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Many models in polymer processing and composites manufac-
turing are defined in degenerated three-dimensional domains. By
degenerated we understand that at least one of the characteristic
dimensions of the domain is much lower than the other ones. This
situation is particularly common in models defined plate or shells
type geometries.

Mesh based solutions of models defined in such degenerated
domains is a challenging issue because the resulting meshes usu-
ally involve too many degrees of freedom. In that case the first
question concerns the possibility of reducing the model complex-
ity. Classical beam, plate or shell theories are some examples of
simplified modeling where the 3D subjacent elastic model is
substituted by lower dimensional models (1D in the case of beam
theory and 2D in the case of plate and shell theories).

Going from a 3D elastic problem to a 2D plate theory model
usually involves some kinematical and/or mechanical hypotheses
[19] on the evolution of the solution through the thickness of the
plate. Despite the quality of existing plate theories, their solution
close to the plate edges is usually wrong as the displacement fields
are truly 3D in those regions and do not satisfy the kinematic
hypothesis. Indeed, the kinematic hypothesis is a good approxima-
tion where Saint-Venant’s principle is verified. However, some het-
principle anywhere. In that case the solution of the three dimen-
sional model is mandatory even if its computational complexity
could be out of the nowadays calculation capabilities.

The Saint Venant’s principle was extensively used in the Ladev-
eze’s works for defining elegant and efficient 3D simplified models
[9]. This technique was then generalized to dynamics [11].

In the case of elastic behaviors the derivation of such 2D plate
theory models is quite simple and it constitutes the foundations of
classical plate and shell theories. Today, most commercial codes
for structural mechanics applications propose different type of plate
and shell finite elements, even in the case of multilayered compos-
ites plates or shells. However, in composites manufacturing pro-
cesses the physics encountered in such multilayered plate or shell
domains is much richer, because it usually involves chemical reac-
tions, crystallization and strongly coupled and non-linear thermo-
mechanical behaviors [1]. The complexity of the involved physics
makes impossible the introduction of pertinent hypotheses for
reducing a priori the dimensionality of the model from 3D to 2D. In
that case a fully 3D modeling is compulsory, and because the rich-
ness of the thickness description (many coupled physics and many
plies with different physical states and directions of anisotropy)
the approximation of the fields involved in the models needs thou-
sands of nodes distributed along the thickness direction. Thus, fully
3D descriptions may involve millions of degrees of freedom that
should be solved many times because the history dependent ther-
momechanical behavior. Moreover, when we are considering opti-
mization or inverse identification, many direct problems have to
be solved in order to reach the minimum of a certain cost function.
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Today, the solution of such fully 3D models remains intractable
despite the impressive progresses reached in mechanical model-
ing, numerical analysis, discretization techniques and computer
science during the last decade. New numerical techniques are
needed for approaching such complex scenarios, able to proceed
to the solution of fully 3D multiphysics models in geometrically
complex parts (e.g. a whole aircraft). The well established mesh-
based discretization techniques fail because the excessive number
of degrees of freedom involved in the fully 3D discretizations
where very fine meshes are required in the thickness direction (de-
spite its reduced dimension) and also in the in-plane directions to
avoid too distorted meshes.

Thus, 3D solutions seem mandatory in many cases, however
such solutions are not obvious because the numerical complexity
that mesh based discretizations imply. Thus, new approaches able
to address the efficient solutions of such models is required. In this
manuscript we propose the application of the model reduction
method known as Proper Generalized Decomposition – PGD – to
the simulation of 3D thermomechanical models defined in plate
geometries. This method is based on the use of separated represen-
tations. A space–time separated representation was originally pro-
posed in the 80s by Pierre Ladeveze as one of the main ingredients
of the LATIN (non-linear and non-incremental solver) and which
was called ‘‘radial approximation’’ (the interested reader can refer
to the Ladeveze works [10,12,13] the references therein). Then, this
kind of separated representation was considered in the context of
stochastic modeling by Nouy [16,17] as well as for addressing mul-
tidimensional models [2,3].

The separated representation basically consists in constructing
by successive enrichment an approximation of the solution (de-
fined in a space of dimension d) in the form of a finite sum of N func-
tional products involving d functions of each coordinate. In contrast
with the shape functions of classical discretization methods, these
individual functions are unknown a priori. They are obtained by
introducing the approximate separated representation into the
weak formulation of the original problem and solving the resulting
non-linear equations. If M nodes are used to discretize each coordi-
nate, the total number of unknowns amounts to N �M � d instead
of the Md degrees of freedom of classical mesh-based methods.
Thus, the complexity of the method grows linearly with the dimen-
sion d of the space wherein the problem is defined, in vast contrast
with the exponential growth of classical mesh-based techniques.

This strategy was successfully applied in our studies of the ki-
netic theory description of complex fluids. A multidimensional
separated representation of the linear steady-state Fokker–Planck
equation was introduced in the seminal work [2], further extended
to transient simulations in [3] and non-linear Fokker–Planck
equations in [14]. In [15,18], we considered the solution of
Fokker–Planck equations in complex flows, where space, time
and conformation coordinates coexist. We have also applied the
same approach for solving the Schrödinger equation [5], the chem-
ical master equation [6] or kinetic theory models formulated with-
in the Brownian Configurations Fields framework [4]. For other
applications the interested reader can refer to the review paper [7].

The fully three-dimensional solution of models defined in
degenerate domains is also an appealing field of application of
the PGD. Consider the unknown field u(x, t) defined in a plate do-
main N. Two approaches come to mind:

� Complete decomposition:
uðx; tÞ �
XN

i¼1

XiðxÞ � YiðyÞ � ZiðzÞ � TiðtÞ: ð1Þ
This strategy is particularly suitable for separable domains, i.e.
N = Xx �Xy �Xz. For general domains, embedding N into a larger
separable domain Xx �Xy �Xz can also be done, as described in [8].
� Plate-type decomposition:
uðx; tÞ �
XN

i¼1

Xiðx; yÞ � ZiðzÞ � TiðtÞ: ð2Þ
This strategy is particularly suited when N ¼ X� I , with X � R2

and I � R. More complex domains (e.g. plates with a varying thick-
ness) can be treated using an appropriate change of variable.
Because such decomposition involves the calculation of 2D func-
tions Xi(x,y) and 1D functions Zi(z) (these ones with a computational
complexity negligible with respect to the computation of the 2D
functions) we can conclude that the computational complexity of
the fully 3D solution is of the same order of magnitude than the
solution of 2D models, justifying the manuscript title.

We would like to emphasize that this paper does not concern a
new plate theory proposal. This paper concerns the proposal of a
new solution procedure able to compute efficiently fully 3D solu-
tions of any model defined in plate domains whose numerical com-
plexity reduces to the one characteristic of 2D solvers. It is
important to notice that the results computed by applying the
in-plane–out-of-plane separated representation can be only com-
pared with the ones coming from standard 3D solutions, but not
with the ones computed using classical plate or shell theories
whose accuracy depends on the validity of the hypotheses intro-
duced during the derivation of such simplified theories. The accu-
racy of our strategy must be evaluated by comparing the computed
solution with the reference one, that could be obtained for example
by using an accurate enough 3D finite element solution. The com-
parison of the solution computed by using our strategy and the
ones obtained using different plate theories has no sense because
we cannot consider these solutions as reference solutions (they
are subjected to many hypotheses that fail, as argued above, in
many cases). Solutions obtained by using a plate theory should
be compared with fully 3D solutions to conclude on its accuracy,
but in this work we are not concerned by such comparisons. In
summary, we are not elaborating an alternative plate theory, but
simply proposing a new algorithm for computing fully 3D solutions
in degenerated plate domains, with a computational complexity
characteristic of 2D solvers.

Undoubtedly, the connections between the PGD and different
plate theories should be explored deeply. As we show later, in
some circumstances, the first mode of the PGD solution has impor-
tant resemblances with the solution obtained by applying standard
plate theories, Mindlin or Kirchhoff depending on the plate thick-
ness. Additional modes come to represent 3D effects that a simpli-
fied modeling (simple plate theories) is not able to capture. A deep
analysis of all the connections existing between the PGD modes
and standard and advanced plate theories constitutes a work in
progress. This analysis could inspire new hypothesis to be intro-
duced in advanced plate theories. Another interest of such a con-
nection is defining bridges between plate models and fully 3D
PGD descriptions to capture locally 3D effects in multidomain
decompositions or multiscale frameworks. The first preliminary re-
sults of this study are extremely promising.

In the next section, the PGD is applied to perform an in-plane–
out-of-plane separated representation for the steady state heat
equation defined in a multilayered plate. The strategy is then gen-
eralized to elastic behaviors in Section 3. The accuracy and the
numerical efficiency of the method are analyzed showing its full
potential for the treatment of more complex composite structures.
Finally, a parametric modeling case is addressed, in which the ori-
entation of the different laminate plies is considered as extra-coor-
dinates. As soon as the parametric solution is computed, only once
and off-line, it can be particularized on-line for different values of
the plies orientation on light computing platforms, as for example
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smartphones. Some examples illustrating these capabilities are ad-
dressed in the last section of this paper.

2. Illustrating the in-plane–out-of-plane separated
representation of a multilayered plate

In what follows we are illustrating the construction of the Prop-
er Generalized Decomposition of a generic model defined in a plate
domain N ¼ X� I with X � R2 and I ¼ ½0;H� � R. For the sake of
simplicity we consider the model related to the steady state heat
conduction equation:

r � ðK � ruÞ ¼ 0; ð3Þ

in a plate geometry that contains a P plies in the plate thickness.
Each ply is characterized by given conductivity tensor Ki(x,y) which
is assumed constant through the ply thickness. Moreover, without
any loss of generality, we assume the same thickness h for the dif-
ferent layers of the laminate. Thus, we can define a characteristic
function representing the position of each layer i = 1, . . . ,P:

niðzÞ ¼
1; zi 6 z 6 ziþ1;

0; otherwise;

�
ð4Þ

where zi = (i � 1) � h defines the location of ply i in the laminate
thickness. Now, the laminated conductivity can be given in the fol-
lowing separated form:

Kðx; y; zÞ ¼
Xi¼P

i¼1

KiðxÞ � niðzÞ; ð5Þ

where x denotes the in-plane coordinates, i.e. x = (x,y) 2X. The spe-
cific boundary conditions imposed in this problem are not relevant
for illustrating the in-plane–out-of-plane separated representation.
The issue related to the enforcement of boundary conditions will be
addressed in the next section and was also the main topic of [8].

The weak form of Eq. (3), with appropriate boundary conditions,
writes:Z

N
ru	 � ðK � ruÞdN ¼ 0; ð6Þ

with the test function u⁄ defined in an appropriate functional space.
The solution u(x,y,z) is searched under the separated form:

uðx; zÞ �
Xj¼N

j¼1

XjðxÞ � ZjðzÞ: ð7Þ

In what follows we are illustrating the construction of such a
decomposition. For this purpose we assume that at enrichment step
n < N the solution un(x,z) is already known:

unðx; zÞ ¼
Xj¼n

j¼1

XjðxÞ � ZjðzÞ; ð8Þ

and that at the present step n + 1 we look for the solution enrich-
ment R(x) � S(z):

unþ1ðx; zÞ ¼ unðx; zÞ þ RðxÞ � SðzÞ: ð9Þ

The test function involved in the weak form is searched under the
form:

u	ðx; zÞ ¼ R	ðxÞ � SðzÞ þ RðxÞ � S	ðzÞ: ð10Þ

By introducing Eqs. (9) and (10) into Eq. (6) it results:Z
N

~rR	 � S
R	 � dS

dz

 !
þ

~rR � S	

R � dS	

dz

 ! !
� K �

~rR � S
R � dS

dz

 ! !
dN

¼ �
Z

N

~rR	 � S
R	 � dS

dz

!
þ

~rR � S	

R � dS	

dz

! !
� Q n dN; ð11Þ
where ~r denotes the plane component of the gradient operator, i.e.
~rT ¼ @

@x ;
@
@y

� �
and Qn denotes the flux at iteration n:

Q n ¼ K �
Xj¼n

j¼1

~rXjðxÞ � ZjðzÞ
XjðxÞ �

dZjðzÞ
dz

!
: ð12Þ

Now, as the enrichment process is non-linear we propose to search
the couple of functions R(x) and S(z) by applying an alternating
direction fixed point algorithm. Thus, assuming R(x) known, we
compute S(z), and then we update R(x). The process continues until
reaching convergence. The converged solutions allow defining the
next term in the finite sums decomposition: R(x) ? Xn+1(x) and
S(z) ? Zn+1(z).

We are illustrating each one of the just referred steps:

� Computing R(x) from S(z).
When S(z) is known the test function reduces to:
u	ðx; zÞ ¼ R	ðxÞ � SðzÞ; ð13Þ

and the weak form (11) reduces to:Z
N

~rR	 �S
R	 � dS

dz

 !
� K �

~rR �S
R � dS

dz

 ! !
dN¼�

Z
N

~rR	 �S
R	 � dS

dz

!
�Q n dN: ð14Þ
Now, as all the functions involving the coordinate z are known,
they can be integrated over I ¼ ½0;H�. Thus, if we consider:� �
K ¼
K k
kT j

; ð15Þ

with

K ¼
Kxx Kxy

Kxy Kyy

� �
; ð16Þ

k ¼
Kxz

Kyz

� �
ð17Þ

and j = Kzz, then we can define:

Kx ¼
R
I K � S2 dz

R
I k � dS

dz � SdzR
I kT � dS

dz � Sdz
R
I j � dS

dz

� �2
dz

 !
ð18Þ

and

ðQ xÞn¼
Xj¼n

j¼1

R
IK �S �Zj dz

R
I k � dZj

dz �SdzR
I kT � dS

dz �Zj dz
R
I j � dS

dz �
dZj

dz dz

 !
�

~rXjðxÞ
XjðxÞ

! !

ð19Þ

that allows writing Eq. (14) into the form:Z
X

~rR	

R	

 !
� Kx �

~rR

R

 ! !
dX ¼ �

Z
X

~rR	

R	

 !
� ðQ xÞn dX;

ð20Þ

that defines an elliptic 2D problem defined in X.
� Computing S(z) from R(x).

When R(x) is known the test function writes:
p	ðx; zÞ ¼ RðxÞ � S	ðzÞ ð21Þ

and the weak form (11) reduces to:Z
N

~rR �S	

R � dS	

dz

 !
� K �

~rR �S
R � dS

dz

 ! !
dN¼�

Z
N

~rR �S	

R � dS	

dz

 !
�Q n dN:

ð22Þ
Now, as all the functions involving the in-plane coordinates
x = (x,y) are known, they can be integrated over X. Thus, using
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the previous notation we can define:

Kz ¼
R

Xð ~rRÞ � ðK � ~rRÞdX
R

Xð ~rRÞ � k � RdXR
Xð ~rRÞ � k � RdX

R
X j � R2 dX

!
ð23Þ

and

ðQ zÞn¼
Xj¼n

j¼1

R
Xð ~rRÞ � ðK � ~rXjÞdX

R
Xð ~rRÞ �k �Xj dXR

Xð ~rXjÞ �k �RdX
R

Xj �Xj �RdX

 !
�

ZjðzÞ
dZj

dz ðzÞ

 ! !
;

ð24Þ

that allows writing Eq. (22) into the form:Z
I

S	

dS	

dz

 !
� Kz �

S
dS
dz

 ! !
dz ¼ �

Z
I

S	

dS	

dz

 !
� ðQ zÞn dz ð25Þ

that defines a one-dimensional elliptic boundary value problem
(BVP).

At each enrichment step the construction of the new functional
product requires iterations. If mi denotes the number of iterations
needed at enrichment step i, the total number of iterations in-
volved in the construction of the PGD approximation is
m ¼

Pi¼N
i¼1 mi. The computational cost of the entire procedure is

therefore dominated by the m two-dimensional problems for the
functions Xi(x) as the m one-dimensional problems for the func-
tions Zi(z) have a negligible cost. In general, mi rarely exceeds 10.
The number N of functional products needed to approximate the
solution with enough accuracy depends on the solution’s regular-
ity. All numerical experiments carried to date reveal that N ranges
between a few tens and one hundred, depending on the complexity
of the problem. Thus, we can conclude that the complexity of the
PGD procedure to compute the problem solution is of some tens
of 2D problems only.

3. Fully 3D simulation of mechanical models defined in plate
domains

In this section, we apply the PGD method to the simulation of
the linear elastic behavior of plates-shaped domains. The PGD
method allows us to separately search for the in-plane and the
out-of-plane contributions to the fully 3D solution, allowing signif-
icant savings in computing time and memory resources. The meth-
od is first validated on a simple case and its full potential is then
presented for the simulation of the behavior of multilayered com-
posite plates and honeycomb core plates.

We assume the following separated representation for the dis-
placement field:

uðx; y; zÞ ¼
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

0
B@

1
CA �XN

i¼1

ui
xyðx; yÞ � ui

zðzÞ
v i

xyðx; yÞ � v i
zðzÞ

wi
xyðx; yÞ �wi

zðzÞ

0
BB@

1
CCA; ð26Þ

where uxy(x,y), vxy(x,y) and wxy(x,y) are functions of the in-plane
coordinates whereas uz(z), vz(z) and wz(z) are functions involving
the thickness coordinate.

Because neither the number of terms in the separated represen-
tation of the displacement field nor the dependence on z of
functions ui

zðzÞ; v i
zðzÞ and wi

zðzÞ are assumed a priori, the approxi-
mation is flexible enough for representing the fully 3D solution,
being obviously more general than classical plate theories that as-
sume particular a priori behaviors in the thickness direction [19].

Let us consider a linear elasticity problem on a plate domain
N ¼ X� I . The weak formulation associated to such a problem
reads:Z

N
�ðu	Þ � K � �ðuÞdN ¼

Z
N

u	 � fd dNþ
Z

CN

u	 � Fd dC; ð27Þ
with K the generalized 6 � 6 Hooke tensor, fd represents the volu-
metric body forces while Fd represents the forces applied on the
boundary CN. The separation of variables introduced in Eq. (26)
yields the following expression for the strain:

�ðuðx; y; zÞÞ �
XN

i¼1

ui
xy;x � ui

z

v i
xy;y � v i

z

wi
xy �wi

z;z

ui
xy;y � ui

z þ v i
xy;x � v i

z

ui
xy � ui

z;z þwi
xy;x �wi

z

v i
xy � v i

z;z þwi
xy;y �wi

z

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð28Þ

Depending of the number of non-zero elements in the K matrix, the
development of �(u⁄) � K � �(u) involves many terms, 21 in the case
of an isotropic material and 41 in the case of anisotropic behaviors.

Imposing complex boundary conditions with the PGD is not
straightforward, especially in the case of Dirichlet boundary condi-
tions. Neumann-type boundary conditions are easily enforced since
they appear naturally in the weak formulation of the elasticity
problem as an additional term on the right hand side. The only dif-
ficulty might reside in expressing the appropriate boundary flux
integrals in the separated form used by the method. This step is
most of the time quite straightforward. In the more complex cases
one can advantageously make use of the Singular Value Decompo-
sition to express the boundary integrals in the desired form. In the
case of Dirichlet boundary conditions, one solution is to make use of
the incremental nature of the PGD. When computing the problem
solution we a priori represent the solution with a set of initial
modes that have arbitrary values on the interior of the domain
but that are such that their sum satisfies all of the Dirichlet condi-
tions. Later, in the enrichment phase, we impose for the new modes
only homogeneous Dirichlet boundary conditions that will not
modify the previously satisfied conditions. In [8] we deeply ana-
lyzed this question.

Assuming that the first n modes of the solution were already
computed, we focus on the solution enrichment related to the
computation of the next functional couple, according to:

unþ1ðx; y; zÞ ¼ unðx; y; zÞ þ
Ruðx; yÞ � SuðzÞ
Rvðx; yÞ � SvðzÞ
Rwðx; yÞ � SwðzÞ

0
B@

1
CA: ð29Þ

As previously, we consider the test function given by:

u	ðx; y; zÞ ¼
R	uðx; yÞ � SuðzÞ þ Ruðx; yÞ � S	uðzÞ
R	vðx; yÞ � SvðzÞ þ Rvðx; yÞ � S	vðzÞ
R	wðx; yÞ � SwðzÞ þ Rwðx; yÞ � S	wðzÞ

0
B@

1
CA: ð30Þ

Introducing the trial and test functions given by Eqs. (29) and (30)
respectively, into the weak form (27) we obtain:Z

xy

Z
z
½�ðu	ðx; y; zÞÞ � K � �ðunþ1ðx; y; zÞÞ�dxdydz

¼
Z

xy

Z
z

u	 � fd dxdydzþ
Z

CN

u	 � Fd dC: ð31Þ

Because the simultaneous calculation of R(x,y) and S(z) defines a
non-linear problem, a linearization strategy is compulsory. We
use here the simple alternating direction fixed point previously
described.

Given an initial value S(0)(z) of S(z) arbitrarily chosen, all z
dependent functions are known. Eq. (31) therefore reduces to a
2D (x and y dependent) problem where the three components of
R(x,y) are the unknown fields. Its solution yields R(1)(x,y), a first
approximation of R(x,y). Then using the just computed R(1)(x,y)
in Eq. (31) we similarly obtain a 1D problem (z-dependent) which



Fig. 1. Problem geometry and computed solution by applying the PGD. Only the
solution in a half of the domain is depicted for the sake of clarity.

Fig. 2. Error with respect to the FEM solution considering the usual energy norm
(top) and relative error in von Mises stress.
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allows computing the three components of S(1)(z) that constitutes
the next approximation of S(z). This fixed point loop keeps running
until reaching convergence, i.e.:

Z
N

Xi¼3

i¼1

RðjÞi ðx; yÞ � S
ðjÞ
i ðzÞ � Rðj�1Þ

i ðx; yÞ � Sðj�1Þ
i ðzÞ

� �2
dxdydz 6 �; ð32Þ

where � is a small enough parameter. Other norms could of course
be considered for the stopping criterion. This issue together with
the choice of � is open and is still being investigated.

The solution is enriched with new modes until the residual norm
becomes less than a fraction of the initial residual norm. The con-
verged separated representation represents the fully 3D solution
of the linear elasticity problem defined in the plate domain, whose
solution only involves the solution of some 2D problems involving
the in-plane coordinates and some 1D problems related to the func-
tions involving the thickness coordinate. Thus, 3D solutions can be
computed by keeping a 2D computational complexity.

4. Numerical results

In this section we consider the separated representation based
discretization technique – PGD – widely described in the previous
sections for solving a variety of test cases in order to validate its
accuracy and demonstrate its ability to efficiently handle complex
scenarios that would be difficult to solve using classical finite
element based 3D discretizations. As explained in the previous
sections, the PGD method requires the solution of several two-
dimensional and one-dimensional elliptic BVP. For all the numeri-
cal results presented below these problems have been solved using
a standard Galerkin method.

4.1. Verification test

To validate the proposed technique we consider a square homo-
geneous plate depicted in Fig. 1 and we compare the classical 3D
linear elastic finite element solution and the one obtained by using
the PGD with an equivalent discretization, that is, the 2D functions
involving the in-plane coordinates in the PGD are approximated
using the same mesh that the finite element considered on the
plate surface, and the 1D functions involving the thickness coordi-
nate when using the PGD were approximated by using the same
number of nodes that was considered in the thickness finite ele-
ment approximation.

The applied load consists of a uniform pressure applied on the
upper face of the plate. The finite element solution was performed
by considering a uniform mesh composed of 100 � 100 � 50 8-
nodes hexahedral elements. The PGD solution was performed by
using the uniform mesh composed of 100 � 100 4-nodes elements
for approximating the functions involving the in-plane coordi-
nates, whereas a uniform one dimensional mesh composed of 50
2-nodes 1D linear elements were used for approximating the func-
tions involving the thickness coordinate.

The solution computed by using the PGD is depicted in Fig. 1.
Nine modes were needed for approximating the solution when
using the PGD, most of them to describe the 3D effects that appear
in the neighborhood of the boundaries where the displacement
was prescribed. In order to compute these 9 terms involved in
the separated representation 165 2D and 1D problems were solved.
Fig. 2 shows the relative energy density error and the relative error
in von Mises stress, considering as reference solution the one com-
puted by using the FEM. The energy density error is everywhere
lower than 0.3% except in the vicinity of the plate corners where
it reaches a value of 0.57%. As depicted in Fig. 3, this error
decreases when considering more terms in the separated represen-
tation, before reaching a plateau.
Fig. 4 compares the CPU time of both the PGD and the FEM
based discretizations for solving the linear elasticity problem pre-
viously described as a function of the number of in-plane degrees
of freedom, Nx � Ny, and of the number of degrees of freedom in
the thickness, Nz. We can notice the mild evolution of the compu-
tational complexity with the number of in-plane or out-of-plane
degrees of freedom when using the PGD instead the exponential
growth when using the finite element discretization.

In this simple problem, the edge effects are already present and
confirm the necessity of several modes to correctly describe the
solution in the boundary neighborhood. In Figs. 5 and 6 we depict
respectively the first and the second mode of the PGD solution. The
first mode seems to represent classical plate theory solutions be-
cause the associated displacements u1

z ðzÞ; v1
z ðzÞ and w1

z ðzÞ shows
a linear evolution in the thickness direction. Thus the first mode
of the solution predicts that vertical sections of the undeformed



Fig. 3. Illustration of the very fast convergence of the solution with respect to the
number of terms in the finite sums decomposition.

Fig. 4. Comparison of the PGD and FEM based 3D discretizations.
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plate remain plane after deformation, and as the plate thickness
decreases, they become more and more perpendicular to the plate
middle surface, as expected from the Kirchoff and Reissner–
Mindlin theories.

The second mode of the PGD solution shows a more complex z-
dependence but it should be noticed that in the xy-plane it essen-
tially contributes to the solution in the plate edges neighborhood
where one expects to observe a truly 3D displacement field. The
subsequent modes of the PGD solution gradually improve the solu-
tion quality close to the plate edges and corners.

4.2. Analysis of a laminate composite plate

In the previous example, we have implicitly assumed that the
generalized Hooke tensor Kij was constant. By making Kij z-depen-
dent as proposed earlier in Eq. (5), we can represent a composite
plate where each ply would have different principal directions.

We consider a square plate with a hole in its center subjected to
a uniform displacement on the right plate face. As sketched in
Fig. 7 one of the plate edges is kept fixed while we impose a uni-
form displacement ud on the opposite edge.

Along the z-dimension, the plate is made of a stacking of 16 lay-
ers of an unidirectional reinforcement, the orientation in the
different layers being: [0,45�,90�,�45�] repeated four times.
Young’s modulus along (E1) and perpendicular (E2) to the principal
direction are reported in Fig. 7.

The xy-mesh is composed of 1824 bi-linear quadrangular ele-
ments involving 5700 in plane degrees of freedom. In the z-direc-
tions, we have used 10 linear elements per ply which gives a
total of 160 nodes and 483 degrees of freedom. If we refer to
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Fig. 4 we notice that the PGD solution is expected to introduce
computing time savings of many orders of magnitude.

In this particular example the separated representation only in-
volve three modes to approximate the 3D problem solution. For
computing these three modes 45 fixed point iterations were
needed. The total CPU time using Matlab did not exceed 30 s on
a laptop, while solving the full 3D problem would have involved al-
most three millions degrees of freedom and for sure a much greater
computational and memory cost.

In the right part of Fig. 7, we see that the PGD method is able to
fully capture the stress concentration on the rim of the hole. In
Fig. 8, we show the first mode of the PGD solution.

4.3. Modeling honeycomb composites

In the previous sections we have implicitly assumed that the
generalized Hooke tensor K does not depend on the in-plane coor-
dinates but this fact is not a restriction for applying the PGD based
solver. An efficient implementation of the PGD only requires a sep-
arated representation of the elasticity tensor

Kijðx; y; zÞ ¼
X

l

Kl;xy
ij ðx; yÞ � K

l;z
ij ðzÞ: ð33Þ
Remark 1. The PGD can be also applied even when the material
behavior does not accept a separated representation. In that case it
suffices to perform the integrals in the whole 3D domain. Even if
the computing time is higher, the PGD solver runs.

For example by making Kij z-dependent, only one mode is nec-
essary to represent the material parameters of a laminate preform
composite plate where each ply could have different principal
directions of anisotropy.

In what follows we consider a quite complex structure consisting
of two plates with a honeycomb core in between, as depicted in Fig. 9.
It is possible to define a function v(x,y,z), taking a unit value inside
the honeycomb cells and vanishing in the cells walls as well as in
the upper and lower plates, having the following separated represen-
tation:v(x,y,z) = vxy(x,y) � vz(z). This separated representation is di-
rectly and explicitly computed from the geometry of the problem.

Assuming that the honeycomb cells are filled with a material
described by the generalized Hooke tensor K1 while the cell walls
and the upper and lower plates can be described with a tensor K2,
we define the generalized Hooke tensor for the whole structure as:

Kðx; y; zÞ ¼ K1 � vðx; y; zÞ þ K2 � ð1� vðx; y; zÞÞ: ð34Þ
Remark 2. If the honeycomb cells are empty it suffices to consider
a null elasticity tensor.

We can therefore notice that only two modes are needed to per-
form a separated representation of the elasticity tensor related to
such a complex geometry.

Fig. 10 depicts the solution obtained with the PGD method for a
honeycomb-core plate subject to a uniform pressure on its upper
face. The honeycomb structure is modeled as an isotropic material
while the upper and lower plates of the structure are laminated
composites with 16 plies each. Each ply is modeled as a trans-
versely isotropic material. In this example we have used about
30,000 linear triangular elements for defining the in-plane mesh
(implying 45,000 degrees of freedom) and 520 linear elements
for discretizing the thickness-dependent functions. The equivalent
three-dimensional finite element model implies 16 millions de-
grees of freedom. The solution of such a complex problem involves
225 modes to represent the solution to the desired degree of accu-
racy. In Fig. 10, we see that although the plate deflection is smooth,
large stress concentrations in the honeycomb walls are captured by
the separated representation solution. Although 225 modes might
appear as too many modes, one should recall that:

� The problem is very complex and the solution quite rich. An
equivalent fully 3D solution using the finite elements method
would have implied 16 millions degrees of freedom.
� All those modes have been computed sequentially.
� The computed modes are the ones naturally produced by the

algorithm described earlier. Neither orthogonalization nor a
posteriori optimization has been carried out.
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5. Parametric modeling

When using the PGD one could consider many extra-coordi-
nates because the increase of the dimensionality of the resulting
model does not affect the possibility of computing the solution.
Indeed the method was first designed as a way to circumvent the
so-called ‘‘curse of dimensionality’’. Thus, one could for example
consider the orientation of the different plies of the composite lam-
inate as extra-coordinates allowing through the solution of a single
problem the prediction of the displacement field for any orienta-
tion of the plies. Thus, a single off-line solution could be used for
the on-line particularization of the solution related to different



Fig. 12. Solution envelope for the full range of parameters variation.
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laminate configurations. This particularization is a simple postpro-
cessing of the parametric solution and is computationally so inex-
pensive that it can be carried out on mobile computing platforms,
as for example smartphones. A detailed example of the PGD algo-
rithm with extra-coordinates can be found in the appendix.

For illustrating the capabilities of such approach, we are consid-
ering a laminate composed of four plies of a unidirectional rein-
forcement. For the sake of clarity we are assuming the
orientations of the first and fourth plies h1 and h4 taking values
in the interval I ¼ ½�20
;þ20
�, i.e. h1 2 I and h4 2 I , whereas
the orientation of both central plies are fixed to h2 = h3 = 90�.

Now, the parametric solution is defined in a space of dimension
5, involving the three physical coordinates (x,y,z) and the two con-
figuration coordinates h1 and h4:

uðx; y; z; h1; h4Þ ¼
uðx; y; z; h1; h4Þ
vðx; y; z; h1; h4Þ
wðx; y; z; h1; h4Þ

0
B@

1
CA

�
XN

i¼1

ui
xyðx; yÞ � ui

zðzÞ � h
i
1ðh1Þ � hi

4ðh4Þ
v i

xyðx; yÞ � v i
zðzÞ � h

i
1ðh1Þ � hi

4ðh4Þ
wi

xyðx; yÞ �wi
zðzÞ � h

i
1ðh1Þ � hi

4ðh4Þ

0
BB@

1
CCA: ð35Þ

The different functions involved in the separated representation of
the displacement field are calculated by applying the strategy pre-
viously described for treating parametric models (Section 2).

As soon as the parametric solution (35) is available the displace-
ment field can be obtained for any configuration h1 2 I and h4 2 I
by simple postprocessing. Thus, we can compute the solutions
envelope related to the different possible configurations.

In the case of considering a thermoelastic behavior instead of
the elastic one previously considered, the heating of a non-equili-
brated laminate will induce a plate deformation whose shape will
depend on the values of h1 and h4 as depicted in Fig. 11. The solu-
tion envelope for all possible values of h1 and h4 is depicted in
Fig. 12.

Because the on-line postprocessing involves a few amount of
calculations, one could imagine to perform the solution postpro-
cessing by using a mobile computing platform, as light as a smart-
phone, in order to select the orientation of both plies and then
display the particularized solution.

To illustrate this capability, we consider that the parametric
solution has already been computed and that it is available in a
separated form. Now this solution can be introduced in a smart-
phone that will carry out all the on-line calculations, i.e. compute
display the displacement field for the considered orientations. In
our applications we considered a Nokia, with 256 MB of RAM,
16 GB of internal memory, a 680 MHz ARM 11 CPU and with Sym-
bian 3 as operative system. The multidimensional separated solu-
tion is represented with 25 modes and requires only 460 kB of
memory, while the equivalent five-dimensional grid would contain
more than eight millions degrees of freedom.
Fig. 11. Thermoelastic laminate deformed shape for different configurations [h1,h2,h3,h
[10�,90�,90�,�20�].
Fig. 13 illustrates the application environment in which we can
observe that the orientations of the first and fourth plies, h1 and h2,
can be selected from the two lateral sliders. Fig. 14 depicts two
non-equilibrated scenarios among the numerous that the paramet-
ric solution contains implicitly.

6. Discussion

We compare here the complexity of PGD-based solvers with re-
spect to the standard finite element method. For the sake of sim-
plicity we will consider a hexahedral domain discretized using a
regular structured grid with respectively Nx, Ny and Nz nodes in
the x, y and z directions respectively. Even if the domain thickness
is much lower than the other characteristic in-plane dimensions,
the physics in the thickness direction could be quite rich, mainly
when we consider composites plates composed of hundreds of
plies in which the complex physics involved requires fully 3D
descriptions. In that case thousands of nodes in the thickness
direction could be required to represent accurately the solution
behavior in that direction. In usual mesh-based discretization
strategies this fact induces a challenging issue because the number
of nodes involved in the model scales with Nx � Ny � Nz, however,
if one applies a PGD based discretization, and the separated repre-
sentation of the solution involves N modes, one should solve N 2D
problems related to the functions involving the in-plane coordi-
nates and N 1D problems related to the functions involving the
thickness coordinate. The cost related to the solution of the one-
dimensional problems can be neglected with respect to the one re-
quired for solving the two-dimensional ones. Thus, in terms of de-
grees of freedom, the PGD complexity scales as N � Nx � Ny.
Similarly, one can estimate the computation time reduction if
using e.g. a direct band solver for solving either the full 3D problem
(bandwidth �Nx � Nz) or the many 2D problems (bandwidth �Nx)
arising from the PGD formulation:

FEM computation time � N3
x � Ny � N3

z ;

PGD computation time � N3
x � Ny � N:
4]: (left) [0�,90�,90�,20�], (center) equilibrated laminate [0�,90�,90�,0�] and (right)



Fig. 13. Application environment for the selection of the plies orientation.

Fig. 14. Thermoelastic laminate vertical displacement for different non-equili-
brated scenarios.
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By comparing both complexities we can notice that as soon as
Nz� N the use of PGD-based discretization leads to impressive
computing time savings, making possible even the solution of mod-
els never until now solved, even using low performance computing
platforms.
7. Conclusions

In this paper we proved that a in-plane–out-of-plane separated
representation can be an appealing alternative to the fully 3D solu-
tion of mechanical models defined in plate geometries. When the
physics involved in the models is rich the dimensionality reduction
by introducing kinematic or mechanical hypotheses seems quite
delicate, and full 3D solutions seems compulsory. However, when
the number of nodes in the thickness direction increases usual
mesh based discretization techniques fails because of the excessive
number of degrees of freedom involved. The use of a separated rep-
resentation allows circumventing such drawback and solving effi-
ciently 3D models while keeping a 2D computational complexity.

Appendix A. Revisiting the separated representation of
parametric partial differential equations

In this appendix, we illustrate the PGD of parametric models on
the following parametric heat conduction equation:

@u
@t
� kDu� f ¼ 0: ðA:1Þ

Here ðx; t; kÞ 2 X� I � I, and the source term f is assumed constant.
For the sake of simplicity we assume homogeneous Dirichlet
boundary conditions. The enforcement of more complex boundary
conditions has been addressed previously [8]. Similar to the space
and time coordinates, the conductivity k is viewed as a new coordi-
nate defined in the interval I. Thus, instead of solving the thermal
model for different discrete values of the conductivity parameter,
we wish to solve at once a more general problem, the price to pay
being an increase of the problem’s dimensionality. As the complex-
ity of the PGD scales only linearly with the problem dimensionality,
introducing the conductivity as a new coordinate still allows the
computation of an accurate and computationally inexpensive
solution.

The weak form related to Eq. (A.1) reads:Z
X�I�I

u	 � @u
@t
� kDu� f

� �
dxdt dk ¼ 0; ðA:2Þ

for all test functions u⁄ selected in an appropriate functional space.
The PGD solution is sought in the form:

uðx; t; kÞ �
XN

i¼1

XiðxÞ � TiðtÞ � KiðkÞ: ðA:3Þ

At enrichment step n of the PGD algorithm, the following approxi-
mation is already known:

unðx; t; kÞ ¼
Xn

i¼1

XiðxÞ � TiðtÞ � KiðkÞ: ðA:4Þ

We wish to compute the next functional product Xn+1(x) � Tn+1(t) �
Kn+1(k), which we write as R(x) � S(t) �W(k) for notational simplicity.

Thus, the solution at enrichment step n + 1 reads:

unþ1 ¼ un þ RðxÞ � SðtÞ �WðkÞ: ðA:5Þ

Inspired from the calculus of variations, we propose the simplest
choice for the test functions u⁄ used in Eq. (A.2):

u	 ¼R	ðxÞ �SðtÞ �WðkÞþRðxÞ �S	ðtÞ �WðkÞþRðxÞ �SðtÞ �W	ðkÞ: ðA:6Þ

With the trial and test functions given by Eqs. (A.5) and (A.6)
respectively, Eq. (A.2) is a non-linear problem that must be solved
by means of a suitable iterative scheme. In our earlier papers
[2,3], we used Newton’s method. Simpler linearization strategies
can also be applied, however. The simplest one is an alternating
direction, fixed-point algorithm, which was found remarkably ro-
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bust in the present context. Each iteration consists of three steps
that are repeated until convergence, that is, until reaching the fixed
point. The first step assumes S(t) and W(k) known from the previous
iteration and computes an update for R(x) (in this case the test func-
tion reduces to R⁄(x) � S(t) �W(k)). From the just-updated R(x) and
the previously-used W(k), we can update S(t) (with u⁄ = R(x) � S⁄(t) �
W(k)). Finally, from the just-computed R(x) and S(t), we update
W(k) (with u⁄ = R(x) � S(t) �W⁄(k)). The converged functions R(x),
S(t) and W(k) yield the new functional product of the current
enrichment step: Xn+1(x) = R(x), Tn+1(t) = S(t) and Kn+1(k) = W(k).
The explicit form of these operations is described below.

Computing R(x) from S(t) and W(k):
We consider the weak form of Eq. (A.1):Z

X�I�I

u	
@u
@t
� kDu� f

� �
dxdt dk ¼ 0: ðA:7Þ

Here, the trial function is given by:

uðx; t; kÞ ¼
Xn

i¼1

XiðxÞ � TiðtÞ � KiðkÞ þ RðxÞ � SðtÞ �WðkÞ: ðA:8Þ

Since S and W are known from the previous iteration, the test func-
tion reads:

u	ðx; t; kÞ ¼ R	ðxÞ � SðtÞ �WðkÞ: ðA:9Þ

Introducing (A.8) and (A.9) into (A.7) yields:Z
X�I�I

R	 � S �W � R � @S
@t
�W � k � DR � S �W

� �
dxdt dk

¼ �
Z

X�I�I

R	 � S �W � Rndxdt dk; ðA:10Þ

where Rn is the residual at enrichment step n:

Rn ¼
Xn

i¼1

Xi �
@Ti

@t
� Ki �

Xn

i¼1

k � DXi � Ti � Ki � f : ðA:11Þ

Since all functions involving time and conductivity are known, we
can integrate Eq. (A.10) over I � I. With the following notations,

w1 ¼
R

I
W2 dk s1 ¼

R
I S2 dt r1 ¼

R
X R2 dx

w2 ¼
R

I
kW2 dk s2 ¼

R
I S � dS

dt dt r2 ¼
R

X R � DRdx

w3 ¼
R

I
W dk s3 ¼

R
I Sdt r3 ¼

R
X Rdx

wi
4 ¼

R
I

W � Ki dk si
4 ¼

R
I S � dTi

dt dt ri
4 ¼

R
X R � DXi dx

wi
5 ¼

R
I

kW � Ki dk si
5 ¼

R
I S � Ti dt ri

5 ¼
R

X R � Xi dx

2
6666666664

3
7777777775
;

ðA:12Þ

Eq. (A.10) reduces to:Z
X

R	 � ðw1 �s2 �R�w2 �s1 �DRÞdx¼

�
Z

X
R	 �

Xn

i¼1

wi
4 �si

4 �Xi�
Xn

i¼1

wi
5 �si

5 �DXi�w3 �s3 � f
!

dx: ðA:13Þ

Eq. (A.13) defines in weak form an elliptic steady-state boundary
value problem for the unknown function R that can be solved using
any suitable discretization technique, e.g. finite elements after the
integration by parts of Eq. (A.13). Another possibility consists in
coming back to the strong form of Eq. (A.13):

w1 � s2 � R�w2 � s1 � DR ¼

�
Xn

i¼1

wi
4 � si

4 � Xi �
Xn

i¼1

wi
5 � si

5 � DXi �w3 � s3 � f
!
; ðA:14Þ

that can be solved using any classical collocation technique (finite
differences, SPH, etc.).
Computing S(t) from R(x) and W(k):
In the present step, the test function writes:

u	ðx; t; kÞ ¼ S	ðtÞ � RðxÞ �WðkÞ; ðA:15Þ

and the weak form becomes:Z
X�I�I

S	 � R �W � R � @S
@t
�W � k � DR � S �W

� �
dxdt dk

¼ �
Z

X�I�I

S	 � R �W � Rn dxdt dk: ðA:16Þ

Integrating over X� I, one obtains:Z
I

S	 � w1 � r1 �
dS
dt
�w2 � r2 � S

� �
dt ¼

�
Z

I
S	 �

Xn

i¼1

wi
4 � ri

5 �
dTi

dt
�
Xn

i¼1

wi
5 � ri

4 � Ti �w3 � r3 � f
!

dt: ðA:17Þ

Eq. (A.17) represents the weak form of the scalar ODE defining the
time evolution of the field Sthat can be solved using any stabilized
discretization technique (SU, Discontinuous Galerkin, etc.). The
strong form of Eq. (A.17) reads

w1 � r1 �
dS
dt
�w2 � r2 �S¼�

Xn

i¼1

wi
4 � ri

5 �
dTi

dt
�
Xn

i¼1

wi
5 � ri

4 �Ti�w3 � r3 � f
!
:

ðA:18Þ

Eq. (A.18) can be solved using backward finite differences, or higher
order Runge–Kutta schemes, among many other possibilities.

Computing W(k) from R(x) and S(t):
The test function is now given by:

u	ðx; t; kÞ ¼W	ðkÞ � RðxÞ � SðtÞ; ðA:19Þ

and the weak form becomes:Z
X�I�I

W	 � R � S � R � @S
@t
�W � k � DR � S �W

� �
dxdt dk

¼ �
Z

X�I�I

W	 � R � S � Rn dxdt dk: ðA:20Þ

Integration over X � I yields:Z
I

W	 � r1 �s2 �W�r2 �s1 �k �Wð Þdk¼

�
Z

I

W	 �
Xn

i¼1

ri
5 �si

4 �Ki�
Xn

i¼1

ri
4 �si

5 �k �Ki�r3 �s3 � f
!

dk: ðA:21Þ

Eq. (A.21) does not involve any differential operator. The corre-
sponding strong form reads:

r1 � s2 � r2 � s1 � kð Þ �W ¼ �
Xn

i¼1

ri
5 � si

4 � ri
4 � si

5 � k
� �

� Ki � r3 � s3 � f
!
:

ðA:22Þ

Eq. (A.22) defines an algebraic problem, which is hardly a surprise
since the original equation (A.1) does not contain derivatives with
respect to the parameter k. The introduction of the parameter k as
additional model coordinate does not increase the cost of a partic-
ular enrichment step. It does however necessitate more enrichment
steps, i.e. more terms (higher N) in the decomposition (A.3).

At each enrichment step the construction of the new functional
product in Eq. (A.3) requires iterations. If mi denotes the number of
iterations needed at enrichment step i, the total number of itera-
tions involved in the construction of the PGD approximation is
m ¼

Pi¼N
i¼1 mi. In the above example, the entire procedure thus in-

volves the solution of m three-dimensional problems for the func-
tions Xi(x), m one-dimensional problems for the functions Ti(t) and
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m algebraic systems for the functions Ki(k). mi rarely exceeds 10.
The number N of functional products needed to approximate the
solution with enough accuracy ranges between a few tens and
one hundred, depending on the complexity and dimensionality of
the problem. Thus, we can conclude that the complexity of the
PGD procedure to compute the approximation (A.3) is of some tens
of 3D steady-state problems (the cost related to the 1D and alge-
braic problems being negligible with respect to the 3D problems).
In a classical approach, one must solve for each particular value of
the parameter k a 3D problem at each time step. In usual applica-
tions, this often implies the computation of several millions of 3D
solutions. Clearly, the CPU time savings by applying the PGD can be
of several orders of magnitude.
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