w, u) − f i(u,w)) and
∑
w∈N(u) f

i(u,w) ≤ ωi(u).

Note that, such a function f i can be defined as, for every u ∈ V and p ∈ V , the parent of u in T
rooted in r (if u 6= r), f i(u, p) = max{ωi(u)−ω′δ(i)(u), 0} and f i(p, u) = max{ω′δ(i)(u)−ωi(u), 0}.

Let u ∈ V , X ⊆ Children(u) be any subset of the children of u, and 1 ≤ i ≤ h. Because of
the existence of the flow f i,

∑
w∈X(ω′δ(i))

+(w) ≤ ωi(u) +
∑
w∈X ω

+
i (w), hence:

ω+
i (u) = ωi(u)+

∑
w∈X

ω+
i (w)+

∑
w∈Children(u)\X

ω+
i (w) ≥

∑
w∈X

(ω′δ(i))
+(w)+

∑
w∈Children(u)\X

ω+
i (w)

and so, since for every w ∈ V , αv′(w) = min1≤j≤h′ ω
′
j(w) and αv(w) = min1≤j≤h ωj(w):

ω+
i (u) ≥

∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

The above inequality holds for every 1 ≤ i ≤ h. Since αv(u) = min1≤i≤h ω
+
i (u), it follows

that:

αv(u) ≥
∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

By similar arguments (because, by symmetry, there is a flow from ω′j to some ωj′ for every
1 ≤ j ≤ h′), we get

αv′(u) ≥
∑
w∈X

αv′(w) +
∑

w∈Children(u)\X

αv(w)

We need to prove that there exists a function f : V × V → R+ such that, for every u ∈ V ,
ωminv′ (u) = ωminv (u) +

∑
w∈N(u)(f(w, u)− f(u,w)) and

∑
w∈N(u) f(u,w) ≤ ωminv (u).

For every u ∈ V , let p ∈ V be the parent of u in T rooted in r (if u 6= r). Let fmin(u, p) =
max{αv(u)− αv′(u), 0} and let fmin(p, u) = max{αv′(u)− αv(u), 0}.

It is clear that, for every u ∈ V , ωminv′ (u) = ωminv (u) +
∑
w∈N(u)(f

min(w, u) − fmin(u,w)).

Hence, we only need to prove that
∑
w∈N(u) f

min(u,w) ≤ ωminv (u).

Let u ∈ V , p its parent (if u 6= r) and let X ⊆ Children(u) be the set of vertices such that,
for every w ∈ X, fmin(u,w) = αv′(w)− αv(w) > 0. There are two cases to be considered.

• First, let us assume that fmin(u, p) = 0.

ωminv (u) =αv(u)−
∑

w∈Children(u)

αv(w)

=(αv(u)−
∑

w∈Children(u)\X

αv(w))−
∑
w∈X

αv(w)

≥
∑
w∈X

(αv′(w)− αv(w)) =
∑

w∈N(u)

fmin(u,w)
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• Second, assume that fmin(u, p) = δ > 0.

ωminv (u) =αv(u)−
∑

w∈Children(u)

αv(w)

=αv′(u) + δ −
∑

w∈Children(u)

αv(w)

=δ + (αv′(u)−
∑

w∈Children(u)\X

αv(w))−
∑
w∈X

αv(w)

≥δ +
∑
w∈X

(αv′(w)− αv(w)) =
∑

w∈N(u)

fmin(u,w)

�

This concludes the proof of Theorem 7.

We can now prove the main theorem of this section.

Theorem 12. Let s ≥ 2 and d ≥ 0 be two integers. There is a polynomial-time algorithm that
computes an integral winning strategy using gns,d(T ) guards to control a spy with speed s at
distance d in any tree T .

Proof. By Theorem 7, there exists an optimal (fractional) winning strategy that is spy-positional.
By Theorem 1, such a strategy can be computed in polynomial time. By Theorem 3, an opti-
mal integral winning strategy can be computed in polynomial time from any optimal fractional
winning strategy.

5 Spy-game in Grid and Torus

It is clear that, for any n × n grid G, gns,d(G) ≤ |V (G)| = O(n2). However, the exact order
of magnitude of gns,d(G) is not known. In this section, we prove that there exists β > 0, such
that Ω(n1+β) guards are necessary to win against one spy in an n × n-grid. Our lower bound
actually holds for the fractional relaxation of the game. Precisely, we prove that fgns,d(G) is
super-linear and sub-quadratic (in the side n).

Let n,m ≥ 2 be two integers. We consider the n×m toroidal grid TGn×m = (V,E), i.e., the
graph with vertices vi,j = (i, j) and edges {(i, j), (i+1 mod n, j)} and {(i, j), (i, j+1 mod m)},
for all 0 ≤ i < n and 0 ≤ j < m. The n×m grid Gn×m is obtained from TGn×m by removing
the edges {{(i,m− 1), (i, 0)}; {(n− 1, j), (0, j)} | ∀0 ≤ i < n, 0 ≤ j < m}.

First, we show that the number of fractional (resp., integral) guards required in the grid and
in the torus have the same order of magnitude. Precisely:

Lemma 13. For every n,m ≥ 2, s ≥ 2, d ≥ 0, and for every f ∈ {gns,d, fgns,d, fgn∗s,d}:

f(TGn×m)/4 ≤ f(Gn×m) ≤ 4 · f(TGn×m).

Proof. Let us present the proof in the integral case, i.e., when f = gns,d, the other two cases
are similar.

Let σ be a winning strategy using k guards in TGn×m. We define a winning strategy using 4k
guards in Gn×m. For this purpose, let us label the guards used by σ as G1, · · · , Gk. In Gn×m,
the behavior of Guard Gi (1 ≤ i ≤ k) is “simulated” by four guards as follows. The guard
Gi being at (x, y) ∈ V (TGn×m) is simulated by one guard at each of the four vertices: (x, y),
(n−1−x, y), (x,m−1−y) and (n−1−x,m−1−y). Hence, gns,d(Gn×m) ≤ 4 ·gns,d(TGn×m).

Let σ be a winning strategy using k guards in Gn×m. We define a winning strategy using
4k guards in TGn×m. Our strategy actually allows to control four spies whose moves are

12



correlated. Precisely, assume that when one spy occupies vertex (x, y), the three other spies
occupy respectively (n− 1− x, y), (x,m− 1− y) and (n− 1− x,m− 1− y). We divide the 4k
guards into four teams, each of which uses the strategy σ (i.e., they all act as if they were in the
grid) to control one of the four spies. When some spies cross an edge of E(TGn×m) \E(Gn×m),
some teams will exchange their target. Hence, gns,d(TGn×m) ≤ 4 · gns,d(Gn×m).

The first of the two main results of this section is:

Theorem 14. There exists β > 0 such that, for every s ≥ 2, d ≥ 0,

Ω(n1+β) = fgns,d(Gn×n).

Corollary 15. There exists β > 0 such that, for every s ≥ 2, d ≥ 0, Ω(n1+β) = gns,d(Gn×n).

Section 5.1 is devoted to prove Theorem 14, and Section 5.2 will be devoted to prove the
second main result of this section which is that fgns,d(Gn×n) and fgns,d(TGn×n) are sub-
quadratic (in the side n).

5.1 Lower bound in Grids

The goal of this section is to prove that there exists β > 0 such that Ω(n1+β) = fgns,d(Gn×n),
i.e., the number of guards required in any n× n-grid is super-linear in the side n of the grid.

For this purpose, let us define (yet) another parameter. For any s ≥ 2, d ≥ 0, t ≥ 0, q ≥ 1,
and any graph G (note that t may be a function of |V (G)|), let gnq,ts,d(G) be the minimum
number k of guards such that there is an integral strategy using k guards that ensures that at
least q guards are at distance at most d from a spy with speed s during at least t steps. Note
that, by definition, supt gn

1,t
s,d(G) ≤ gns,d(G).

The first step of the proof is that gnq,2ns,d (Gn×n) = Ω(q ·n log n) in any n×n-grid and then to
extend this result to the fractional strategies. This result will be used as a “bootstrap” in the
induction proof for the main result. Let H : R+ → R+, H(x) =

∑
1≤i≤x 1/i for every x ∈ R+.

Lemma 16. ∃β ≥ 1/16 such that for any s ≥ 2, d ≥ 0, q > 0, gq,2ns,d (Gn×n) ≥ β · q · n
d+1H( n

d+1 ).

Proof. The proof is for s = 2 since gq,2ns,d (Gn×n) ≥ gq,2n2,d (Gn×n).
In order to prove the result, we will consider a family of strategies for the spy. For every

0 ≤ r < n, the spy starts at position (0, 0) and runs at full speed toward (r, 0). Once there, it
continues at full speed toward (r, n − 1). We name Pr the path it follows during this strategy,
which is completed in d 12 (r+n− 1)e steps. Note that the guards may be aware of the family of
strategies played by the spy but do not know r in advance.

Let us assume that there exists a strategy using an amount k of guards that maintains at
least q guards at distance at most d from the spy during at least 2n turns. Moreover, the spy
only plays the strategies described above.

Assuming that the guards are labeled with integers in {1, · · · , k}, we can name at any time
of strategy Pr the labels of q guards that are at distance at most d from the spy. In this way,
let c(i, j) denote this set of q guards that are at distance at most d from the spy, when the spy
is at position (i, j).

Claim 17. If |j2 − j1| > 2d, then c(r, 2j1) and c(r, 2j2) are disjoint.

Proof of the claim. Assuming j1 < j2, it takes j2 − j1 steps for the spy in strategy Pr to go
from (r, 2j1) to c(r, 2j2). A guard cannot be at distance at most d from (r, 2j1) and, j2 − j1
steps later, at distance at most d from (r, 2j2). Indeed, to do so its speed must be at least
2(j2 − j1 − d)/(j2 − j1) > 1, a contradiction. �

Claim 18. If |r2 − r1| > 2d+ 2 min(j1, j2), then c(2r1, 2j1) and c(2r2, 2j2) are disjoint.
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Proof of the claim. Assuming r1 < r2, note that strategies P2r1 and P2r2 are identical for the
first r1 steps. By that time, the spy is at position (2r1, 0). If c(2r1, 2j1) intersects c(2r2, 2j2), it
means that at this instant some guard is simultaneously at distance at most d+j1 from (2r1, 2j1)
(strategy P2r1) and at distance at most d + |r2 − r1| + j2 from (2r2, 2j2) (strategy P2r2). As
those two points are at distance 2|r2 − r1|+ 2|j2 − j1| from each other, we have:

2|r2 − r1|+ 2|j2 − j1| ≤ (d+ j1) + (d+ |r2 − r1|+ j2)

|r2 − r1|+ 2|j2 − j1| ≤ 2d+ j1 + j2

|r2 − r1| ≤ 2d+ 2 min(j1, j2) �

We can now proceed to prove that the number of guards is sufficiently large. To do so, we
define a graph H on a subset of V (Gn×n) and relate the distribution of the guards (as described
by c) with the independent sets of H. Intuitively, an independent set I in H will consist of a
set of sets c(i, j) of guards that must be pairwise disjoint. It is defined over V (H) = {(2r, 4dj) :
0 ≤ 2r < n, 0 ≤ 4dj < n}, where:

• (2r, 4dj1) is adjacent with (2r, 4dj2) for j1 6= j2 (see Claim 17).

• (2r1, 4dj1) is adjacent with (2r2, 4dj2) if |r2 − r1| > 4d(1 + min(j1, j2)) (see Claim 18).

By definition, c gives q colors to each vertex of H and any set of vertices of H receiving a
common color is an independent set of H. If we denote by #c−1(x) the number of vertices which
received color x, and by α(2r,4dj)(H) the maximum size of an independent set of H containing
(2r, 4dj), we have:

k ≥
∑

(2r,4dj)∈V (H)

∑
x∈c(2r,4dj)

1

#c−1(x)

≥
∑

(2r,4dj)∈V (H)

q

α((2r,4dj))(H)

It is easy, however, to approximate this lower bound.

Claim 19. α((2r,4dj))(H) ≤ 4d(j + 1) + 1

Proof of the claim. An independent set S ⊆ V (H) containing (2r, 4dj) cannot contain two
vertices with the same first coordinate. Furthermore, (2r, 4dj) is adjacent with any vertex
(2r′, 4dj′) if |r′ − r| > 4d(1 + j). �

We can now finish the proof:

k ≥
∑

(2r,4dj)∈V (H)

q

α((2r,4dj))(H)

≥
∑

(2r,4dj)∈V (H)

q

4d(j + 1) + 1

≥ n

2

∑
j∈{0,...,n/4d}

q

4d(j + 1) + 1

≥ qn

8d+ 2

∑
j∈{1,··· ,n/4d+1}

1

j
≥ qn

8d+ 2
H(

n

4d+ 1
)

where H is the harmonic function.

Next, we aim at transposing Lemma 16 in the case of fractional strategies.
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Lemma 20. Let n, a ∈ N∗ such that d = 2n/a ∈ N. There exists γ > 0 such that fgns,d(Gn×n) ≥
γaH(a), where H is the harmonic function. Moreover, against a smaller amount of guards, the
spy wins after at most 2n steps starting from a corner of Gn×n.

Proof. Let us start by the following claim.

Claim 21. Let G be any graph with n vertices and d, s, t, q ∈ N. Then,

gnq,ts,d(G) ≤ q · fgns,d(G) + (t+ 1)n2

Proof of the claim. From a fractional strategy using a total amount c of guards, let us define an
integral strategy keeping at least q guards at distance at most d from the spy during at least t
steps.

Initially, each vertex which has an amount x of guards receives bxqc+ (t+ 1)n guards. That
is, our integral strategy uses at most

∑
v∈V (G)((bxvqc+ (t+ 1)n) ≤ (t+ 1)n2 +

∑
v∈V (G) xvq ≤

(t+ 1)n2 + cq guards.
We then ensure that, at every step t′ ∈ {1, ..., t}, a vertex occupied by an amount of x guards

in the fractional strategy is occupied by at least bxqc+ (t− t′)n guards in the integral strategy.
To this aim, whenever an amount xuv of guards is to be moved from u to v in the fractional
strategy, we move bxuvqc+ 1 in the integral strategy.

Precisely, let xv (resp., x′v) be the amount of guards at v at step t′ (resp., at t′ + 1). Let
A ⊆ N(v) be the set of neighbors of v sending it a positive amount of flow and let B ⊆
N(v) be the set of neighbors of v that receive a positive amount of flow from x. We have
xv +

∑
u∈A xuv −

∑
u∈B xvu = x′v.

In the integral strategy, by induction on t′, we get that, after step t′+1, the number of guards
at v is at least bxvqc+ (t− t′)n+

∑
u∈A(bxuvqc+ 1)−

∑
u∈B(bxvuqc+ 1) ≥ xvq− 1 + (t− t′)n+∑

u∈A(xuvq + 1− 1)−
∑
u∈B(xvuq + 1) ≥ q(xv +

∑
u∈A xuv −

∑
u∈B xvu) + (t− t′)n− 1−B =

qx′v + (t − t′)n − 1 − B. Since B ⊆ N(v), |B| < n and so, the number of guards at v at step
t′ + 1 is at least qx′v + (t− t′ − 1)n.

As our invariant is preserved throughout the t steps, the spy which had an amount of at least
1 guard within distance d in the fractional strategy now has at least q guards around it, which
proves the result. Indeed, the number of guards at distance at most d from the spy (occupying
vertex y at step t′ ≤ t) is

∑
v∈Nd(y)(bxvqc+ (t− t′+ 1)n) ≥

∑
v∈Nd(y)(xvq− 1 + (t− t′+ 1)n) ≥

q
∑
v∈Nd(y) xv ≥ q �

Previous claim holds for every q ∈ N. Therefore, lim supq→∞
gq,ts,d(G)

q ≤ fgns,d(G).

Finally, by Lemma 16, there exists β > 0 such that gq,2ns,d (Gn×n) ≥ β · q · n
d+1H( n

d+1 ).
Altogether, for d = 2n/a ∈ N, there exists γ > 0 such that fgns,d(Gn×n) ≥ γaH(a).
Moreover, Lemma 16 shows that against strictly less than β · q · n

d+1H( n
d+1 ), the spy will win

in 2n steps, starting from the corner. By the claim, this result implies that the spy will win in
2n steps, starting from the corner, against less than γaH(a) fractional guards.

The next lemma is a key argument for this purpose. While it holds for any graph and its
proof is very simple, we have not been able to prove a similar lemma in the classical (i.e., non-
fractional) case. Note that this is the only part in this section where we really need to consider
the fractional variant of the spy game.

Lemma 22. Let G = (V,E) be any graph and s ≥ 2, d ≥ 0 be two integers with fgns,d(G) >
c ∈ Q∗ where the spy wins in at most t steps against c guards starting from v ∈ V (G).

For any fractional strategy using a total amount k > 0 of guards, there exists a strategy for
the spy (with speed s) starting from v ∈ V (G) such that after at most t steps, the amount of
guards at distance at most d from the spy is less than k/c.
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Proof. For purpose of contradiction, assume that there is a strategy S using k > 0 guards
that contradicts the lemma. Then consider the strategy S ′ obtained from S by multiplying the
number of guards by c/k. That is, if w ∈ V is initially occupied by q > 0 guards in S, then S ′
places qc/k guards at w initially (note that S ′ uses a total amount of kc/k=c guards). Then,
when S moves an amount q of guards along an edge e ∈ E, S ′ moves qc/k guards along e. Since
S contradicts the lemma, at any step ≤ t, at least an amount k/c of guards is at distance at
most d from the spy, whatever be the strategy of the spy. Therefore, S ′ ensures that an amount
of at least 1 cop is at distance at most d from the spy during at least t steps. This contradicts
that the spy wins after at most t steps against a total amount of c guards.

From Lemmas 20 and 22, we get

Corollary 23. Let a ∈ N∗. For any strategy using a total amount of k > 0 guards, there exists
a strategy for the spy (with speed s) starting from a corner of Gn×n such that after at most 2n
steps, the amount of guards at distance at most 2n/a from the spy is less than k · (aH(a))−1.

Theorem 24. ∃β, γ > 0 such that, for any n×n-grid Gn×n and s, d ∈ N (s ≥ 2 and d ≤ 2n/a0
where a0 ∈ N such that H(a0)−1 ≤ 1/2), the spy (with speed s) can win (for distance d) in at
most 2n steps against < γn1+β fractional guards.

Proof. Let a0 ∈ N be such that H(a0)−1 ≤ 1/2. Since fgns,d(Gn×n) is non-decreasing as a
function of n, it is sufficient to prove the lemma for n = (a0)i for any i ∈ N∗.

We prove the result by induction on i. It is clearly true for i = 1 since a0 is a constant.
Assume by induction that there exist γ, β > 0, such that, for i ≥ 1 with n = (a0)i, the spy (with

speed s) can win (for distance d) in at most 2n steps against γa
i(1+β)
0 guards in any n× n grid.

Let G be an n × n-grid with n = (a0)i+1. Let k ≤ γn1+β . By Corollary 23, there exists a
strategy for the spy (with speed s) starting from a corner of G such that after t ≤ 2n steps,
the amount of guards at distance at most 2n/a0 from the spy is less than k ∗ (a0H(a0))−1 ≤
k/(2a0) ≤ γn1+β/(2a0).

Let v be the vertex reached by the spy at step t of strategy S. Let G′ be any subgrid of
G with side n/a0 and corner v. By the previous paragraph, at most γn1+β/(2a0) guards can
occupy the nodes at distance at most d from any node of G′ during the next 2n/a0 steps of the
strategy. So, by the induction hypothesis, the spy playing an optimal strategy in G′ against at
most γn1+β/(2a0) guards will win.

This holds for all d ≤ 2n/a0 such that H(a0)−1 ≤ 1/2 since fgns,d′ ≥ fgns,d for d ≥ d′.

The above theorem proves Theorem 14 and Corollary 15.

5.2 Upper bound in Torus

The second of the two main results of this section is:

Theorem 25. There exists 0 < α ≤ log(3/2) ≈ 0.58 such that, for every s ≥ 2, d ≥ 0,

fgn∗s,d(TGn×n) = O(n2−α).

To prove Theorem 25, we make use of the Linear Program (LP) of Section 3. Recall that,
in a spy-positional strategy, the positions of the guards (configuration) only depends on the
position of the spy. In any vertex-transitive graph (so in TGn×n), there is actually a unique
configuration to be considered (where the spy is occupying the vertex (0, 0)). Therefore, the LP
of Section 3 can be reformulated as follows.

We are looking for a function ω : {0, · · · , n − 1}2 → R+ such that ω(i, j) is the amount of
guards occupying the vertex (i, j) when the spy is occupying the vertex (0, 0). This function must
be defined such as to minimize the number of guards, i.e.,

∑
0≤i,j<n ω(i, j) must be minimum,
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subject to the following constraints. The spy must be controlled, i.e.,
∑

(i,j)∈Nd[(0,0)] ω(i, j) ≥ 1.

Moreover, for any move of the spy from (0, 0) to (x, y) ∈ Ns[(0, 0)], there must be a feasible flow
from the configuration (ω(i, j))(i,j)∈V (TGn×n) to (ω(i − x, j − y))(i,j)∈V (TGn×n). Before going
further, let us simplify the latter constraint. Indeed, instead of considering every possible move
of the spy in Ns[(0, 0)], we only consider the extremal moves from (0, 0) to one of the vertices in
{(0, s), (s, 0), (−s, 0), (0,−s)}, i.e., we weaken the spy by allowing it to move only “horizontally”
or “vertically” at full speed. We prove in Lemma 26 that it does not change the order of
magnitude of an optimal solution.

Lemma 26. Let n, s ≥ 2, and d ≥ 0 be integers. Assume that there exists a (fractional or
integral) winning strategy using k guards to control a spy, with speed s and restricted moves, at
distance d in the n×n-torus. Then, there exists a (fractional or integral) winning strategy using
O(s2k) guards to control a spy, with speed s, at distance d in the n× n-torus.

Proof. The proof is written in the integral case. The fractional case is similar.
For any strategy of a (non-restricted) spy, we will define a strategy for a restricted spy,

called the spy’s shadow, that ensures that the shadow is always at distance at most 2s from
the non-restricted spy. To control the non-restricted spy, the strategy consists of applying the
strategy σ against its shadow (i.e., using k guards) and replacing each guard γ of σ by O(s2)
guards, one at every vertex at distance at most 2s from the position of γ.

The shadow starts at the same vertex as the spy and “follows” it but only using restricted
moves. The shadow can easily stay at distance < 2s from the spy if the spy moves from a vertex
at distance < 2s from the shadow to a vertex at distance at least 2s (but < 3s since the spy
has speed s) from the shadow. This means, then, that the shadow is at a position such that
one of its coordinates differs by at least s from one of the spy’s coordinates. So it can decrease
its distance to the spy by exactly s using a restricted move. This means that after the shadow
moves, the distance is still < 2s.

The above LP, restricted to vertex-transitive graphs, is more efficient than the one presented
in Section 3 since there is only one configuration to be considered and less flow constraints (and
so, much less variables and constraints). In particular, it gives interesting experimental results
as presented in the conclusion. In what follows, we present and analyze a function using a
sub-quadratic (in n) number of guards that satisfies the above LP.

Precisely, let 0 < α < 1 and let d(v) (resp., d(i, j)) denote the distance between vertex v
(resp., (i, j)) and vertex (0, 0) in TGn×n.

Definition 27 (Strategies ωα). Let us consider the spy-positional strategy ωα of the form
ωα(i, j) = B

(d(i,j)+1)α for every (i, j) ∈ V (TGn×n) and for some constant B defined later.

Note that ωα is symmetric, i.e., ωα(i, j) = ωα(n−i, j) = ωα(i, n−j mod n) = ωα(n−i, n−j
mod n). Therefore, by symmetry, we only need to check that there is a feasible flow from the
configuration (ωα(i, j))(i,j)∈V (TGn×n) to the one (ωα(i − s, j))(i,j)∈V (TGn×n), i.e., when the spy
goes from (0, 0) to (s, 0).

Equivalently, the flow constraints can be defined as a flow problem in a transportation bi-
partite auxiliary network H defined as follows (i.e., the constraints are satisfied if and only if
there is feasible flow in H). Let H = (V1 ∪ V2, E(H)) be the graph such that V1 and V2 are
two copies of V (TGn×n). There is an arc from u ∈ V1 to v ∈ V2 if {u, v} ∈ E(TGn×n). Each
vertex (i, j) ∈ V1 has a supply ωα(i, j) and every vertex (i′, j′) ∈ V2 has a demand ωα(i− s, j).
By Hall’s Theorem [6], there is a feasible flow in H if and only if, for every A ⊆ V1, the total
supply in N [A] is at least the demand in A ⊆ V2, i.e., at least

∑
(i,j)∈A ωα(i− s, j).

To summarize, the flow constraints can be stated as:

∀A ⊆ V (TGn×n),
∑

(i,j)∈N [A]

ωα(i, j) ≥
∑

(i,j)∈A

ωα(i− s, j). (9)
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We aim at deciding the range of α such that the function ωα satisfies constraint 9. For this
purpose, we first aim at finding a setHs ⊆ V (TGn×n) such that κα(Hs) =

∑
(i,j)∈N [Hs] ωα(i, j)−∑

(i,j)∈Hs ωα(i− s, j) is minimum. For such a set Hs, if κα(Hs) ≥ 0, it implies that ωα satisfies
constraint 9.

Let Hs be the set of vertices (i, j) ∈ V (TGn×n) defined by:

Hs = {(i, j) | s/2 ≤ i ≤ (n+ s)/2 mod n, 0 ≤ j < n}.

Lemma 28. Let α > 0 and s ≤ n/2. For every A ⊆ V (TGn×n), κα(A) ≥ κα(Hs).

Proof. For simplicity of calculations, let us assume that both s and n are even. For any 0 ≤
i < n, the row Li equals {(i, j) | 0 ≤ j < n} and, for any 0 ≤ j < n, the column Cj equals
{(i, j) | 0 ≤ i < n}.

For any integer `, let f` : V → R+ be the function such that, for any vi,j ∈ V ,

f`(i, j) =
1

(d((i, j), (`, 0)) + 1)α

where d(x, y) denotes the distance between x and y in G.
Note that

Claim 29. For any i, j, fs(i, j) = f0(i− s mod n, j).

For any A ⊆ V (TGn×n), let us define the border δ(A) of A as δ(A) = {w /∈ A | ∃v ∈
A, {v, w} ∈ E}, i.e., the set of vertices not in A that have a neighbor in A.

Note that:

κα(A) =
∑

v∈N [A]

f0(v)−
∑
v∈A

fs(v) =
∑
v∈A

(f0(v)− fs(v)) +
∑

v∈δ(A)

f0(v).

To find a vertex-set minimizing the above function, we actually define another function
lower bounding the previous one. We identify a set Amin minimizing this second function such
that both functions achieve the same value for Amin. Therefore, Amin also minimizes the first
function.

The vertical border µ(A) equals {(i, j) /∈ A | (i+ 1 mod n, j) ∈ A or (i− 1 mod n, j) ∈ A},
i.e., the set of vertices not in A that have a neighbor in A and in the same column. Note that
µ(A) ⊆ δ(A) for any A ⊆ V .

Let us set
γ(A) =

∑
v∈A

(f0(v)− fs(v)) +
∑

v∈µ(A)

f0(v).

Since f0 is positive and µ(A) ⊆ δ(A),

Claim 30. κα(A) ≥ γ(A) for any A ⊆ V .

A useful property of γ is that columns are somehow “independent”.

Claim 31. γ(A) =
∑

0≤j<m γ(A ∩ Cj).

Note that Hs = {vi,j | s/2 ≤ i ≤ (n+ s)/2 mod n, 0 ≤ j < n} is the set of vertices v such
that f0(v)− fs(v) ≤ 0. Moreover, note that µ(Hs) = δ(Hs) and so:

Claim 32. γ(Hs) = κα(Hs).

Another useful property is that, by the first claim (and telescopical sum),
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Claim 33. For any 0 ≤ j < n,

γ(Hs ∩ Cj) =
∑

−s/2+1≤i≤s/2+1

f0(n/2 + i mod n, j)−
∑

−s/2≤i≤s/2−2

f0(i, j).

Proof of the claim.

γ(Hs ∩ Cj) =

(n+s)/2 mod n∑
i=s/2

f0(i, j)− fs(i, j)

+ f0(s/2− 1, j) + f0((n+ s)/2 + 1 mod n, j)

=

(n+s)/2 mod n∑
i=s/2

f0(i, j)− f0(i− s, j)

+ f0(s/2− 1, j) + f0((n+ s)/2 + 1 mod n, j)

=

(n+s)/2+1 mod n∑
i=(n−s)/2+1

f0(i, j)−
s/2−2∑
i=−s/2

f0(i, j)

�

The above proof actually extends to the following. Let

H(a, b) ∩ Cj = {(i, j) | a mod n ≤ i ≤ b mod n}

Claim 34. For any |a− b| > 1,

γ(H(a, b) ∩ Cj) =
∑

−s/2+1≤i≤s/2+1

f0(b− s/2 + i, j)−
∑

−s/2≤i≤s/2−2

f0(a− s/2 + i, j).

The remaining part of this section is devoted to prove that Hs minimizes κα. Precisely, let
us prove that γ(Hs) = minA⊆V γ(A). This follows from the two following claims and previous
claims.

Claim 35. Let X be such that γ(X) = minA⊆V γ(A). Then, for any 0 ≤ j < n, X ∩ Cj is
connected.

Proof of the claim. First, assume that there exists a vertex v ∈ Cj\X such that its two neighbors
in Cj are in X. Then, γ(X ∪ {v}) = γ(X)− fs(v) < γ(X). Therefore, by minimality of γ(X),
there are no such vertices.

If there is (n+ s)/2 < i < n+ s/2 mod n such that u = (i, j) ∈ X, w = (i+ 1, j) /∈ X, and
(i − 1, j) ∈ X. Note that, by the previous paragraph, (i + 2, j) /∈ X. Therefore, γ(X \ u) =
γ(X) − f0(w) + fs(u) < γ(X). The last inequality is because f0(w) > fs(u) because of the
choice of i. This contradicts the minimality of γ(X). If on the other hand, (i− 1, j) /∈ X, then
γ(X \ u) = γ(X)− f0(w)− f0(u) + fs(u) < γ(X) which contradicts the minimality of γ(X).

“Symmetrically”, if there is s/2 ≤ i ≤ (n+ s)/2 such that u = (i, j) /∈ X, w = (i−1, j) ∈ X,
and (i + 2, j) /∈ X. Note that, by the first paragraph, (i + 1, j) /∈ X. Therefore, γ(X ∪ {u}) =
γ(X)− fs(u) + f0(i+ 1, j) < γ(X). The last inequality is because f0(i+ 1, j) < fs(u) because
of the choice of i. This contradicts the minimality of γ(X). If on the other hand, (i+ 2, j) ∈ X,
then γ(X ∪ {u}) = γ(X)− fs(u) < γ(X) which contradicts the minimality of γ(X).

If X ∩ Cj would not be connected, one of the cases of the two previous paragraphs should
occur. Therefore, X ∩ Cj is connected. �

Claim 36. Let 0 ≤ j < m. For any X ⊆ V such that X ∩ Cj is connected, γ(Hs ∩ Cj) ≤
γ(X ∩ Cj).
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Proof of the claim. Since X ∩Cj is connected, it has the form H(a, b)∩Cj for some a and b. We
assume that |a − b| > 1 (the other case can be done similarly). Therefore, by previous claims,
it remains to prove that, for any a and b, γ(Hs ∩ Cj) ≤ γ(H(a, b) ∩ Cj).

γ(H(a, b) ∩ Cj)− γ(Hs ∩ Cj) =

∑
−s/2+1≤i≤s/2+1

(f0(b− s/2 + i, j)− f0(n/2 + i, j))−
∑

−s/2≤i≤s/2−2

(f0(a− s/2 + i, j)− f0(i, j)).

Since the function f0 is maximum around i = 0 and minimum around i = n/2, it is easy to
check that, for any a and b:∑

−s/2+1≤i≤s/2+1

(f0(b− s/2 + i, j)− f0(n/2 + i, j)) ≥ 0

and ∑
−s/2≤i≤s/2−2

(f0(a− s/2 + i, j)− f0(i, j)) ≤ 0.

Hence, γ(H(a, b) ∩ Cj)− γ(Hs ∩ Cj) ≥ 0. �

By previous claims, κα(Hs) = γ(Hs) = minA⊆V γ(A) ≤ minA⊆V κα(A).
Hence, κα(Hs) = minA⊆V κα(A).

Finally, we are ready to present a winning strategy in the n× n torus which proves Th. 25.

Lemma 37. Let n, s ≥ 2, s ≤ n/2, d ≥ 0 and 0 < α ≤ log(3/2). There exists a constant B > 0
(independent of n) such that the function ωα : V (TGn×n) → R+ where ωα(v) = B

(d(v)+1)α for

every v ∈ V (TGn×n) is a spy-positional winning fractional strategy that uses O(n2−α) guards
to control a spy with speed s at distance d in TGn×n.

Proof. To verify that ωα is a winning strategy, we need to prove that it satisfies constraints 3 and
9. Let Bd be the set of vertices at distance at most d from (0, 0) and let B = 1/

∑
v∈Bd

1
(d(v)+1)α .

The total amount of guards used by the strategy is:∑
v∈V (TGn×n)

B

(d(v) + 1)α
=B(

∑
0≤i≤bn/2c

4(i+ 1)

(i+ 1)α
+

∑
bn/2c<i<n

4(n− i)
(i+ 1)α

) = O(n2−α)

Constraint 3 states that
∑
v∈Bd ωα(v) ≥ 1 which is satisfied by the choice of B.

Constraint 9 states that, ∀A ⊆ V (TGn×n),
∑

(i,j)∈N [A] ωα(i, j) ≥
∑

(i,j)∈A ωα(i− s, j).
By Lemma 28, we know that κα(A) =

∑
(i,j)∈N [A] ωα(i, j)−

∑
(i,j)∈A ωα(i−s, j) is minimum

for A = Hs, where Hs = {(i, j) | s/2 ≤ i ≤ (n+ s)/2 mod n, 0 ≤ j < n}. Hence, it is sufficient
to show that κα(Hs) ≥ 0.

Again, for ease of presentation, let us assume that s and n are even.

κα(Hs) =
∑

s/2−1≤i≤(n+s)/2+1,0≤j<n

B

(d(i, j) + 1)α
−

∑
s/2≤i≤(n+s)/2,0≤j<n

B

(d(i− s, j) + 1)α

Because s ≤ n/2, this can be simplified as :
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κα(Hs) =
∑

(n−s)/2+1≤i≤(n+s)/2+1,0≤j<n

B

(d(i, j) + 1)α
−

∑
−s/2≤i≤s/2−2,0≤j<n

B

(d(i, j) + 1)α

≥(s+ 1)
∑

0≤j<n

B

(d(n/2, j) + 1)α
− (s− 1)

∑
0≤j<n

B

(d(0, j) + 1)α

=2(s+ 1)
∑

0≤j≤n/2

B

(d(n/2, j) + 1)α
− (s+ 1) ·B

(d(n/2, 0) + 1)α
− (s+ 1) ·B

(d(n/2, n/2) + 1)α

− 2(s− 1)
∑

0≤j≤n/2

B

(d(0, j) + 1)α
+

(s− 1)B

(d(0, 0) + 1)α
+

(s− 1)B

(d(0, n/2) + 1)α

= 2(s+ 1)
∑

1≤j≤n/2+1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2+1

B

jα

− 2B

(n/2 + 1)α
− (s+ 1) ·B

(n+ 1)α
+ (s− 1)B

= 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα

− 2(s+ 1) ·B
(n/2)α

+
2(s+ 1) ·B

nα
+

2(s+ 1) ·B
(n+ 1)α

− 2(s− 1) ·B
(n/2 + 1)α

− 2B

(n/2 + 1)α
− (s+ 1) ·B

(n+ 1)α
+ (s− 1)B

≥ 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα
+O(1/nα)

And so:

κα(Hs) ≥ 2(s+ 1)
∑

0≤j≤n/2−1

B

(n/2 + j)α
− 2(s− 1)

∑
1≤j≤n/2

B

jα
+O(1/nα)

Since 0 < α, then p(x) = 1
xα is decreasing, and

b+1∫
a

p(t) dt ≤
∑b
x=a p(x) ≤

b∫
a−1

p(t) dt. Hence,

κα(Hs)/(2B) ≥(s+ 1)

n/2∫
0

1

(n/2 + t)α
dt− (s− 1)

n/2∫
0

1

tα
dt+O(1/nα)

=
1

1− α
[(s+ 1)((n)1−α − (n/2)1−α)− (s− 1)(n/2)1−α] +O(1/nα)

=
n1−α

1− α
[(s+ 1)(1− (1/2)1−α)− (s− 1)(1/2)1−α] +O(1/nα)

Hence, κα(Hs) ≥ 0 if 0 ≤ (s+1)(1− (1/2)1−α)− (s−1)(1/2)1−α In other words, κα(Hs) ≥ 0
if 2α ≤ s+1

s and 0 < α ≤ log(1 + 1/s) ≤ log(3/2).

Conclusion

Concerning the Spy-game, the main open question is to determine the exact value of gns,d(Gn×n)
in any n × n grid Gn×n (or torus). A first step towards such a result would be to prove
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density of guards on a plane 
representation of the 150*150  torus

Figure 1: Experimental results, s = 2 and d = 1. (Left) Density of guards on a plane representation
of the 150*150 torus in an optimal symmetrical Spy-positional configuration. (Right) Minimum
number of guards for symmetrical (red) and distance-invariant (blue) Spy-Positional strategies.

that gns,d(Gn×n) = O(gns′,d′(Gn×n)) for any s, s′ ≥ 2 and d, d′ ≥ 0. To get more intuition
on optimal strategies for guards, we used Cplex to solve the LP described in Section 3 with
additional constraints of symmetry. The left drawing in Fig. 1 represents the density of guards
in the torus of side 150 (where the central vertex is the position of the spy) for s = 2 and d = 1.
It shows that optimal symmetric Spy-positional (SSP) strategies may be much more intricate
than the strategy ωα we studied. For instance, it is not monotone when the distance to the
spy’s position increases. On the right, we plotted the number of guards used by optimal SSP
(in red) which is much less than n2−log(3/2) for n ≤ 250 (it is difficult to extrapolate further
intuition from such small values of n)3. Even the optimal distance-invariant strategies (i.e., the
density of guards is only a function of the distance to the spy’s position) computed using the LP
(plotted in blue) use much less guards than n2−log(3/2) (we did not plot the function n2−log(3/2)

for more readability, indeed, 502−log(3/2) > 500 and 2502−log(3/2) > 6600). In trees, it would
be interesting to design a combinatorial algorithm (i.e., not relying on the solution of a Linear
Program) that computes optimal strategies for controlling a spy with speed s at distance d.

More importantly, using the fractional framework to obtain new results in two-player com-
binatorial games in graphs seems promising.

3Solving the LP for n ≥ 150 takes more than one hour on a basic laptop
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on graphs. Technical report, INRIA, 2017. RR, http://hal.inria.fr/hal-.pdf.

[10] A. Z. Delaney and M. E. Messinger. Closing the gap: Eternal domination on 3 × n grids.
to appear in Contributions to Discrete Mathematics, 2015.

[11] F. V. Fomin, F. Giroire, A. Jean-Marie, D. Mazauric, and N. Nisse. To satisfy impatient
web surfers is hard. In 6th Int. Conf. on Fun with Algorithms (FUN), volume 7288 of
LNCS, pages 166–176, 2012.

[12] F. V. Fomin, P. A. Golovach, J. Kratochv́ıl, N. Nisse, and K. Suchan. Pursuing a fast
robber on a graph. Theor. Comput. Sci., 411(7-9):1167–1181, 2010.

[13] F. Giroire, D. Mazauric, N. Nisse, S. Pérennes, and R. P. Soares. Connected surveillance
game. In 20th International Colloquium on Structural Information and Communication
Complexity (SIROCCO), Lecture Notes in Computer Science. Springer, 2013.
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