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Introduction

Damping effects in materials produce a dissipative loss
of energy due to internal microscopic mechanisms that
could be referred to as friction or viscous effects, thus
making the distinction with purely elastic behaviors.
This loss of energy has to be taken into account either
towards the resulting temperature elevation that may
modify the properties of the material or towards the
design of structures if damping effects are sought. Re-
search efforts were first devoted to elaborate macro-
scopic constitutive equations that correctly describe the
dynamic behavior of such materials, relating input stress
and observed deformation response (or vice versa)
through material constants allowing for a classification
of various materials to be made (Ferry 1980; Tschoegl
1989). Then, besides the works done by physicists for a
deeper knowledge of the underlying microscopic mech-
anisms, approaches have been developed in two distinct
directions. For the first one, the objectives were to ex-
tend the dynamic validity of the identified laws to the

thermodynamic effects resulting from entropy produc-
tion (thermomechanic coupling). For the second one,
the objectives were to handle the multi scale nature of
the physical processes involved with as few parameters
as possible. The inferred laws was expected to be
intrinsic, that is independent of the excitation function
(or the frequency spectrum of its Fourier transform). Of
course, in both approaches, the production of macro-
scopic relationships linking controlled and measurable
variables was the aim.

The macroscopic theory of the Thermodynamics of
Irreversible Processes (TIP) is the conceptual framework
that offers the possibility to formulate phenomenologi-
cal constitutive equations of the rheology of materials.
This can involve, among others, the thermomechanic
coupling discussed above. If we add the intensive tem-
perature variable to the dynamic ones, it is possible to
obtain behavior laws that would allow us, for example,
to estimate physical parameters from dynamic experi-
ments that also reflect the temperature change occurring
in the sample. This can be measured elsewhere, with
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infrared based detection systems for example (Chryso-
choos and Peyroux 1998; Tauchert 1967; Dillon 1962).
One way for thermodynamic models to account for
irreversible processes inducing memory effects consists
in an increase of the thermodynamic fields through the
introduction of (unknown) internal state variables acting
through the thermodynamic potentials (Meixner 1949;
Biot 1958; Kluitenberg 1962; Schapery 1966; Coleman
and Gurtin 1967; Prigogine 1968; Nowick and Berry
1972; Allen 1985) and Kuiken 1994 for a recent appli-
cation to rheology. They lead to the so-called incomplete
systems widely employed to model relaxation phenom-
ena. Anelastic (non-zero entropy production) responses
are obtained through the summation of the contribution
of one or more internal mechanisms or processes, each
controlled by its own relaxation time.

Fractional Derivative Models (FDM) constitute a
more recent direction of research especially in the field of
rheology. Since the first attempts (Rouse 1953) to found
these models on the basis of the description of the
underlying mechanisms at microscopic level, one can
also quote the stochastic-based on quantum mechanics-
models (Bendler and Shlesinger 1985) that enable the
recovery of the Kohlrausch-Williams-Watt stretched
exponential model of relaxation from random walk
processes (Bendler and Shlesinger 1988). More recently,
there has been more and more literature in materials
engineering, assessing a fractal geometrical character at
microscopic level, from experimental observations
(Zaiser and Hähner 1999; Balankin 1997; Kleiser and
Bocek 1986; Mosolov 1994). Since dynamic phenomena
occurring on a fractal space have been proved to be
naturally described by fractional operators (LeMéhauté
et al. 1998), one has a first theoretical basis for using
them when modeling the dynamics of relaxation. How-
ever, the main reason for the use of FDM in rheology is
without doubt their successfully experienced aptitude to
reproduce the dynamic behavior of many modern engi-
neering materials in a very efficient manner, both in
terms of precision and of larger (several decades) fre-
quency range, with very few parameters. Recent and
growing literature exists on the subject (see, e.g., Fried-
rich et al. 1999; Schiessel et al. 1995; Mainardi 1994;
Nonnenmacher and Glöckle 1991; Glöckle and Non-
nenmacher 1991; Bagley 1989, 1991; Padovan and Guo
1988; Koeller 1984; Rogers 1983) and some (Heymans
and Bauwens 1994; Schiessel and Blumen 1993) show
the connections with hierarchically self-similar models
relying on the classical base elements that are the spring
and the dashpot. The non-integer derivative exponent
for the time derivatives may be found from a defined set
of elastic moduli and viscosity parameters. These models
have been referred to sometimes incorrectly as ‘‘Fractal’’
models. They have received a growing interest mainly
when very empirical old models expressed in terms of
non integer power law formulations (Nutting 1921;

Gemant 1936) have been reinvested in the light of a
mathematical interpretation of the integral Boltzmann
formulation of constitutive laws with power law type
memory kernel in terms of the Riemann-Liouville
operator of diff-integration. First introduced as a
mathematical trick to generalize constitutive laws more
able to portray fading memory, fractional derivative
models have raised the important question of estab-
lishing admissibility criteria towards their thermody-
namic consistency and have led to numerous studies in
that direction (Lion 1997; Bagley and Torvik 1986).

As a consequence, connections between TIP and
FDM models could not be avoided and have already
been pointed out (Kuiken 1994). So it is in the paper of
Enelund and Olsson (1999), where the authors suggest
that interpreting the whole spectrum of time constants of
several processes in one field may lead the dissipative
response—expressed as a sum of decaying exponen-
tials—to be advantageously replaced by a fractional
order derivative applied to a single field variable. Con-
sequently, it is interesting to mention that, compared to
Williams’s synthetic paper in the early 1960s (Williams
1964) about viscoelastic behavior laws, this paper will
simply add a small thermodynamically based ingredient
that will achieve the convergence of the two approaches
mentioned above.

In this paper, we first begin (next section) with a
presentation of a TIP based model, referred to through
the paper as the DNLR model (Distribution of Non-
Linear Relaxations) and developed at LEMTA (Cunat
1988, 1991, 2001). As its name explicitly reveals, this
model goes a step further than the above-mentioned
models as it makes use of the fluctuation-dissipation
theorem of Prigogine (1968) to define a spectrum for the
relaxation processes in the vicinity of the equilibrium and
allocate them a distribution of their respective weight on
the global observable response. This model has been
thoroughly presented in other papers in various appli-
cations in solid mechanics such as viscoelasticity and
plasticity (see, e.g., Ayadi et al. 1999; Faccio-Toussaint
et al. 2001; Rahouadj and Cunat 2001a), thermostimu-
lated creeping (Haddad 1996), aging (Aharoune et al.
2001; Rahouadj and Cunat 2001b), as well as in ther-
mochemical applications like glass transition modeling
(Cunat 1985). Therefore we will only present the neces-
sary bases of this model to establish a link with FDM.

Following this, we will show that the distribution law
for relaxation times obtained from pure thermodynamic
considerations lead the DNLR approach to a modal
recursive description of the dynamic of relaxation. The
equipartition theorem of the created entropy accounting
for spontaneous fluctuation regressions appears as the
recursive law that has to be introduced in a hierarchical
model where each process is given a relaxation time s. As
mentioned in the abstract, this work refers to the
establishment of constitutive equations for viscoelastic
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media. Microscopic arguments for modeling relaxation
in such media through the introduction of a hierarchy of
times have been given if stochastic processes for defect
migrations (defect-diffusion models presented for
example by Stastna et al. 1990) are considered.

Our purpose will then be to demonstrate that, thanks
to the concept of recursivity (Oustaloup 1995; Shlesinger
and Klafter 1986; Oldham and Zoski 1983), FDM can
be completely driven or recovered through the DNLR
approach. In other words, the order of fractional dif-
ferentiation for the physical processes involved appears
as the result of a modeling of the regression of fluctua-
tions according to an equal entropy production for each
of them. Illustrating results are given through the
modeling of the response of viscoelastic materials sub-
jected to a step of constant load (creep test) and to a
tensile test of constant strain rate.

Finally, we will summarize the paper and discuss
perspectives for future work.

The D.N.L.R. thermodynamic approach

Thermodynamical constitutive laws

The DNLR approach used to derive thermodynamically
consistent behavior laws has been thoroughly detailed in
previous papers (Cunat 1988, 1991, 2001) and we skip
here the details to express the results rapidly. A well-
suited thermodynamic potential function Yk is first se-
lected to describe the dynamics of both instantaneous
and irreversible phenomena occurring in a representative
volume in local equilibrium (no gradients of any inten-
sive variables). ‘Hidden’ internal variables (a field of
processes �zz) are also made dependent variables of this
thermodynamic generalized potential. The following set
of equations is then obtained:

_bb ¼ au _cc þ b _zz ð1aÞ
_AA ¼ �b

T
_cc � g _zz ð1bÞ

Such a formulation can be found elsewhere (Nowick
and Berry 1972). It has also been used by Lesieutre and
Mingori (1990) and falls into the general framework
exposed by Maugin and Muschik (1994).

The lower bars refer to state variables and the upper
bars, to the dissipation variables.

au ¼ @2Wk
@cn @cm

is the square stability matrix of Tisza
(1966), constructed from the instantaneous physical
properties linking the unrelaxed observed responses b to
command excitations c and integrating couplings
between phenomena.

b ¼ @2Wk
@zj @cm

is a rectangular matrix figuring the cou-
plings between state and dissipative variables.

g ¼ @2Wk
@zi @zj

is the square dissipative matrix.

One must stress that this formulation comes from the
extension of the Gibbs-Duhem relation through states of
internal non-equilibrium. The interesting aspect of the
model is the presence of the second equation (Eq. 1b)
that corresponds to the evolution equation of the non
equilibrium forces A—affinities introduced by De Don-
der (1920)—under the effect of the state command
variables c and of their conjugated internal variables �zz
working for recovering a relaxed state.

This state, denoted by the superscript r, is obviously

characterized by
�_AA_AA ¼ 0 and �zz ¼ �zzr. The dissipation

variables definition respect the positivity of the pro-
duction of entropy which is obtained as T _SSi ¼ A _zz ¼P

j
Aj _zzj � 0. The overall entropy produced corresponds

to the summation (extensive character) of that produced
by each individual process.

A hypothesis of thermodynamic linearity about the
relaxed state, and of proportional relation between
fluxes (velocity) of hidden variables and forces (equi-
presence principle of Onsager), leads to the following
equations:

AðtÞ ¼ �g zðtÞ � zrð Þ ð2aÞ

_zz ¼ L A ð2bÞ

where L is referred to as the Onsager matrix.
Combining these two equations yields

_zz ¼ �L g zðtÞ � zrð Þ ¼ �s
� 1

zðtÞ � zrð Þ ð3Þ

wheres
� 1

is the operator of relaxation times. This matrix
can be diagonalized according to the demonstration
given by Meixner (1949), showing the existence of a
modal base that allows to write all the processes in an
uncoupled manner. The physical sense of the underly-
ing elementary mechanisms of reorganization at the
molecular state is lost and we then prefer talking about
processes, but the approach makes the mathematical
treatment easier. The possibility of this base change is
justified when the same overall entropy produced is
preserved.

Until now this approach has suffered from a lack of
practical applicability since the internal variables are
unknown. This point is overcome when the dissipative

or anelastic component _bb
ðaÞ ¼ b _zz of the observable

response _bb in Eq. (2a) is rewritten in terms of the dif-
ference (gap) between the present value of the response
and the value taken at relaxed state. Writing Eqs. (1a)
and (1b) for the current and relaxed states produces the
discretized equation

Dbn;j � Dbr
n;j ¼ bn;j Dzj � Dzr

j

� �
ð4Þ

where n denotes a particular observable variable (e.g., a
component of the strain tensor) and j, the j-th internal
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process. This procedure corresponds exactly to the for-
malism introduced by Onsager (1931) to develop the
theory of thermodynamic fluctuations around an equi-
librium state (see Kuiken 1994; De Groot and Mazur
1962 for a detailed presentation of this matter).

Then Eq. (1a) becomes

_bb ¼ _bb
ðeÞ þ _bb

ðaÞ ¼ au _cc � b� br
� �

s�1 ð5Þ

where s_ is now a vector of times for the relaxation
modes, in the space of dissipations. It is the component
_bb
ðaÞ

here expressed with the scalar product ðb� brÞ�ss�1
that will be the object of a mathematical analysis to
reveal the fractional derivative operator as suggested by
Enelund and Olsson (1999).

Distribution of non-linear relaxations

The operator s_)1 defined above has been expanded over a
set of uncoupled normal modes for the relaxation mech-
anisms. The generality of this thermodynamic approach
led Cunat (1988) to find a way to define a distribution of
times for all the relaxation processes, thanks to the equi-
partition theorem of the created entropy (De Groot and
Mazur 1962; Prigogine 1968) established in a linear range,
and to associate the corresponding weight it imposes on
the global behavior with each process.

This theorem states that, near the equilibrium, each
dissipative mode j produces on average, the same dissi-
pation

@DSi

@Dzj
Dzj

� �

¼ �kBdij < 0 ð6Þ

where kB is the Boltzmann constant. This special case of
describing the regression of fluctuations near the equi-
librium state corresponds to distributions of Gaussian
type for each mode, whose variances correspond to the
weight p0j associated with each process of regression.

Some developments lead to define the Distribution of
Non-Linear Relaxations with the following two rela-
tions:

p0j ¼
Dzj

PN

k¼1
Dzk

¼
ffiffiffiffi
sj
p

PN

k¼1

ffiffiffiffi
sk
p
¼ B

ffiffiffiffi
sj
p ð7aÞ

B being defined as B ¼ 1

�
PN

k¼1

ffiffiffiffi
sk
p

as a result of the
normalization condition

XN

j¼1
p0

j ¼ 1 ð7bÞ

In practice, it is completely determined by three
parameters:

D The number of decades of the spectrum range and
arbitrarily logarithmically equally spaced

N The number of processes that are considered
smax The largest relaxation time that is considered.

smax=smacro, is the largest measure for the time, in
which the deviations of relaxed (equilibrium) state
are macroscopically observable (Kuiken 1994)

It is important to note that this spectrum is strictly
bounded between two relaxation times. It generalizes the
original idea of Kovacs et al. (1979) for the description
of the kinetics of volume recovery in the glassy state.

As an examplewe show theDNLR spectrum forD=6,
N=50 processes and smax=1000 s on the curve in Fig. 1.

One-dimensional mechanical constitutive
equations—Laplace transformed expression
and integral formulation

Equation (5) directly yields the corresponding constitu-
tive equations, once the command and response vari-
ables have been defined. For instance, if only the
mechanical behavior is sought in isothermal conditions
and if an input stress is considered, we have for a single
process of relaxation j,

_eej ¼ _eeðeÞj þ _eeðaÞj ¼ su
j _rrj �

ej � er
j

se
j

ð8Þ

The relaxed strain is erj=srjr=pj0s
rr and su and sr

denote the unrelaxed and relaxed compliance of the
matter, inverse of the moduli Eu and Er. Equation (8) is
the well known constitutive equation for the Zener’s
Standard Linear Solid (e.g., Tschoegl 1989, p 147;
Kuiken 1994, p 306).

Fig. 1 Weights and relaxation times distribution of the DNLR
model
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se
j is the characteristic time of the j-th dipole resulting

from the connection of a spring of compliance saj=srj-
suj=p0j(s

r)su)=1/Ea
j=p0js

a in parallel with a dashpot of
viscosity gj, thus making se

j=sj=sajgj.
The analogous representation of the DNLR thus

corresponds to a generalized Voigt model (N Kelvin-
Voigt units connected in series) as shown in Fig. 2.

Focusing our attention on the anelastic (a) contri-
bution of the total deformation rate, we can write

_eeðaÞj ¼
er

j � ej

se
j
¼

sr
j r� su

j r� eðaÞj

se
j

ð9Þ

In Laplace space, Eq. (9) leads to the following
admittance (susceptibility) of the system describing only
the anelastic part of the response:

�_ee_eeðaÞðsÞ
�rrðsÞ ¼ YanðsÞ ¼

P
j
�_ee_ee
ðaÞ

j ðsÞ
�rrðsÞ

¼
X

j

sa
j s

1þ sj s
¼ sa

X

j

p0j s

1þ sj s
ð10Þ

This admittance corresponds exactly to the one that
can be obtained in the field of electronic circuitry when
considering a scheme of dipoles connected in parallel,
each being made from a resistance and a capacitor wired
in series. The intensity or current (I) corresponds to the
rate of deformation (e_), the voltage, to the mechanical
stress, the dashpot of viscosity g being the element that
carries the irreversibility and the heat dissipation (R in
the case of a Joule effect) thus making the dissipated
power P=ge_2 ” RI2.

The D.N.L.R formalism can be related to the con-
volution integral formulation of the Boltzmann type as
in general all thermodynamic models based on a
description with internal variables (Maugin and Musc-
hik 1994). For the above example, the fading memory
kernel has to be represented by a series of exponentially
decaying kernels:

eðaÞðtÞ ¼
Z t

0

rðt � sÞ dJ
ds

ds

¼
Z t

0

rðt � sÞ
XN�1

j¼0

sa
j

sj
expð�s=sa

j gjÞ ds ð11Þ

where J(t) is the retardation function and sajgj=sj cor-
responds to the time constant associated with the j-th
element of the cascade representation.

It is important to recall here that the Fractional
Derivative Models that will be discussed later have been
essentially derived from the integral formulation, the
memory kernel being related to a series of power func-
tions of time or directly to non-integer power law
decaying functions. Here, FDM will be recovered with
the formulation of the memory kernel in terms of a
discrete summation.

Recursivity of the DNLR approach

The specific characteristic of the model presented above
(Fig. 2) lies in the geometric progression that rules the
evolution of both parameters Ea

j or s
a
j and gj as a result

of using the theorem of equipartition of the created
entropy rate. The DNLR model then belongs to the
second class of relaxation theories as exposed by Shle-
singer and Klafter (1986) and named ‘‘hierarchically
constrained dynamics’’.

This will be the object of the first section to define
clearly what will be called the recursive parameters of
the model. Two different sets of parameters (a,b) and
(p,q) can be defined depending on whether one decides
to describe the analogic representation respectively in
terms of the (modulus/viscosity) pair or with the more
general (or universal) set which is the (relaxation time/
’distance’ from relaxed state) pair. The latter will then be
the one used for further developments.

In the second section, we will start from the expres-
sion of the admittance function established in the pre-
vious section to give its corresponding expression in the
temporal domain, in terms of the new recursive
parameters. This will illustrate the concept of recursive
series in time as defined by Oustaloup (1995).

Later we will calculate the recursive factors in the
case of the DNLR model and give the characterization
of the anelastic (dissipative) admittance in the frequency
domain using a Bode diagram representation (Ousta-
loup 1995; Rogers 1983).

Finally, we will transform the summations of the
recursive series into a ratio of factored polynomials, and
consequently we’ll recover a characterization in terms of
zeros and poles (relaxation times).

Fig. 2 Generalized Voight
model
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Recursivity of the parameters of the DNLR model

In the following, we consider the series in Laplace space
of the normalized admittance (Eq. 10):

Y �anðsÞ ¼
YanðsÞ

sa
¼
X

j

p0
j s

1þ sj s
ð12Þ

From Eqs. (7a) and (7b) it is easy to recover the
following ratios, that we assume to be constant. They
will be proved so later in the text:

sa
jþ1
sa

j
¼ 1

b
¼

p0jþ1
p0j
¼ p

q2
ð13aÞ

gjþ1
gj
¼ 1

a
¼ q

p
ð13bÞ

Recursive factors

a and b are the recursive factors associated to a
description in terms of the above set of physical prop-
erties (E or s, g) of the material. If one arbitrarily con-
siders to choose both a and b>1 (which implies both p
and q>1), then increasing rank j means that we will
have decreasing values of the viscosity g starting from a
maximum value g0 and also decreasing values of the
compliance sa from the maximum value sa0.

The introduction of the additional set of recursive
factors p and q can now be made clear by introducing
the characteristic time (or characteristic frequency)
associated with each rank j:

sj ¼ sjgj or xj ¼ s�1
j
¼ ðsjgjÞ�1 ð14Þ

Using the spectrum law defined in Eqs. (7a) and (14)
along with the recursive factor definitions of Eqs. (13a)
and (13b) yields

p0jþ1
p0j

 !2

¼ sjþ1
sj
¼ 1

ab
¼ 1

q
ð15Þ

q appears then as the recursive factor for the geo-
metric progression of relaxation times. Increasing rank j
induces decreasing relaxation times or increasing ’tran-
sitional’ frequencies as xj+1/xj=q. The relaxation times
can be constructed from the minimum frequency
x0=1/smax with xj=qjx0 where qj strictly corresponds
to q raised to the power j.

At this point one can also retain the relationship
between the two sets of recursive factors q=ab thus
leading to p=a2b. From Eqs. (13a) and (15) one finds
the additional relation

a ¼ b and p ¼ q3=2 ð16Þ

An additional relation necessary for further calcula-
tions can be derived from the above relations that link
the DNLR weights p0j and relaxation frequencies xj in
terms of the recursive (p,q) set. One can show that

xjþ1 p0
jþ1

xj p0j
¼ p

q
or xj p0j ¼

p
q

� �j

K ð17Þ

where K=x0p
0
0 is a constant, completely defined by the

DNLR spectrum.

Values of the recursive factors for the DNLR model

For the DNLR model of the relaxation times, one
determines the number of decades D, the total number
of processes N and the maximum relaxation time smax

that sets the first process weight (rank j=0) according to

p0j¼0 ¼ B
ffiffiffiffiffiffiffiffiffi
smax
p ¼ B

	 ffiffiffiffiffiffi
x0
p

.
Selecting arbitrarily equally spaced relaxation times

on a log scale determines the value of the recursive
factor q:

sjþ1
sj
¼ 10�d=ðN�1Þ ¼ 1

ab
¼ 1

q
ð18Þ

For the spectra considered earlier as an example
(D=6, N=50), this gives

q ¼ 1:3257

Then, from Eqs. (15) and (16) it follows that

a ¼ b ¼ ffiffiffi
q
p ¼ 1:1514 and p ¼ q3=2 ¼ 1:5264 ð19Þ

Recursive series of the DNLR Admittance
in time and frequency domain

In this section, we will study the dimensionless admit-
tance function of the DNLR model (Eq. 12) represent-
ing the anelastic component as a function of the (p,q)
recursive factor set. One obtains

Y �anðsÞ ¼
X

j

p0j s

1þ sjs
¼ K

X

j

p
q

� �j s
	
xj

1þ s
	
xj

¼ K
X

j

p
q

� �j

S s
	
xj


 �
ð20Þ

Equation (20), when transformed back into the tem-
poral domain and making use of the translation prop-

erty relation L(af(at)=F(s/a) applied for a=qj and

considering the impulse excitation �rrðsÞ ¼ 1, corresponds

to the impulse response (subscript d) of the system. It

can be written as follows:
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_ee�and
ðtÞ ¼ K

X

j

pj R qjt

 �

ð21Þ

In this case R(t) which is called the pattern function,
corresponds to the original of function S in Eq. (20) and
is given by

RðtÞ ¼ dðtÞ � x0 e�x0t ð22Þ

According to the developments exposed by Ousta-
loup (1995), Eqs. (21) and (22) define a so-called recur-
sive series which exhibits a striking behavior when
studied in the frequency domain (replacing s, Laplace
variable by the pure imaginary number jx).

Independently of the pattern function R(t), a Bode
diagram reveals:

– A linear evolution of the amplitude (modulus) with
slope 20n dB/decade (6n dB/oct)

– A constant phase (independent of frequency) which
characterizes a phase blocking at the value np/2

The absolute value of n is non-integer, between 0 and
1, and depends only on the value of the recursive factors.
According to the developments exposed by Oustaloup,
the non-integer value of n which characterizes recursive
transfer functions in Laplace or Fourier domain is ob-
tained by

n ¼ 1

1þ log b
log a

¼ log p
log q

� 1 ð23Þ

In the case of the DNLR model the non-integer
number n is found equal to 1/2.

Equation (24) below gives the expression of the
Fourier transform of the DNLR recursive series
(Eq. 21), obtained from Eq. (12):

Y �anðixÞ ¼
X

j

p0j ix

1þ ix sj
¼ K

X

j

p
q

� �j ix
	
xj

1þ ix
	
xj

ð24Þ

The Bode diagram representation of Eq. (24) in
Fig. 3 gives the graphical visualization of the role played
by the non-integer number n as the parameter of the
straight lines that smoothes the evolution of the modulus
and shows the phase blocking of the argument.

Two curves have been drawn on both figures, one
obtained considering N=50 processes and the other for
only N=6 processes to exhibit the ‘staircase’ evolution
of the modulus, with ramps of slope 20 dB/dec that
alternate with horizontal segments, thus leading to a
smoothing line of slope 20n=10 dB/dec over the range
of relaxation times.

This feature is a specific trend related to the frequency
characterization of generalized non integer derivative
operators. Indeed, by virtue of the property of
Fourier transforms towards differentiation, we have

F(dnf(t)/dtn)=(jx)nF(jx). The non-integer number n that
appeared in the frequency characterization is directly
connected to the non-integer exponent of diff-integra-
tion operators representing the dynamics of the system
in terms of a field variable. More details of them will be
given later.

Finally, one would like to point out that the recursive
definition of the impulse ’retardation’ function (Eq. 21)
can be directly related to the integral formulation
(Eq. 11) either by use of the convolution (Faltung)
theorem or in the time domain when using the property
of the delta (Dirac) function.

From recursive factors to recursive sets
of zeros and poles

One can apply a reduction to a same denominator of the
discrete summation of the admittance given by Eq. (12).

Fig. 3 a Bode diagram of Y*
an (ix): amplitude vs frequency.

b Bode diagram of Y*
an (ix): phase vs frequency
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This leads to the following type of expression, involving
a ratio of factored polynomials:

Y �anðsÞ ffi YN ðsÞ ¼
s

P 0

QN�1

j¼1
1þ s

x0j

� �

QN

j¼1
1þ s

xj

� � ð25Þ

for which one could demonstrate that, in our case,
1
	

P 0 ¼
P

j
p0j ¼ 1.

Equation (25) has been studied by Biot (1958) in
order to represent rheological transfer functions for
viscoelastic materials. The parameters of the model are
the poles and the zeros of the fraction above. The
important number of poles and zeros usually required
for a satisfying fitting of experimental data and the ab-
sence of underlying physical connections for the identi-
fied parameters reduce the interest of such discretized
approach. Of course a recursivity introduced here to
govern the behavior of poles and zeros would overcome
this difficulty, just as was the case before with an
admittance in summation form. However, the operation
carried out to go from Eq. (12) to Eq. (25) does not
preserve the recursivity relation between the parameters:
the recursivity of the poles is unchanged as the poles are
the frequencies corresponding to the inverse of the
relaxation times and the denominator of Eq. (25) di-
rectly corresponds to the product of the denominators of
the ratios of Eq. (12). However, the recursivity in the
parameters of weights of Eq. (12) is partially lost for the
zeros x¢j in the operation carried out to go from Eq. (12)
to Eq. (25). For this reason, the symbol ’nearly equal’
(@) has been used in Eq. (25) to indicate that it is only an
approximation of Eq. (12) if ones assumes that the zeros
x¢j obey the same recursion relation as the weights in the
summation form of Eq. (12). One can easily verify that
such a relation only holds in the central part of the
frequency domain but the ratio between two consecutive
zeros at each limit of the frequency domain departs
slightly from that obtained in the central part. More
exactly, it is only preserved in the limit of infinite
relaxation times (N fi ¥). In this case indeed, the
recursive parameter q=ab tends to 1 and one could
verify that consecutive zeros remain in a more constant
ratio R0=(x¢j+1/x¢j)/q (Fig. 4). One then obtains

x0j
xj
¼ a0 and

xjþ1
x0j
¼ b0 ð26Þ

with ab=a¢b¢. In our special case where a=b, one has
also a¢=b¢.

In the case of a non-infinite number of processes,
Eq. (25), although it exactly conforms to Eq. (12), is
only an approximation of it when the recursivity of the
parameters remains unchanged. This is illustrated in

Fig. 5. The same test case is considered as before with a
spectrum of only eight relaxation times. One only plots
here the phase curves (argument of the complex admit-
tance given by Eq. 25) as it reveals what happens more
than modulus curves.

Curve a of Fig. 5 corresponds to the admittance Y*an
expressed by the recursive summation of Eq. (12). Curve
b corresponds to the admittance YN expressed by a
single ratio (Eq. 25) when preserving the recursivity on
the zeros (distribution of zeros and poles shown on line
2). It is clear that this curve does not match perfectly
with curve a, especially for both extremities of the fre-
quency spectrum.

Fig. 4 Evolution of the ratio of two consecutive zeros normalized
by the recursive factor q when considering the admittance of
Eq. (45)

Fig. 5 Comparison of the DNLR admittance expressed as a
recursive series with the admittance expressed in terms of a ratio
of factored polynomials with a recursion relation between zeros
and poles: phase vs frequency
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Curve c corresponds to an admittance YN of exactly
the same form as Eq. (25) but without preserving the
recursivity of zeros: the ratios between two consecutive
zeros are accommodated by optimization at the
extremities of the frequency range to match the original
admittance. Three zeros have been identified. Due to the
symmetry of the function, only the central zero remains
unchanged (model with 8 poles and 7 zeros). Figure 5
shows how the distribution of zeros in line 1 (pentagram
dots) is adjusted, compared to the perfectly homoge-
neous (recursive) distribution yield by the DNLR model
shown on line 2—with equirepartition of zeros and
poles—in order to make admittance of Eq. (25) matches
that of Eq. (12).

In this case where q=ab� 7.2 (very far from 1), one
finds that the first three ratios of consecutive poles (nor-
malized by q) are 1.17, 1.054, 1.0146. For the N=50
processes generally considered for calculations in real
cases, one had found before q=ab� 1.32. This value is
still large compared to 1 and the representation of Y*an
with the expression of YN will still be a rough approxi-
mation. This is illustrated in Fig 4 where we have con-
sidered successively N=50, N=76, N=100, and N=400
processes for Y*an. For each case, a distribution of zeros
has been found (from the initial recursive distribution)
that enables the admittance YN to be perfectly equal to
Y*an. Figure 4 shows the ratio of two consecutive zeros,
normalized by the recursive factor q. Preserving a recur-
sive distribution for the zeros would then lead to a hori-
zontal line at R0=1. Changing the value of the recursive
factor from q=1.32 (N=50) to q=1.035 (N=400),
curves a–d, show how large the number of processes must
be for YN, with a recursive distribution of zeros, to be a
good approximation of Y*an. In other words, the opera-
tion that converts a summation of ratios into a single ratio
of factored first order polynomials when reducing to the
same denominator, is very penalizing in terms of precision
when one preserves a discrete (non-rigorously continu-
ous) recursive distribution of the zeros.

From recursivity of the DNLR approach to fractional
time models

Two ways are considered in the present chapter to go
from recursivity to fractional time models, according to
the respective works of Oldham and Zoski (1983) and
Oustaloup (1995). A dynamic evolution of a system
undergoing relaxation is shown to be possibly described
by two different types of diff-integration operators in
time applied to the exciting continuous field variable. The
first operator obtained is the ‘classical’ one, widely used
in many works and in various combinations to construct
constitutive laws describing viscoelastic behavior with
accuracy. It is called the explicit non-integer differentia-
tion and is shown to be a rough outcome for recursive

dynamics that are unbounded in the spectral domain. It
is directly connected to a transfer function of Cole-Cole
type. The second operator is the implicit non-integer
differentiation and enables us to work in a context of
recursive dynamics in bounded spectral domain. Its
structure allows the recovery of a Davidson-Cole relax-
ation transfer function. However, the common basis of
the two revealed fractional operators is a clear sign of
recursivity.

Model of Oldham and Zoski

As regards the first way, one starts from the works of
Oldham and Zoski, about the practical realization of
analog diff-integration operators by use of electronic
circuits of RC types (Domino ladder scheme). They show
that domino ladder networks (Parallel Resistance-
Capacity cells connected in series) with geometrical
progression of the values of both resistances and capac-
ities (previously called a recursive scheme in this paper)
lead the voltage output of the system to be a fractional
derivative of non-integer order (between 0 and 1) of the
time dependent input current. This meets the works of
Heymans and Bauwens (1994) in the field of solid rhe-
ology that show how special tree-ladder or hierarchical
arrangements of the classical (integer) elements (spring
and dashpot) set a certain non-integer value for a rep-
resentation in terms of fractional time derivatives.

Let us consider then the scheme of Fig. 2. This
scheme is identical to the one considered by Oldham and
Zoski provided that the springs are replaced by electrical
resistors and the dash-pots by capacitors. The authors
show that assuming a recursive scheme leads to the
following expression for the overall deformation (volt-
age drop):

eðtÞ ¼ sam
0

g1�m
0

Z t

0

rðt � sÞ
sm

XN�1

j¼0

sajbj

sa
0 g0

� �

exp � sajbj

sa
0 g0

� 

ds

ð27Þ

where a and b are the recursive factors defined in
Eqs. (13a) and (13b), and parameter m is defined as

m ¼ ln a
ln abð Þ. Of course, as the analogic schemes are identi-

cal, Eq. (27) can easily be shown to be the same as
Eq. (11) using the fact that q=ab.

In the idealized limit of an infinite number of pro-
cesses, where both a and b approach unity, Oldham and
Zoski show that Eq. (27) can be written thus:

eðtÞ ¼ p csc pmð Þ sam
0

ln abð Þ g1�m
0

1

Cð1� mÞ

Z t

0

rðt � sÞ
sm

ds

¼ p csc pmð Þ sam
0

ln abð Þ g1�m
0

dm�1rðtÞ
dtm�1

¼ eidðtÞ ð28Þ
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using the Riemann-Liouville definition of the fractional
integral.

When Laplace transformed, one obtains

�_ee_eeidðsÞ
�rrðsÞ ¼ Y an

id
ðsÞ ¼ p csc pmð Þ sam

0

ln abð Þ g1�m
0

sm ¼ smax sð Þ
g0

m

¼ s0sð Þm

ð29Þ

for the ideal admittance of the system, which then leads
to the simple generalized operator of differentiation d.m/
dtm in the temporal domain. In the frequency domain, its
characterization is

Y an
id ðjxÞ ¼ ðjs0xÞ

m ð30Þ

The modulus and the phase are given by the follow-
ing relations:

�YY an
id ðjxÞ

�
�

�
� ¼ s0xð Þm¼ x

x0

� �m
ð31aÞ

Arg �YY an
id ðjxÞ


 �
¼ m

p
2

ð31bÞ

Thus the representation of the Bode diagrams lead to
a modulus curve which is a straight line of slope 20 m dB/
dec and to a phase curve which is a horizontal line of
ordinate (mp)/2 (Fig. 6a,b).

With the values of a and b yielded by the DNLR
model, one unsurprisingly obtains the value m=0.5 as
non-integer exponent. Concerning the transitional fre-
quency x¢, one obtains a value of s¢=smax/g

)m
0=2.1e)5 s

for the test case considered in the paper.
The idealized character of this result is evident on

both curves which do not match the Bode diagram of the
DNLR recursive scheme due to the absence of two
bounding frequencies (or times) of the relaxation spec-
trum.

The result obtained correspondingly for a creep
experiment is shown in Fig. 7. The calculations are made
in Laplace domain and the return to the temporal do-
main is made through numerical inversion.

The values of the parameters s¢ and m of Eq. (29),
calculated from the DNLR relaxation spectrum, do not
lead to a good reproduction of the creep experiment.
Nevertheless, when identified from the simulation yiel-
ded by the DNLR model, the simple structure of
Eq. (30) is proved to be able to match the data, the
identified values of s¢ and m being s0 ¼ 3:25e�5s and
m=0.538. The parsimony in the number of parameters
and yet the efficiency of the fractional element charac-
terized by the simple constitutive law ge_(t)=sm(dmr(t)/
dtm)—referred to as the spring-pot by Scott-Blair and
Caffyn (1949)—to describe a great variety of responses,
explains its growing success in the community.

As regards characterization in the time domain, one
must first note that the constitutive law obtained
e(t)=sur(t)+s¢mdm)1r(t)/dtm)1 meets that proposed in
literature on FDM as a first generalization of basic

Fig. 6 a Comparison of the DNLR admittance with idealized
admittance: magnitude vs frequency. b Comparison of the DNLR
admittance with idealized admittance: phase vs frequency

Fig. 7 Creep experiment: comparison of DNLR model with
fractional model based on the idealized admittance
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analog models (substituting the single fractional element
FE for the dashpot in our case; see Friedrich et al. 1999).
It is mainly the necessity of introducing additional time
constants in order to circumscribe a spectral range for
the dynamics that, from our point of view, justifies the
use of additional terms in a constitutive law. One
question for example that one could address is: Why use
more than one Fractional Element? Some precocious
proposals of generalized fractional constitutive equa-
tions have indeed no physical backgrounds and they
were sometimes discarded as soon as thermodynamic
constraints were imposed (see, for example, Bagley and
Torvik 1986).

One can finally observe that the inverse Laplace
transform of the Laplace variable s raised to the non-
integer power m corresponds to the m-th derivative of the
Dirac distribution

L�1ðsmÞ ¼ dmðtÞ ¼ t�m�1

Cð�mÞUðtÞ

The integral formulation of the constitutive law is
then

eðtÞ ¼ surðtÞ þ s0m�1
Z t

0

rðt � uÞ u�m

Cð1� mÞUðuÞdu

This constitutes the basic link that can be made from
the classical integral formulation involving hereditary
kernels whose mathematical expression can yield the
fractional diff-integration operator. Schiessel et al.
(1995) expressed this in a short-cut manner as ‘‘Frac-
tional calculus: a mimicry of memory’’.

The idealized character of Eq. (28) did not escape
the attention of Oldham and Zoski for the simple
reason that they would then have needed to build a
circuit with an infinite number of components. In their
paper they introduced two additional (j=)1 and j=N)
extra cells made of resistors and capacitors (springs and
dashpots) in parallel, with different time constants, to
define two limits for the time spectrum. The initial
regular geometric sequence is then broken (at the
extremities of the spectrum) and Oldham and Zoski
showed that the performance of the diff-integrator thus
modified could be seriously affected depending on the
values of the extra components. We meet the same
problem to represent the DNLR behavior by the sim-
ple non-integer derivative operator. The relaxation
spectrum of the DNLR model corresponds to a regular
geometric sequence (theorem of entropy equipartition)
between two limiting times. One can not expect then to
recover simulations yielded by the DNLR approach
perfectly with a simple generalized derivative operator
like the one introduced in Eq. (28) whose parameters
(especially the non-integer power exponent) would be

determined according to the data required to construct
the DNLR spectrum. Thus, looking for the intrinsic
character of a representation such as the one given by
Eq. (28) for the anelastic part is simply useless even
though Fig. 7 shows that the fractional operator pos-
sesses a model structure able to recover or portray
‘reality’.

Model of Oustaloup.

The second way to go from recursivity to fractional time
models is obtained following the work done by Ousta-
loup (1995) in the field of automotive damping, which
shows that, in the limit of continuous spectrum, one can
advantageously substitute the admittance of Eq. (25) for
the more convenient model structure given by Eq. (32),
where n¢ figures as a non-integer-exponent supposed to
tackle the multi-scale effect of dynamics, and xb and xh

represent the lowest and highest frequency bounds of the
relaxation spectrum:

Y �anðsÞ ¼ Yn0 ðsÞ ¼ s
1þ s

xh

� �n0�1

1þ s
xb

� �n0 ð32Þ

This new mathematical structure for the admittance
model corresponds to a smoothing of admittance YN.

In Fig. 8a,b it is shown nevertheless that this struc-
ture, although much better than that of the preceding
model, Eq. (29), is not able to reproduce the character-
istic of the DNLR recursive admittance perfectly. This is
clearer Fig. 8b which represents the evolution of the
phase of the complex admittance vs frequency. An
identification of the parameters of the model has been
performed on the synthetic simulations yielded by the
DNLR model (phase of the admittance of Eq. 12) but
without obtaining any satisfactory matching. The re-
constructed admittance with the identified values of the
parameters corresponds to the curves in star dots. One
finds, in that case, a non-integer exponent n¢=0.5, the
exact value calculated in Eq. (23). The low and high cut-
off frequencies are respectively xb=1.7 mHz and
xh=572 Hz.

If one tries now to reproduce what happens in both a
creep experiment and a tensile test with a ramp defor-
mation as input signal, the results shown in Figs. 9 and
10 confirm the non-intrinsic character of the model
structure given by Eq. (32). Nevertheless, a striking
feature that must obviously be considered is the excellent
aptitude of this model structure to fit the synthetic data
yielded by the DNLR model. For these simulations, one
must introduce the values of the physical parameters
that are the instantaneous modulus Eu and relaxed
modulus Er. The simulations have been performed for
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Eu=1000 and Er=10. No specific units are given here as
these values do not correspond to any particular mate-
rial. The values respect a ratio of 100 generally
encountered for polymer relaxation in glass transition.

In Fig. 9 we show the creep experiment simulated
with the DNLR model (curve a) along with the creep
experiment modeled using admittance Yn¢ where the
parameter values equal those found by identification on
the phase evolution curve of the Bode diagrams (curve
b). Agreement is far from being exact. Then an identi-
fication procedure determines the set of parameter val-
ues that allow Yn¢ to match Y*an perfectly (curve c).
Different values are then found for the parameter vector
estimates: n¢=0.473, xb=1.57e)5, xh=1091 Hz.

The same applies with a constant rate tensile defor-
mation experiment. Curve a of Fig. 10 corresponds to
the DNLR simulation when considering a deformation
rate of e_=10)3 s)1. Curve b corresponds to model
structure Yn¢ with the parameter vector set equal to the
one estimated on Bode diagrams. Curve c is the result of
an identification procedure of parameters n¢, xb, and xh

from curve a. We found n¢=0.4, xb=1.e)3 Hz,
xh=654 Hz.

In both experiments considered above, the value of
xh that is identified cannot be considered as relevant
because this parameter has a very small sensitivity in the
model (i.e., many different estimates can be obtained
depending on the initial value). The conclusions can then
be:

– The structure model Yn¢ although unable to match the
recursive DNLR model on Bode diagrams, cannot be
expected therefore to be intrinsic or universal but this
structure can reproduce dual experiments with very
good accuracy.

– One can also note that the values obtained for
parameters xb and xh do not exactly correspond to

Fig. 8 a Comparison of the DNLR admittance with fractional
admittance of Oustaloup: modulus vs frequency. b Comparison of
the DNLR admittance with fractional admittance of Oustaloup:
phase vs frequency

Fig. 9 Simulation of Creep experiment: comparison of DNLR
model with fractional model of Oustaloup

Fig. 10 Simulation of tensile load experiment: comparison of
DNLR model with fractional model of Oustaloup
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the values of the bounds fixed by the DNLR model. A
maximum relaxation time of 1000 s does not lead to
xb=0.001 s and the minimum relaxation time of
1.e)3 s (six decades under smax) does not lead to a high
frequency limit of xh=1 kHz. This may be explained
by the smoothing character of Eq. (32) that is not able
to model the behavior around the extremities of the
spectrum as demonstrated in Fig. 8b. This problem
can be seen as equivalent to the one discussed in the
paragraph above where Oldham and Zoski experi-
enced the necessity of adding two extra RC cells at the
limits of their domino ladder chain plus an extra
resistance, in order to adapt their analog fractional
derivative operator to the necessary limiting number
of processes (electronic components).

Oustaloup too explicitly mentioned that both xb and
xh values generally need to enlarge the relaxation spec-
trum considered.

Although not intrinsic, the structure model given by
Eq. (32) offers a direct link with the expression of some
fractional constitutive laws linking both stress and strain
variables but this does not correspond to the simple
generalization of integer-order derivative laws as classi-
cally expressed in the literature.

Using Eq. (32), one can write the anelastic rate of
deformation (creep experiment) as

�_ee_eeðaÞðsÞ
�rrðsÞ ¼ Yn0 ðsÞ ¼ sa

s 1þ s
xh

� �n0�1

1þ s
xb

� �n0

¼ sa s 1þ s
xh

� �n0�1
1þ s

xb

� ��n0

ð33Þ

and the total expression of the behavior law (including
the instantaneous part) is in the Laplace domain:

�eeðsÞ
�rrðsÞ ¼ su þ sa 1þ s

xh

� �n0�1
1þ s

xb

� ��n0

ð34Þ

Let us introduce the definition of an implicit non-
integer derivative of order n as

d
dt

� �n

impl;s
f ðtÞ ¼ d

dt

� �n

f ðtÞ expðt=sÞ½ � ð35Þ

It is referred to as the implicit non-integer derivative
because it does not apply to f(t) but to the product of f(t)
with an exponential of time constant s.

In the Laplace domain, this operator leads to a
transmittance of the Davidson-Cole form

F ðsÞ ¼ 1

1þ ssð Þn ¼
1

1þ s=xð Þn ð36Þ

Then if inverse this definition and the translation
property of the Laplace transform (Oustaloup 1995), it

is easy to obtain a constitutive law expressed in the
following form:

eðtÞ ¼ su rðtÞ

þ sa x1�n
h e�xht d

dt

� �n�1

impl;xh

xn
b e�xbt d

dt

� ��n

impl;xb

rðtÞ
" #

ð37Þ

This form is obviously not as simple as the general-
ization made from classical models by simply substitut-
ing fractional derivatives for integer ones (fractional
Zener or Maxwell models). However, this type of frac-
tional operator was recently put forward as an efficient
way of modeling relaxation:

– In the work of Friedrich and al. (1999) first, where it is
introduced empirically by multiplying any relaxation
function obtained from a fractional model by a cut-off
function exp()t/km). The authors show how it im-
proves experimental fitting in guaranteeing the fast
release of stresses for t>km.

– In the textbook of LeMéhauté et al. (1998) (chapter 5)
secondly, where the operator is called ‘offset fractional
diff-integration operator’. It is obtained theoretically
when an exponentially damped fractal cantor set is
considered as the distribution on which a regulariza-
tion (averaging) convolution process (the integral
formulation) is performed using the physical test
function (r(t) in our case) as kernel.

As a conclusion, we should remember that this kind of
behavior law (Eqs. 28 and 37) originates from the
smoothing of admittance models resulting from recur-
sive schemes expressed as a finite summation over pro-
cesses bounded in time. Although non hazardously
efficient in terms of fitting abilities of dynamical exper-
iments, their non-intrinsic character (non-constant val-
ues of the parameters) has clearly been pointed out in
the analysis of the Bode diagrams. Nevertheless, this
constitutes a direct link justifying the use of non-integer
derivatives in the elaboration of constitutive laws in
rheology. This formulation is supposed to become
intrinsic and exact only in the idealized and useless case
of an infinite number of internal processes involving an
unbounded spectrum of relaxation times.

Summary, perspectives, and conclusions

A model of relaxation phenomena applied to the rhe-
ology of viscoelastic materials has been developed within
the framework of the Thermodynamics of Irreversible
Processes in the linear range. The anelastic part of the
impulse time response of the system, carrying irrevers-
ibility, has been shown to be expressed by a recursive
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series. This means that the response is made of the sum
of the contribution of self-similar structures whose
governing parameters, especially the time constant, fol-
low a regular geometric progression from a component
to its neighbor. This result is obtained by applying the
idea of an equal entropy rate production as established
by Prigogine when considering a normal distribution of
fluctuations along their regression path. From this
recursive concept, use can be made of non-integer
derivative operators in the establishment of constitutive
laws. It has nevertheless been shown that these operators
can exist in more than one manner and, in any case, are
not intrinsic or universal (the parameters of the operator
need to be modified depending on the input applied to
the system). This imperfect formulation may have been
pointed out by researchers working in this area as recent
works (Carpinteri and Cornetti 2002) state the necessity
of introducing a so-called Local Fractional Derivative
(LFD) operator to overcome, with two corrections,
‘‘some physically undesirable features of the classical
definition’’ (subtended classical fractional calculus).

What is established nowadays is the link of the
fractional operators with an underlying fractal nature of
the geometry on which dynamical events occur. A reg-
ular and infinite recursive scheme for a dynamical sys-
tem can be shown according to Moshrefi-Torbati and
Hammond (1998) as the result of a convolution of the
input time function over a fractal Cantor set (see above
all LeMéhauté et al. 1998; Nigmatullin 1990). The
demonstration given by Nigmatullin in his paper relies
on the use of what he called recursion relations and
therefore meets the present analysis. In practice one may
admit, according to Mandelbrot (1982), that fractal
patterns in materials need not be infinite to produce a
certain class of hereditary mechanisms, and that the
distribution set operating in convolution integrals may
work as a band pass filter, possibly locally indexed to

some appropriate scaling scheme. As LFD shows a
behavior similar to the Hausdorff measure of a fractal
set, one can imagine that it may effectively overcome the
problems discussed in the paper.

Far from these acute, ambitious, and long-term per-
spectives, the conclusion at this stage of the connection
shown between both approaches is that the thermody-
namic DNLR model in its simplest linear version, is as
efficient as FDM models: first it uses exactly the same
number of parameters and second it allows (i) a con-
sistent expression for the entropy rate to be derived, as it
incorporates thermomechanic coupling effects, which is
not the case for FDM and (ii) a natural extension in the
non-linear range as already underlined in the text for
various applications such as viscoplasticity, plasticity,
aging, phase transitions, etc. This is obviously a major
advantage of thermodynamically based models. From
this first bridge between the two approaches, one now
has to investigate the limits of the principle of entropy
equipartition for the irreversible processes. The principle
may also be adapted to match ideas and concepts con-
nected to a fractal geometrical substrate. To quote the
words of Nigmatullin, one could see how "the experi-
mentally observed scale law dependence of relaxation
phenomena can be matched to the ’transfer’ of the
fractal dimension of a fractal object to other physical
quantities, generally by means of integration". However
the main origin of the recursivity in the DNLR frame-
work is essentially and simply a consequence of both the
modal analysis, which leads to independent probabilities
for spontaneous regressions of microstructural fluctua-
tions, and the semi-continuous or continuous distribu-
tion of relaxation times along the log time scale, i.e.,
along an activation energy arrow. This work can there-
fore be directly connected to those carried out in the field
of pure physics (Shlesinger and Klafter 1986).
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en régime dynamique, fluage ther-
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